1
|
Peiris GS, Whelan B, Hardcastle N, Sheehy SL. The effect of multi-leaf collimator leaf width on VMAT treatment plan quality. J Appl Clin Med Phys 2025:e70018. [PMID: 40083117 DOI: 10.1002/acm2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 10/01/2024] [Accepted: 12/16/2024] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND The advent of volumetric modulated arc therapy (VMAT) in radiotherapy has made it one of the most commonly used techniques in clinical practice. VMAT is the delivery of intensity modulated radiation therapy (IMRT) while the gantry is in motion, and existing literature has shown it has decreased treatment delivery times and the number of monitor units without sacrificing coverage. It has previously been shown that for IMRT, multi-leaf collimators (MLC) with narrower leaf widths produce demonstrably higher treatment plan quality. However, as VMAT is rapidly becoming the global standard, this needs to be re-evaluated, especially in a global context. This study assesses the impact of MLC leaf width on VMAT treatment plans and asks whether reducing the number of leaves- and thus increasing leaf width- provides clinically acceptable treatment plans using VMAT delivery. MATERIAL & METHODS Using Varian Eclipse, 51 anonymised patients with prostate, lung, liver, colorectal, or cervical cancer had VMAT treatment plans generated. Treatment plans were generated for MLC leaf widths of 2.5, 5 and 10 mm. Plans were compared using D2[%], D50[%], and D98[%], homogeneity index (HI), conformity index (CI), average leaf pair opening (ALPO), modulation factor (MF) and Estimated Treatment Delivery Time. RESULTS The dose to the target structures showed little difference between 2.5 and 5 mm MLC leaves, however 10 mm MLC provided 5% more median dose than the narrower leaf widths for D2[%] (p < 0.05) and D50[%] (p < 0.05). The average HI per leaf width was 0.0777 for 2.5 mm, 0.0752 for 5 mm, and 0.0890 for 10 mm. Organs At Risk (OAR) sparing was consistent between all leaf widths except at low dose percentages, where 10 mm MLC delivered an extra dose to the bladder (p < 0.05) and the heart (p < 0.05). The average ALPO was 38.0 mm for 2.5 mm, 34.1 mm for 5 mm, and 32.7 mm for 10 mm leaf width. 10 mm MLC leaves traveled a shorter distance from the center (p < 0.05). The median MF was 336 MU/Gy for 2.5 mm, 344 MU/Gy for 5 mm, and 384 MU/Gy for 10 mm. There were no differences in estimated treatment delivery time between MLC leaf width. CONCLUSION There is little difference in treatment quality between any of the investigated MLC leaf widths. This work demonstrates that for VMAT treatments, wider MLC leaf widths can still deliver acceptable treatment plans. This finding has potential implications for radiotherapy in low- and middle-income countries and low socio-economic or rural areas where a focus on MLC robustness and LINAC up-time is paramount.
Collapse
Affiliation(s)
| | - Brendan Whelan
- ACRF Image-X Institute, Sydney School of Health Sciences, The University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
2
|
Dosimetric sensitivity of leaf width on volumetric modulated arc therapy plan quality: an objective approach. Rep Pract Oncol Radiother 2022; 27:76-85. [PMID: 35402026 PMCID: PMC8989436 DOI: 10.5603/rpor.a2022.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022] Open
Abstract
Background Several authors investigated a dosimetric impact of leaf width on radiotherapy plan quality subjectively, and concluded that thinner leaf-width multileaf collimators (MLC) are beneficial because of their better coverage of clinically relevant structures. Study aimed to investigate the dosimetric effect of MLC leaf width on volumetric modulated arc therapy plan quality by objective approach. Materials and methods Twelve of each prostate and head-and-neck patients were planned for volumetric modulated arc therapy (VMAT) treatments for MLC leaf widths of 4 mm and 10 mm. Three different VMAT schemes single-arc, dual-arc and two combined independent single-arcs were optimized. Dose volume histogram and Isodose distribution were used for quantitative and qualitative comparison of the treatment plan, respectively. Dose-volume-indices of the planning target volume, organs at risk and number of delivered monitor units were compared. The 4 mm leaf width being reference over 10 mm and results were noted as statistically significant if p ≤ 0.05 using student t-test. Results All VMAT schemes for both tumor sites showed a gain in target coverage, similar organs at risk doses and higher monitor units to be delivered, when changing leaf width from 10 mm to 4 mm. The p-values were significant for majority of head-and-neck dose indices. Conclusion The thinner-leaf MLCs, owing to their better spatial resolution, result in an overall gain for target coverage, while maintaining permissible doses to the organs at risk.
Collapse
|
3
|
Skourou C, Hickey D, Rock L, Houston P, Sturt P, O' Sullivan S, Faul C, Paddick I. Treatment of multiple intracranial metastases in radiation oncology: a contemporary review of available technologies. BJR Open 2021; 3:20210035. [PMID: 34877458 PMCID: PMC8611687 DOI: 10.1259/bjro.20210035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 12/31/2022] Open
Abstract
The use of stereotactic radiosurgery to treat multiple intracranial metastases, frequently concurrently, has become increasingly common. The ability to accurately and safely deliver stereotactic radiosurgery treatment to multiple intracranial metastases (MIM) relies heavily on the technology available for targeting, planning, and delivering the dose. A number of platforms are currently marketed for such applications, each with intrinsic capabilities and limitations. These can be broadly categorised as cobalt-based, linac-based, and robotic. This review describes the most common representative technologies for each type along with their advantages and current limitations as they pertain to the treatment of multiple intracranial metastases. Each technology was used to plan five clinical cases selected to represent the clinical breadth of multiple metastases cases. The reviewers discuss the different strengths and limitations attributed to each technology in the case of MIM as well as the impact of disease-specific characteristics (such as total number of intracranial metastases, their size and relative proximity) on plan and treatment quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Clare Faul
- St. Luke’s Radiation Oncology Network, Dublin, Ireland
| | - Ian Paddick
- Queen Square Radiosurgery Centre, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
4
|
Pokhrel D, Stephen J, Webster A, Bernard ME. Double-vertebral segment SBRT via novel ring-mounted Halcyon Linac: Plan quality, delivery efficiency and accuracy. Med Dosim 2021; 47:20-25. [PMID: 34412963 DOI: 10.1016/j.meddos.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/21/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
To evaluate the plan quality, treatment delivery efficiency, and accuracy of single-isocenter/multi-target (SIMT) volumetric modulated arc therapy (VMAT) of double-vertebral segments stereotactic body radiation therapy (SBRT) on Halcyon ring delivery system (RDS). In-house multi-target end-to-end phantom testing and independent dose verification using the MD Anderson's single-isocenter/multi-target (lung/spine targets) thorax phantom were completed. Six previously treated patients with 2-vertebral segments on thoracic and/or lumber spine were replanned on Halcyon RDS with 6MV-FFF beam using a single-isocenter placed between the vertebral segments. Three full VMAT arcs with 0° and ±10° collimator angles and advanced Acuros-based dose engine for heterogeneity corrections were used. Prescription was 35 Gy in 5 fractions to each vertebral-segment, simultaneously. For comparison, Halcyon VMAT-SBRT plans were retrospectively created on SBRT-dedicated Truebeam with a 6MV-FFF beam using identical planning geometry and optimization objectives. Target coverage, conformity index (CI), heterogeneity index (HI), gradient index (GI), dose to 2-cm away from each target (D2-cm), and dose to adjacent organs-at-risk (OAR) were evaluated per NRG-BR002 protocol. Treatment delivery parameters were evaluated for both plans. In-house phantom measurements showed acceptable spatial accuracy (< 1mm within 5-cm from the isocenter) of conebeam CT-guided Halcyon SBRT treatments. The MD Anderson phantom irradiation credentialing results met IROC requirements for protocol patients. Mean isocenter-to-tumor center distance was 3.3 ± 0.6-cm (range 2.4 to 4.3-cm). Mean combined PTV was 57.3 ± 31.3 cc (range 20.1 to 99.9 cc). Both Halcyon and Truebeam SIMT-VMAT plans met NRG-BR002 compliance criteria and show similar CI, HI, GI, D2-cm. Maximal and volumetric doses to adjacent OAR including dose to partial spinal cord were lower with Halcyon RDS. Average total monitor units, modulation, and overall treatment time were lower with Halcyon plans by 130 MU, 0.2, 3.8 min, respectively, with similar beam-on time. Average pre-treatment patient-specific portal-dosimetry QA results on Halcyon showed a high pass rate of 99.6%, compared to SBRT-dedicated Truebeam pass rate of 96.8%, for 2%/2 mm clinical gamma passing criteria, suggesting more accurate treatment delivery on Halcyon RDS. SBRT treatment of double-vertebral segments via SIMT-VMAT plans on Halcyon for selected patients is feasible and dosimetrically superior to Truebeam Linac. Faster treatment delivery (<10 min) of double-vertebral segment SBRT on Halcyon could reduce patient intolerance due to severe back pain, potentially reduce intra-fraction motion errors, and improve patient throughput, and clinic workflow.
Collapse
Affiliation(s)
- Damodar Pokhrel
- University of Kentucky, Department of Radiation Medicine, Lexington, KY, USA.
| | - Joseph Stephen
- University of Kentucky, Department of Radiation Medicine, Lexington, KY, USA
| | - Aaron Webster
- University of Kentucky, Department of Radiation Medicine, Lexington, KY, USA
| | - Mark E Bernard
- University of Kentucky, Department of Radiation Medicine, Lexington, KY, USA
| |
Collapse
|
5
|
Labate L, Palla D, Panetta D, Avella F, Baffigi F, Brandi F, Di Martino F, Fulgentini L, Giulietti A, Köster P, Terzani D, Tomassini P, Traino C, Gizzi LA. Toward an effective use of laser-driven very high energy electrons for radiotherapy: Feasibility assessment of multi-field and intensity modulation irradiation schemes. Sci Rep 2020; 10:17307. [PMID: 33057078 PMCID: PMC7560873 DOI: 10.1038/s41598-020-74256-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022] Open
Abstract
Radiotherapy with very high energy electrons has been investigated for a couple of decades as an effective approach to improve dose distribution compared to conventional photon-based radiotherapy, with the recent intriguing potential of high dose-rate irradiation. Its practical application to treatment has been hindered by the lack of hospital-scale accelerators. High-gradient laser-plasma accelerators (LPA) have been proposed as a possible platform, but no experiments so far have explored the feasibility of a clinical use of this concept. We show the results of an experimental study aimed at assessing dose deposition for deep seated tumours using advanced irradiation schemes with an existing LPA source. Measurements show control of localized dose deposition and modulation, suitable to target a volume at depths in the range from 5 to 10 cm with mm resolution. The dose delivered to the target was up to 1.6 Gy, delivered with few hundreds of shots, limited by secondary components of the LPA accelerator. Measurements suggest that therapeutic doses within localized volumes can already be obtained with existing LPA technology, calling for dedicated pre-clinical studies.
Collapse
Affiliation(s)
- Luca Labate
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy.
| | - Daniele Palla
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
| | - Daniele Panetta
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica, Pisa, Italy
| | - Federico Avella
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
| | - Federica Baffigi
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
| | - Fernando Brandi
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
| | - Fabio Di Martino
- Unità Operativa di Fisica Sanitaria, Azienza Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Lorenzo Fulgentini
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
| | - Antonio Giulietti
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
| | - Petra Köster
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
| | - Davide Terzani
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
- Lawrence Berkeley National Laboratory, LBL, Berkeley, CA, USA
| | - Paolo Tomassini
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy
| | - Claudio Traino
- Unità Operativa di Fisica Sanitaria, Azienza Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Leonida A Gizzi
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Pisa, Italy.
| |
Collapse
|
6
|
Brodbek L, Kretschmer J, Willborn K, Meijers A, Both S, Langendijk JA, Knopf AC, Looe HK, Poppe B. Analysis of the applicability of two-dimensional detector arrays in terms of sampling rate and detector size to verify scanned intensity-modulated proton therapy plans. Med Phys 2020; 47:4589-4601. [PMID: 32574383 DOI: 10.1002/mp.14346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/05/2022] Open
Abstract
PURPOSE The introduction of advanced treatment techniques in proton therapy, such as intensity-modulated proton therapy, leads to an increased need for patient-specific quality assurance, especially an accurate treatment plan verification becomes inevitable. In this study, signal theoretical analysis of dose distributions in scanned proton therapy is performed to investigate the feasibility and limits of two-dimensional (2D) detector arrays for treatment plan verification. METHODS 2D detector arrays are characterized by two main aspects: the distance between the single detectors on the array or the sampling frequency; and the lateral response functions of a single detector. The analysis is based on single spots, reference fields and on measured and calculated dose distributions of typical intensity-modulated proton therapy treatment plans with and without range shifter. Measurements were performed with Gafchromic EBT3 films (Ashland Speciality Ingredients G.P., Bridgewater, NJ, USA), the MatriXX PT detector array (IBA Dosimetry, Schwarzenbruck, Germany) and the OCTAVIUS detector array 1500XDR (PTW-Freiburg, Germany) at an IBA Proteus PLUS proton therapy system (Ion Beam Applications, Louvain-la-Neuve, Belgium). Dose calculations were performed with the treatment planning system RayStation 6 or 8 (RaySearch Laboratories, Sweden). RESULTS The Fourier analysis of the data of the treatment planning system and film measurements show maximum frequencies of 0.06/mm for the plan with range shifter and 0.083/mm for the plan without range shifter. According to the Nyquist theorem, this corresponds to minimum required sampling distances of 8.3 and 6 mm, respectively. By comparison, the sampling distances of the arrays of 7.6 mm (MatriXX PT) and 7.1 mm (OD1500XDR) are sufficient to reconstruct the dose distributions adequately from measurements if range shifters are used, whereas some fields of the plans without range shifter violated the Nyquist requirement. The lateral dose response functions of the single detectors within the arrays have clearly higher frequencies than the treatment plans and thus the volume effect only slightly influences the measurements. Consequently, the array measurements show high gamma passing rates with at least 96 % and a good agreement between the investigated line profiles. CONCLUSION The results indicate that the detector dimensions and sampling distances of the arrays are in most studied cases adequate not to substantially influence the measurement process when they are used for analyzing typical intensity-modulated proton therapy treatment plans. Nevertheless, clinical conditions have been identified, for instance treatment plans without range shifter, under which the Nyquist theorem is violated such that a full representation of the dose distributions with the measurements is not feasible. In these cases, analysis of measurements is limited to pointwise comparisons.
Collapse
Affiliation(s)
- Leonie Brodbek
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jana Kretschmer
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Kay Willborn
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Arturs Meijers
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Antje-Christin Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany
| |
Collapse
|
7
|
Schmitt D, Blanck O, Gauer T, Fix MK, Brunner TB, Fleckenstein J, Loutfi-Krauss B, Manser P, Werner R, Wilhelm ML, Baus WW, Moustakis C. Technological quality requirements for stereotactic radiotherapy : Expert review group consensus from the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. Strahlenther Onkol 2020; 196:421-443. [PMID: 32211939 PMCID: PMC7182540 DOI: 10.1007/s00066-020-01583-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 12/25/2022]
Abstract
This review details and discusses the technological quality requirements to ensure the desired quality for stereotactic radiotherapy using photon external beam radiotherapy as defined by the DEGRO Working Group Radiosurgery and Stereotactic Radiotherapy and the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. The covered aspects of this review are 1) imaging for target volume definition, 2) patient positioning and target volume localization, 3) motion management, 4) collimation of the irradiation and beam directions, 5) dose calculation, 6) treatment unit accuracy, and 7) dedicated quality assurance measures. For each part, an expert review for current state-of-the-art techniques and their particular technological quality requirement to reach the necessary accuracy for stereotactic radiotherapy divided into intracranial stereotactic radiosurgery in one single fraction (SRS), intracranial fractionated stereotactic radiotherapy (FSRT), and extracranial stereotactic body radiotherapy (SBRT) is presented. All recommendations and suggestions for all mentioned aspects of stereotactic radiotherapy are formulated and related uncertainties and potential sources of error discussed. Additionally, further research and development needs in terms of insufficient data and unsolved problems for stereotactic radiotherapy are identified, which will serve as a basis for the future assignments of the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. The review was group peer-reviewed, and consensus was obtained through multiple working group meetings.
Collapse
Affiliation(s)
- Daniela Schmitt
- Klinik für Radioonkologie und Strahlentherapie, National Center for Radiation Research in Oncology (NCRO), Heidelberger Institut für Radioonkologie (HIRO), Universitätsklinikum Heidelberg, Heidelberg, Germany.
| | - Oliver Blanck
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Tobias Gauer
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Michael K Fix
- Abteilung für Medizinische Strahlenphysik und Universitätsklinik für Radio-Onkologie, Inselspital-Universitätsspital Bern, Universität Bern, Bern, Switzerland
| | - Thomas B Brunner
- Universitätsklinik für Strahlentherapie, Universitätsklinikum Magdeburg, Magdeburg, Germany
| | - Jens Fleckenstein
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Britta Loutfi-Krauss
- Klinik für Strahlentherapie und Onkologie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Peter Manser
- Abteilung für Medizinische Strahlenphysik und Universitätsklinik für Radio-Onkologie, Inselspital-Universitätsspital Bern, Universität Bern, Bern, Switzerland
| | - Rene Werner
- Institut für Computational Neuroscience, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Maria-Lisa Wilhelm
- Klinik für Strahlentherapie, Universitätsmedizin Rostock, Rostock, Germany
| | - Wolfgang W Baus
- Klinik für Radioonkologie, CyberKnife- und Strahlentherapie, Universitätsklinikum Köln, Cologne, Germany
| | - Christos Moustakis
- Klinik für Strahlentherapie-Radioonkologie, Universitätsklinikum Münster, Münster, Germany
| |
Collapse
|
8
|
Mullins J, Renaud MA, Heng V, Ruo R, DeBlois F, Seuntjens J. Trajectory-based VMAT for cranial targets with delivery at shortened SAD. Med Phys 2020; 47:3103-3112. [PMID: 32198933 DOI: 10.1002/mp.14151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Trajectory-based volumetric modulated arc therapy (tr-VMAT) treatment plans enable the option for noncoplanar delivery yielding steeper dose gradients and increased sparing of critical structures compared to conventional treatment plans. The addition of translational couch motion to shorten the effective source-to-axis distance (SAD) may result in improved delivery precision and an increased effective dose rate. In this work, tr-VMAT treatment plans using a noncoplanar "baseball stitch" trajectory were implemented, applied to patients presented with cranial targets, and compared to the clinical treatment plans. METHODS A treatment planning workflow was implemented: (a) beamlet doses were calculated for control points defined along a baseball stitch trajectory using a collapsed-cone convolution-superposition algorithm; (b) VMAT treatment plans were optimized using the column generation approach; (c) a final dose distribution was calculated in Varian Eclipse using the analytical anisotropic algorithm by importing the optimized treatment plan parameters. Tr-VMAT plans were optimized for ten patients presented with cranial targets at both standard and shortened SAD, and compared to the clinical treatment plans through isodose distributions, dose-volume histograms, and dosimetric indices. The control point specifications of the optimized tr-VMAT plans were used to estimate the delivery time. RESULTS The optimized tr-VMAT plans with both shortened and standard SAD delivery yielded a comparable plan quality to the clinical treatment plans. A statistically significant benefit was observed for dose gradient index and monitor unit efficiency for shortened SAD tr-VMAT plans, while improved target volume conformity was observed for the clinical treatment plan (P ≤ 0.05). A clear dosimetric benefit was not demonstrated between tr-VMAT delivery at shortened SAD compared to standard SAD, but shortened SAD delivery yielded a fraction size-dependent reduction in the estimated delivery time. CONCLUSION The implementation of "baseball stitch" tr-VMAT treatment plans to patients presented with cranial targets demonstrated comparable plan quality to clinical treatment plans. The delivery at shortened SAD produced a fraction size-dependent decrease in estimated delivery time.
Collapse
Affiliation(s)
- Joel Mullins
- Department of Physics & Medical Physics Unit, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Marc-André Renaud
- Department of Mathematics and Industrial Engineering, Polytechnique Montréal, Montréal, QC, H3T 1J4, Canada
| | - Veng Heng
- Department of Physics & Medical Physics Unit, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Russell Ruo
- Medical Physics Unit, McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
| | - François DeBlois
- Centre Hospitalier de l'Université de Montréal & Département de Physique, Université de Montréal, Montréal, QC, H2X 3E4, Canada.,McGill University, Montréal, QC, H4A 3J1, Canada
| | - Jan Seuntjens
- Medical Physics Unit, McGill University & Research Institute of the McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
| |
Collapse
|
9
|
Park H, Choi HJ, Hee Min C, Kim JI. Monte Carlo simulation of a 2D dynamic multileaf collimator to improve the plan quality in radiotherapy plan: a proof-of-concept study. Phys Med Biol 2019; 64:245009. [PMID: 31726432 DOI: 10.1088/1361-6560/ab57c4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The leaf width of a multileaf collimator (MLC) determines the dose conformity to the target volume. The objective of this study was to investigate the feasibility of a two-dimensional dynamic MLC (2DDMLC) to improve the treatment plan quality with a fixed leaf width. The treatment head of the Clinac™ linear accelerator with the Millennium 120™ MLC was modelled with the Geant4 (for GEometry ANd Tracking) tollkit using the Monte Carlo (MC) method. The 2DDMLC produces a beam aperture by moving the MLC bank vertically to the leaf movement. Thus, the effect of the 2DDMLC motion on beam divergence and beam fluence resolution was evaluated by comparing the dose distributions between the conventional MLC motion and the 2DDMLC. Finally, the 2DDMLC was employed for dynamic conformal arc therapy for 13 brain cancer patients. The dose-volumetric parameters, including the dose delivered to 98% of the target volume (D 98%), percent volume given 20% of the prescribed dose (V 20%), and conformity index (CI) were compared with those of the conventional MLC. For the 6 MV beam of the MC model, the depth dose and lateral dose distribution differed by less than 2% between the simulation and measurement. The 2DDMLC did not significantly influence beam divergence and sharpened the beam. In clinical use, the dose delivered to the target was almost identical between the 2DDMLC and conventional MLC (D 98% = 29.74 Gy versus 29.71 Gy, p = 0.18). The CI was improved with the use of the 2DDMLC (CI = 1.49 versus 1.47, p = 0.14). Moreover, irradiation of normal tissue was reduced with the 2DDMLC compared with conventional MLC (V 20% = 17.22% versus 17.45%, p < 0.001). The 2DDMLC improved the dose conformity to the target volume and reduced the irradiation of the normal tissue compared with the conventional MLC.
Collapse
Affiliation(s)
- Hyojun Park
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea
| | | | | | | |
Collapse
|
10
|
Petroccia HM, Malajovich I, Barsky AR, Ghiam AF, Jones J, Wang C, Zou W, Teo BKK, Dong L, Metz JM, Li T. Spine SBRT With Halcyon™: Plan Quality, Modulation Complexity, Delivery Accuracy, and Speed. Front Oncol 2019; 9:319. [PMID: 31106151 PMCID: PMC6498946 DOI: 10.3389/fonc.2019.00319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose: Spine SBRT requires treatment plans with steep dose gradients and tight limits to the cord maximal dose. A new dual-layer staggered 1-cm MLC in Halcyon™ treatment platform has improved leakage, speed, and DLG compared to 120-Millennium (0.5-cm) and High-Definition (0.25-cm) MLCs in the TrueBeam platform. Halcyon™ 2.0 with SX2 MLC modulates fluence with the upper and lower MLCs, while in Halcyon™ 1.0 with SX1 only the lower MLC modulates the fluence and the upper MLC functions as a back-up jaw. We investigated the effects of four MLC designs on plan quality for spine SBRT treatments. Methods: 15 patients previously treated at our institution were re-planned according to the NRG-BR-002 guidelines with a prescription of 3,000 cGy in 3 fractions, 6xFFF, 800 MU/min, and 3-arc VMAT technique. Planning objectives were adjusted manually by an experienced planner to generate optimal plans and kept the same for different MLCs within the same platform. Results: All treatment plans were able to achieve adequate target coverage while meeting NRG-BR002 dosimetric constraints. Planning parameters were evaluated including: conformity index, homogeneity index, gradient measure, and global point dose maximum. Delivery accuracy, modulation complexity, and delivery time were also analyzed for all MLCs. Conclusion: The Halcyon™ dual-layer MLC can generate comparable and clinically equivalent spine SBRT plans to TrueBeam plans with less rapid dose fall-off and lower conformity. MLC width leaf can impact maximum dose to organs at risk and plan quality, but does not cause limitations in achieving acceptable plans for spine SBRT treatments.
Collapse
Affiliation(s)
- Heather M Petroccia
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Irina Malajovich
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew R Barsky
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alireza Fotouhi Ghiam
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joshua Jones
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Chunhao Wang
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - Wei Zou
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Boon-Keng Kevin Teo
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lei Dong
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - James M Metz
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taoran Li
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Bratengeier K, Holubyev K, Wegener S. Steeper dose gradients resulting from reduced source to target distance-a planning system independent study. J Appl Clin Med Phys 2018; 20:89-100. [PMID: 30412346 PMCID: PMC6333151 DOI: 10.1002/acm2.12490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/26/2018] [Accepted: 10/06/2018] [Indexed: 11/17/2022] Open
Abstract
Purpose To quantify the contribution of penumbra in the improvement of healthy tissue sparing at reduced source‐to‐axis distance (SAD) for simple spherical target and different prescription isodoses (PI). Method A TPS‐independent method was used to estimate three‐dimensional (3D) dose distribution for stereotactic treatment of spherical targets of 0.5 cm radius based on single beam two‐dimensional (2D) film dosimetry measurements. 1 cm target constitutes the worst case for the conformation with standard Multi‐Leaf Collimator (MLC) with 0.5 cm leaf width. The measured 2D transverse dose cross‐sections and the profiles in leaf and jaw directions were used to calculate radial dose distribution from isotropic beam arrangement, for both quadratic and circular beam openings, respectively. The results were compared for standard (100 cm) and reduced SAD 70 and 55 cm for different PI. Results For practical reduction of SAD using quadratic openings, the improvement of healthy tissue sparing (HTS) at distances up to 3 times the PTV radius was at least 6%–12%; gradient indices (GI) were reduced by 3–39% for PI between 40% and 90%. Except for PI of 80% and 90%, quadratic apertures at SAD 70 cm improved the HTS by up to 20% compared to circular openings at 100 cm or were at least equivalent; GI were 3%–33% lower for reduced SAD in the PI range 40%–70%. For PI = 80% and 90% the results depend on the circular collimator model. Conclusion Stereotactic treatments of spherical targets delivered at reduced SAD of 70 or 55 cm using MLC spare healthy tissue around the target at least as good as treatments at SAD 100 cm using circular collimators. The steeper beam penumbra at reduced SAD seems to be as important as perfect target conformity. The authors argue therefore that the beam penumbra width should be addressed in the stereotactic studies.
Collapse
Affiliation(s)
- Klaus Bratengeier
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Kostyantyn Holubyev
- Abt. Medizinische Physik, University of Freiburg, Klinik für Strahlenheilkunde, Freiburg, Germany
| | - Sonja Wegener
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Stewart JMP, Stapleton S, Chaudary N, Lindsay PE, Jaffray DA. Spatial frequency performance limitations of radiation dose optimization and beam positioning. Phys Med Biol 2018; 63:125006. [PMID: 29762137 DOI: 10.1088/1361-6560/aac501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The flexibility and sophistication of modern radiotherapy treatment planning and delivery methods have advanced techniques to improve the therapeutic ratio. Contemporary dose optimization and calculation algorithms facilitate radiotherapy plans which closely conform the three-dimensional dose distribution to the target, with beam shaping devices and image guided field targeting ensuring the fidelity and accuracy of treatment delivery. Ultimately, dose distribution conformity is limited by the maximum deliverable dose gradient; shallow dose gradients challenge techniques to deliver a tumoricidal radiation dose while minimizing dose to surrounding tissue. In this work, this 'dose delivery resolution' observation is rigorously formalized for a general dose delivery model based on the superposition of dose kernel primitives. It is proven that the spatial resolution of a delivered dose is bounded by the spatial frequency content of the underlying dose kernel, which in turn defines a lower bound in the minimization of a dose optimization objective function. In addition, it is shown that this optimization is penalized by a dose deposition strategy which enforces a constant relative phase (or constant spacing) between individual radiation beams. These results are further refined to provide a direct, analytic method to estimate the dose distribution arising from the minimization of such an optimization function. The efficacy of the overall framework is demonstrated on an image guided small animal microirradiator for a set of two-dimensional hypoxia guided dose prescriptions.
Collapse
Affiliation(s)
- James M P Stewart
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada. Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
13
|
Bratengeier K, Herzog B, Wegener S, Holubyev K. Finer leaf resolution and steeper beam edges using a virtual isocentre in concurrence to PTV-shaped collimators in standard distance - a planning study. Radiat Oncol 2017; 12:88. [PMID: 28545556 PMCID: PMC5445413 DOI: 10.1186/s13014-017-0826-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/16/2017] [Indexed: 11/22/2022] Open
Abstract
Purpose Investigation of a reduced source to target distance to improve organ at risk sparing during stereotactic irradiation (STX). Methods The authors present a planning study with perfectly target-volume adapted collimator compared with multi-leaf collimator (MLC) at reduced source to virtual isocentre distance (SVID) in contrast to normal source to isocentre distance (SID) for stereotactic applications. The role of MLC leaf width and 20–80% penumbra was examined concerning the healthy tissue sparing. Several prescription schemes and target diameters are considered. Results Paddick’s gradient index (GI) as well as comparison of the mean doses to spherical shells at several distances to the target is evaluated. Both emphasize the same results: the healthy tissue sparing in the high dose area around the planning target volume (PTV) is improved at reduced SVID ≤ 70 cm. The effect can be attributed more to steeper penumbra than to finer leaf resolution. Comparing circular collimators at different SVID just as MLC-shaped collimators, always the GI was reduced. Even MLC-shaped collimator at SVID 70 cm had better healthy tissue sparing than an optimal shaped circular collimator at SID 100 cm. Regarding penumbra changes due to varying SVID, the results of the planning study are underlined by film dosimetry measurements with Agility™ MLC. Conclusion Penumbra requires more attention in comparing studies, especially studies using different planning systems. Reduced SVID probably allows usage of conventional MLC for STX-like irradiations. Electronic supplementary material The online version of this article (doi:10.1186/s13014-017-0826-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Klaus Bratengeier
- Department of Radiation Oncology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.
| | - Barbara Herzog
- Martin-Luther-Universität Halle-Wittenberg, Institute of Physics, Von-Danckelmann-Platz 3, 06120, Halle (Saale), Germany
| | - Sonja Wegener
- Department of Radiation Oncology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Kostyantyn Holubyev
- University of Freiburg, Klinik für Strahlenheilkunde, Abt. Medizinische Physik, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| |
Collapse
|
14
|
Iridium-Knife: Another knife in radiation oncology. Brachytherapy 2017; 16:884-892. [PMID: 28392144 DOI: 10.1016/j.brachy.2017.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/19/2017] [Accepted: 03/07/2017] [Indexed: 01/30/2023]
Abstract
PURPOSE Intratarget dose escalation with superior conformity is a defining feature of three-dimensional (3D) iridium-192 (192Ir) high-dose-rate (HDR) brachytherapy (BRT). In this study, we analyzed the dosimetric characteristics of interstitial 192Ir HDR BRT for intrathoracic and cerebral malignancies. We examined the dose gradient sharpness of HDR BRT compared with that of linear accelerator-based stereotactic radiosurgery and stereotactic body radiation therapy, usually called X-Knife, to demonstrate that it may as well be called a Knife. METHODS AND MATERIALS Treatment plans for 10 patients with recurrent glioblastoma multiforme or intrathoracic malignancies, five of each entity, treated with X-Knife (stereotactic radiosurgery for glioblastoma multiforme and stereotactic body radiation therapy for intrathoracic malignancies) were replanned for simulated HDR BRT. For 3D BRT planning, we used identical structure sets and dose prescription as for the X-Knife planning. The indices for qualitative treatment plan analysis encompassed planning target volume coverage, conformity, dose falloff gradient, and the maximum dose-volume limits to different organs at risk. RESULTS Volume coverage in HDR plans was comparable to that calculated for X-Knife plans with no statistically significant difference in terms of conformity. The dose falloff gradient-sharpness-of the HDR plans was considerably steeper compared with the X-Knife plans. CONCLUSIONS Both 3D 192Ir HDR BRT and X-Knife are effective means for intratarget dose escalation with HDR BRT achieving at least equal conformity and a steeper dose falloff at the target volume margin. In this sense, it can reasonably be argued that 3D 192Ir HDR BRT deserves also to be called a Knife, namely Iridium-Knife.
Collapse
|
15
|
Park JY, Li F, Li J, Kahler D, Park JC, Yan G, Liu C, Lu B. Angular under-sampling effect on VMAT dose calculation: An analysis and a solution strategy. Med Phys 2017; 44:2096-2114. [PMID: 28370002 DOI: 10.1002/mp.12250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/22/2017] [Accepted: 03/24/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Most VMAT algorithms compute the dose on discretized apertures with small angular separations for practical reasons. However, machines deliver the VMAT dose with a continuously moving MLC and gantry and a continuously changing dose rate. The computed dose can deviate from the delivered dose, especially if no, or loose, MLC movement constraints are applied for the VMAT optimization. The goal of this paper is to establish a simplified mathematical model to analyze the discrepancy between the VMAT plan calculation dose and the delivered dose and to provide a reasonable solution for clinical implementation. METHODS A simplified metric is first introduced to describe the discrepancy between doses computed with discretized apertures and a continuous delivery model. The delivery fluences were formed separately for six different leaf movement scenarios. The formula was then rewritten in a more general form. The correlation between discretized and continuous fluence is summarized using this general form. The Fourier analysis for the impacts from three separate factors - dose kernel width, aperture width, aperture distance - to the dose discrepancy is also presented in order to provide insight into the dose discrepancy caused by under-sampling in the frequency domain. Finally, a weighting-based interpolation (WBI) algorithm, which can improve the aperture interpolation efficiency, is proposed. The associated evaluation methods and criteria for the proposed algorithm are also given. RESULTS The comparisons between the WBI algorithm and the equal angular interpolation (EAI) method suggested that the proposed algorithm has a great advantage with regard to aperture number efficiency. To achieve a 90% gamma passing rate using the dose computed with apertures generated with 0.5° EAI, with the initial optimization apertures as the standard for the comparison, the WBI needs only 66% and 54% of the aperture numbers that the EAI method needs for a 2° and a 4° angular separation of the VMAT optimization, respectively. The results also suggested that the weighted dose error index value, Θ, can be used as a stopping criterion for an interpolation algorithm, e.g., WBI or EAI, or as an indicator for sampling level evaluations. The phantom results indicate that the gamma passing rate decreases with increasing depth, from the phantom surface to the iso center, for the plans computed with under-sampled apertures. No obvious variation trends were observed for the plans computed with well-sampled apertures. CONCLUSIONS The mathematical analysis suggests that the dose discrepancies due to under-sampling are strongly correlated with the aperture width, the distance between apertures, and the width of the dose kernel. The WBI algorithm proves to be an efficient aperture interpolation strategy and is useful for dose computation of VMAT plans.
Collapse
Affiliation(s)
- Ji-Yeon Park
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, 32610, USA
| | - Feifei Li
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, 32610, USA
| | - Jonathan Li
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, 32610, USA
| | - Darren Kahler
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, 32610, USA
| | - Justin C Park
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Guanghua Yan
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, 32610, USA
| | - Chihray Liu
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, 32610, USA
| | - Bo Lu
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, 32610, USA
| |
Collapse
|
16
|
Kantz S, Söhn M, Troeller A, Reiner M, Weingandt H, Alber M, Belka C, Ganswindt U. Impact of MLC properties and IMRT technique in meningioma and head-and-neck treatments. Radiat Oncol 2015; 10:184. [PMID: 26328628 PMCID: PMC4556413 DOI: 10.1186/s13014-015-0447-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/25/2015] [Indexed: 11/10/2022] Open
Abstract
Purpose The impact of multileaf collimator (MLC) design and IMRT technique on plan quality and delivery improvements for head-and-neck and meningioma patients is compared in a planning study. Material and methods Ten previously treated patients (5 head-and-neck, 5 meningioma) were re-planned for step-and-shoot IMRT (ssIMRT), sliding window IMRT (dMLC) and VMAT using the MLCi2 without (−) and with (+) interdigitation and the Agility-MLC attached to an Elekta 6MV linac. This results in nine plans per patient. Consistent patient individual optimization parameters are used. Plans are generated using the research tool Hyperion V2.4 (equivalent to Elekta Monaco 3.2) with hard constraints for critical structures and objectives for target structures. For VMAT plans, the improved segment shape optimization is used. Critical structures are evaluated based on QUANTEC criteria. PTV coverage is compared by EUD, Dmean, homogeneity and conformity. Additionally, MU/plan, treatment times and number of segments are evaluated. Results As constrained optimization is used, all plans fulfill the hard constraints. Doses to critical structures do not differ more than 1Gy between the nine generated plans for each patient. Only larynx, parotids and eyes differ up to 1.5Gy (Dmean or Dmax) or 7 % (volume-constraint) due to (1) increased scatter, (2) not avoiding structures when using the full range of gantry rotation and (3) improved leaf sequencing with advanced segment shape optimization for VMAT plans. EUD, Dmean, homogeneity and conformity are improved using the Agility-MLC. However, PTV coverage is more affected by technique. MU increase with the use of dMLC and VMAT, while the MU are reduced by using the Agility-MLC. Fastest treatments are always achieved using Agility-MLC, especially in combination with VMAT. Conclusion Fastest treatments with the best PTV coverage are found for VMAT plans with Agility-MLC, achieving the same sparing of healthy tissue compared to the other combinations of ssIMRT, dMLC and VMAT with either MLCi2−/+ or Agility.
Collapse
Affiliation(s)
- Steffi Kantz
- Department of Radiation Oncology, Ludwig-Maximilians-University, Munich, Germany.
| | - Matthias Söhn
- Department of Radiation Oncology, Ludwig-Maximilians-University, Munich, Germany.
| | - Almut Troeller
- Department of Radiation Oncology, Ludwig-Maximilians-University, Munich, Germany. .,Department of Radiation Oncology, William Beaumont Health System, Royal Oak, MI, USA.
| | - Michael Reiner
- Department of Radiation Oncology, Ludwig-Maximilians-University, Munich, Germany.
| | - Helmut Weingandt
- Department of Radiation Oncology, Ludwig-Maximilians-University, Munich, Germany.
| | - Markus Alber
- Department of Clinical Medicine, Department of Oncology, Aarhus University, Aarhus, Denmark.
| | - Claus Belka
- Department of Radiation Oncology, Ludwig-Maximilians-University, Munich, Germany.
| | - Ute Ganswindt
- Department of Radiation Oncology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
17
|
Subramanian SV, Subramani V, Thirumalai Swamy S, Gandhi A, Chilukuri S, Kathirvel M. Is 5 mm MMLC suitable for VMAT-based lung SBRT? A dosimetric comparison with 2.5 mm HDMLC using RTOG-0813 treatment planning criteria for both conventional and high-dose flattening filter-free photon beams. J Appl Clin Med Phys 2015. [PMID: 26219006 PMCID: PMC5690010 DOI: 10.1120/jacmp.v16i4.5415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of this study is to assess the suitability of 5 mm millennium multileaf collimator (MMLC) for volumetric‐modulated arc therapy (VMAT)‐based lung stereotactic body radiotherapy (SBRT). Thirty lung SBRT patient treatment plans along with their planning target volumes (ranging from 2.01 cc to 150.11 cc) were transferred to an inhomogeneous lung phantom and retrospectively planned using VMAT technique, along with the high definition multileaf collimator (HDMLC) and MMLC systems. The plans were evaluated using Radiation Therapy Oncology Group (RTOG‐0813) treatment planning criteria for target coverage, normal tissue sparing, and treatment efficiency for both the MMLC and HDMLC systems using flat and flattening filter‐free (FFF) photon beams. Irrespective of the target volumes, both the MLC systems were able to satisfy the RTOG‐0813 treatment planning criteria without having any major deviation. Dose conformity was marginally better with HDMLC. The average conformity index (CI) value was found to be 1.069±0.034 and 1.075±0.0380 for HDMLC and MMLC plans, respectively. For the 6 MV FFF beams, the plan was slightly more conformal, with the average CI values of 1.063±0.029 and 1.073±0.033 for the HDMLC and MMLC plans, respectively. The high dose spillage was the maximum for 2 cc volume set (3% for HDMLC and 3.1% for MMLC). In the case of low dose spillage, both the MLCs were within the protocol of no deviation, except for the 2 cc volume set. The results from this study revealed that VMAT‐based lung SBRT using 5 mm MMLC satisfies the RTOG‐0813 treatment planning criteria for the studied target size and shapes. PACS numbers: 87.53.Ly, 87.53D, 87.56.jk
Collapse
|
18
|
Serna A, Puchades V, Mata F, Ramos D, Alcaraz M. Influence of multi-leaf collimator leaf width in radiosurgery via volumetric modulated arc therapy and 3D dynamic conformal arc therapy. Phys Med 2015; 31:293-6. [PMID: 25703035 DOI: 10.1016/j.ejmp.2015.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To study the influence of Multileaf Collimator (MLC) leaf width in radiosurgery treatment planning for Volumetric Modulated Arc Therapy (VMAT) and 3D Dynamic Conformal Arc Therapy (3D-DCA). MATERIAL AND METHODS 16 patients with solitary brain metastases treated with radiosurgery via the non-coplanar VMAT were replanned for the 3D-DCA. For each planning technique two MLC leaf width sizes were utilized, i.e. 5 mm and 2.5 mm. These treatment plans were compared using dosimetric indices (conformity, gradient and mean dose for brain tissue) and the normal tissue complication probability (NTCP). RESULTS An improvement in planning quality for VMAT was observed versus 3D-DCA for any MLC leaf width, mainly with regards to dose conformity and to a lesser extent regards dose gradient. No significant difference was observed for any of both techniques using smaller leaf width. However, dose gradient was improved in favor of the 2.5 mm MLC for either of both techniques (15% VMAT and 10% 3D-DCA); being noticeable for lesions smaller than 10cm(3). Nonetheless, the NTCP index was not significantly affected by variations in the dose gradient index. CONCLUSIONS This, our present study, suggests that the use of an MLC leaf width of 2.5 mm via the noncoplanar VMAT and 3D-DCA techniques provides improvement in terms of dose gradient for small volumes, over those results obtained with an MLC leaf width of 5 mm. The 3D-DCA does also benefit from MLC leaf widths of a smaller size, mainly in terms of conformity.
Collapse
Affiliation(s)
- Alfredo Serna
- Medical Physics and Radiation Protection Department, Santa Lucia University Hospital, 30202 Cartagena, Murcia, Spain.
| | - Vicente Puchades
- Medical Physics and Radiation Protection Department, Santa Lucia University Hospital, 30202 Cartagena, Murcia, Spain
| | - Fernando Mata
- Medical Physics and Radiation Protection Department, Santa Lucia University Hospital, 30202 Cartagena, Murcia, Spain
| | - David Ramos
- Medical Physics and Radiation Protection Department, Santa Lucia University Hospital, 30202 Cartagena, Murcia, Spain
| | - Miguel Alcaraz
- Medical Physic Radiology and Physical Medicine Department, Faculty of Medicine, University of Murcia, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
19
|
Treuer H, Hoevels M, Luyken K, Visser-Vandewalle V, Wirths J, Kocher M, Ruge M. Intracranial stereotactic radiosurgery with an adapted linear accelerator vs. robotic radiosurgery. Strahlenther Onkol 2014; 191:470-6. [DOI: 10.1007/s00066-014-0786-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 10/31/2014] [Indexed: 11/29/2022]
|
20
|
Kocher M, Wittig A, Piroth MD, Treuer H, Seegenschmiedt H, Ruge M, Grosu AL, Guckenberger M. Stereotactic radiosurgery for treatment of brain metastases. A report of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol 2014; 190:521-32. [PMID: 24715242 DOI: 10.1007/s00066-014-0648-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/25/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND This report from the Working Group on Stereotaktische Radiotherapie of the German Society of Radiation Oncology (Deutsche Gesellschaft für Radioonkologie, DEGRO) provides recommendations for the use of stereotactic radiosurgery (SRS) on patients with brain metastases. It considers existing international guidelines and details them where appropriate. RESULTS AND DISCUSSION The main recommendations are: Patients with solid tumors except germ cell tumors and small-cell lung cancer with a life expectancy of more than 3 months suffering from a single brain metastasis of less than 3 cm in diameter should be considered for SRS. Especially when metastases are not amenable to surgery, are located in the brain stem, and have no mass effect, SRS should be offered to the patient. For multiple (two to four) metastases--all less than 2.5 cm in diameter--in patients with a life expectancy of more than 3 months, SRS should be used rather than whole-brain radiotherapy (WBRT). Adjuvant WBRT after SRS for both single and multiple (two to four) metastases increases local control and reduces the frequency of distant brain metastases, but does not prolong survival when compared with SRS and salvage treatment. As WBRT carries the risk of inducing neurocognitive damage, it seems reasonable to withhold WBRT for as long as possible. CONCLUSION A single (marginal) dose of 20 Gy is a reasonable choice that balances the effect on the treated lesion (local control, partial remission) against the risk of late side effects (radionecrosis). Higher doses (22-25 Gy) may be used for smaller (< 1 cm) lesions, while a dose reduction to 18 Gy may be necessary for lesions greater than 2.5-3 cm. As the infiltration zone of the brain metastases is usually small, the GTV-CTV (gross tumor volume-clinical target volume) margin should be in the range of 0-1 mm. The CTV-PTV (planning target volume) margin depends on the treatment technique and should lie in the range of 0-2 mm. Distant brain recurrences fulfilling the aforementioned criteria can be treated with SRS irrespective of previous WBRT.
Collapse
Affiliation(s)
- Martin Kocher
- Department of Radiation Oncology, University Hospital Cologne, Joseph-Stelzmann-Str. 9, 50924, Köln, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Thompson CM, Weston SJ, Cosgrove VC, Thwaites DI. A dosimetric characterization of a novel linear accelerator collimator. Med Phys 2014; 41:031713. [DOI: 10.1118/1.4866228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
22
|
Shang Q, Qi P, Ferjani S, Xia P. Effect of MLC leaf width on treatment adaptation and accuracy for concurrent irradiation of prostate and pelvic lymph nodes. Med Phys 2014; 40:061701. [PMID: 23718580 DOI: 10.1118/1.4803499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The aim of the study was to evaluate the impact of multileaf collimator (MLC) leaf width on treatment adaptation and delivery accuracy for concurrent treatment of the prostate and pelvic lymph nodes with intensity modulated radiation therapy (IMRT). METHODS Seventy-five kilovoltage cone beam CTs (KV-CBCT) from six patients were included for this retrospective study. For each patient, three different IMRT plans were created based on a planning CT using three different MLC leaf widths of 2.5, 5, and 10 mm, respectively. For each CBCT, the prostate displacement was determined by a dual image registration. Adaptive plans were created by shifting selected MLC leaf pairs to compensate for daily prostate movements. To evaluate the impact of MLC leaf width on the adaptive plan for each daily CBCT, three MLC shifted plans were created using three different leaf widths of MLCs (a total of 225 adaptive treatment plans). Selective dosimetric endpoints for the tumor volumes and organs at risk (OARs) were evaluated for these adaptive plans. Using the planning CT from a selected patient, MLC shifted plans for three hypothetical longitudinal shifts of 2, 4, and 8 mm were delivered on the three linear accelerators to test the deliverability of the shifted plans and to compare the dose accuracy of the shifted plans with the original IMRT plans. RESULTS Adaptive plans from 2.5 and 5 mm MLCs had inadequate dose coverage to the prostate (D99 < 97%, or D(mean) < 99% of the planned dose) in 6%-8% of the fractions, while adaptive plans from 10 mm MLC led to inadequate dose coverage to the prostate in 25.3% of the fractions. The average V56Gy of the prostate over the six patients was improved by 6.4% (1.6%-32.7%) and 5.8% (1.5%-35.7%) with adaptive plans from 2.5 and 5 mm MLCs, respectively, when compared with adaptive plans from 10 mm MLC. Pelvic lymph nodes were well covered for all MLC adaptive plans, as small differences were observed for D99, D(mean), and V(50.4Gy). Similar OAR sparing could be achieved for the bladder and rectum with all three MLCs for treatment adaptation. The MLC shifted plans can be accurately delivered on all three linear accelerators with accuracy similar to their original IMRT plans, where gamma (3%∕3 mm) passing rates were 99.6%, 93.0%, and 92.1% for 2.5, 5, and 10 mm MLCs, respectively. The percentages of pixels with dose differences between the measurement and calculation being less than 3% of the maximum dose were 85.9%, 82.5%, and 70.5% for the original IMRT plans from the three MLCs, respectively. CONCLUSIONS Dosimetric advantages associated with smaller MLC leaves were observed in terms of the coverage to the prostate, when the treatment was adapted to account for daily prostate movement for concurrent irradiation of the prostate and pelvic lymph nodes. The benefit of switching the MLC from 10 to 5 mm was significant (p ≪ 0.01); however, switching the MLC from 5 to 2.5 mm would not gain significant (p = 0.15) improvement. IMRT plans with smaller MLC leaf widths achieved more accurate dose delivery.
Collapse
Affiliation(s)
- Qingyang Shang
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
23
|
Marrazzo L, Zani M, Pallotta S, Greto D, Scoccianti S, Talamonti C, Biti G, Bucciolini M. Comparison of stereotactic plans for brain tumors with two different multileaf collimating systems. J Appl Clin Med Phys 2014; 15:4100. [PMID: 24423831 PMCID: PMC5711251 DOI: 10.1120/jacmp.v15i1.4100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/19/2013] [Accepted: 08/12/2013] [Indexed: 11/23/2022] Open
Abstract
Linac‐based stereotactic radiosurgery (SRS) has been widely used for treating small intracranial lesions. This technique allows conforming the dose distribution to the planning target volume (PTV), providing a steep dose gradient with the surrounding normal tissues. This is realized through dedicated collimation systems. The present study aims to compare SRS plans with two collimating systems: the beam modulator (BM) of the Elekta Synergy linac and the DirexGroup micromultileaf collimator (μMLC). Seventeen patients (25 PTVs) were planned both with BM and μMLC (mounted on an Elekta Precise linac) using the Odyssey (PerMedics) treatment planning system (TPS). Plans were compared in terms of dose‐volume histograms (DVH), minimum dose to the PTV, conformity index (CI), and homogeneity index (HI), as defined by the TPS, and doses to relevant organs at risk (OAR). The mean difference between the μMLC and the BM plans in minimum PTV dose was 5.7%±4.2% in favor of the μMLC plans. No statistically significant difference was found between the distributions of the CI values for the two planning modalities (p=0.54), while the difference between the distributions of the HI values was statistically significant (p=0.018). For both BM and μMLC plans, no differences were observed in CI and HI, depending on lesion size and shape. The PTV homogeneity achieved by BM plans was 15.1%±6.8% compared to 10.4%±6.6% with μMLC. Higher maximum and mean doses to OAR were observed in the BM plans; however, for both plans, dose constraints were respected. The comparison between the two collimating systems showed no substantial differences in terms of PTV coverage or OAR sparing. The improvements obtained by using μMLC are relatively small, and both systems turned out to be adequate for SRS treatments. PACS numbers: 87.53.Ly, 87.55.dk, 87.56.nk
Collapse
|
24
|
Tanyi JA, Doss EJ, Kato CM, Monaco DL, ZMeng L, Chen Y, Kubicky CD, Marquez CM, Fuss M. Dynamic conformal arc cranial stereotactic radiosurgery: implications of multileaf collimator margin on dose-volume metrics. Br J Radiol 2012; 85:e1058-66. [PMID: 23091293 PMCID: PMC3500804 DOI: 10.1259/bjr/79414773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/26/2012] [Accepted: 02/28/2012] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The effect of multileaf collimator (MLC) margin on target and normal tissue dose-volume metrics for intracranial stereotactic radiosurgery (SRS) was assessed. METHODS 118 intracranial lesions of 83 SRS patients formed the basis of this study. For each planning target volume (PTV), five separate treatment plans were generated with MLC margins of -1, 0, 1, 2 and 3 mm, respectively. Identical treatment planning parameters were employed with a median of five dynamic conformal arcs using the Varian/BrainLab high-definition MLC for beam shaping. Prescription dose (PD) was such that 22 Gy covered at least 95% of the PTV. Dose-volume and dose-response comparative metrics included conformity index, heterogeneity index, dose gradient, tumour control probability (TCP) and normal tissue complication probability (NTCP). RESULTS Target dose heterogeneity decreased with increasing MLC margin (p<0.001); mean heterogeneity index decreased from 70.4 ± 12.7 to 10.4 ± 2.2%. TCP decreased with increasing MLC margin (p<0.001); mean TCP decreased from 81.0 ± 2.3 to 62.2 ± 1.8%. Normal tissue dose fall-off increased with MLC margin (p<0.001); mean gradient increased from 3.1 ± 0.9 mm to 5.3 ± 0.7 mm. NTCP was optimal at 1 mm MLC margin. No unambiguous correlation was observed between NTCP and PTV volume. Plan delivery efficiency generally improved with larger margins (p<0.001); mean monitor unit per centigray of the PD decreased from 3.60 ± 1.30 to 1.56 ± 0.13. Conclusion Use of 1 mm MLC margins for dynamic conformal arc-based cranial radiosurgery resulted in optimal tumour control and normal tissue sparing. Clinical significance of these comparative findings warrants further investigation.
Collapse
Affiliation(s)
- J A Tanyi
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Niu Y, Zhang G, Berman BL, Parke WC, Yi B, Yu CX. Improving IMRT-plan quality with MLC leaf position refinement post plan optimization. Med Phys 2012; 39:5118-26. [PMID: 22894437 DOI: 10.1118/1.4737518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE In intensity-modulated radiation therapy (IMRT) planning, reducing the pencil-beam size may lead to a significant improvement in dose conformity, but also increase the time needed for the dose calculation and plan optimization. The authors develop and evaluate a postoptimization refinement (POpR) method, which makes fine adjustments to the multileaf collimator (MLC) leaf positions after plan optimization, enhancing the spatial precision and improving the plan quality without a significant impact on the computational burden. METHODS The authors' POpR method is implemented using a commercial treatment planning system based on direct aperture optimization. After an IMRT plan is optimized using pencil beams with regular pencil-beam step size, a greedy search is conducted by looping through all of the involved MLC leaves to see if moving the MLC leaf in or out by half of a pencil-beam step size will improve the objective function value. The half-sized pencil beams, which are used for updating dose distribution in the greedy search, are derived from the existing full-sized pencil beams without need for further pencil-beam dose calculations. A benchmark phantom case and a head-and-neck (HN) case are studied for testing the authors' POpR method. RESULTS Using a benchmark phantom and a HN case, the authors have verified that their POpR method can be an efficient technique in the IMRT planning process. Effectiveness of POpR is confirmed by noting significant improvements in objective function values. Dosimetric benefits of POpR are comparable to those of using a finer pencil-beam size from the optimization start, but with far less computation and time. CONCLUSIONS The POpR is a feasible and practical method to significantly improve IMRT-plan quality without compromising the planning efficiency.
Collapse
Affiliation(s)
- Ying Niu
- Department of Physics, The George Washington University, Washington, DC 20052 , USA
| | | | | | | | | | | |
Collapse
|
26
|
Kim J, Wen N, Jin JY, Walls N, Kim S, Li H, Ren L, Huang Y, Doemer A, Faber K, Kunkel T, Balawi A, Garbarino K, Levin K, Patel S, Ajlouni M, Miller B, Nurushev T, Huntzinger C, Schulz R, Chetty IJ, Movsas B, Ryu S. Clinical commissioning and use of the Novalis Tx linear accelerator for SRS and SBRT. J Appl Clin Med Phys 2012; 13:3729. [PMID: 22584170 PMCID: PMC5716565 DOI: 10.1120/jacmp.v13i3.3729] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/14/2011] [Accepted: 01/25/2012] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study was to perform comprehensive measurements and testing of a Novalis Tx linear accelerator, and to develop technical guidelines for com-missioning from the time of acceptance testing to the first clinical treatment. The Novalis Tx (NTX) linear accelerator is equipped with, among other features, a high-definition MLC (HD120 MLC) with 2.5 mm central leaves, a 6D robotic couch, an optical guidance positioning system, as well as X-ray-based image guidance tools to provide high accuracy radiation delivery for stereotactic radiosurgery and stereotactic body radiation therapy procedures. We have performed extensive tests for each of the components, and analyzed the clinical data collected in our clinic. We present technical guidelines in this report focusing on methods for: (1) efficient and accurate beam data collection for commissioning treatment planning systems, including small field output measurements conducted using a wide range of detectors; (2) commissioning tests for the HD120 MLC; (3) data collection for the baseline characteristics of the on-board imager (OBI) and ExacTrac X-ray (ETX) image guidance systems in conjunction with the 6D robotic couch; and (4) end-to-end testing of the entire clinical process. Established from our clinical experience thus far, recommendations are provided for accurate and efficient use of the OBI and ETX localization systems for intra- and extracranial treatment sites. Four results are presented. (1) Basic beam data measurements: Our measurements confirmed the necessity of using small detectors for small fields. Total scatter factors varied significantly (30% to approximately 62%) for small field measurements among detectors. Unshielded stereotactic field diode (SFD) overestimated dose by ~ 2% for large field sizes. Ion chambers with active diameters of 6 mm suffered from significant volume averaging. The sharpest profile penumbra was observed for the SFD because of its small active diameter (0.6 mm). (2) MLC commissioning: Winston Lutz test, light/radiation field congruence, and Picket Fence tests were performed and were within criteria established by the relevant task group reports. The measured mean MLC transmission and dynamic leaf gap of 6 MV SRS beam were 1.17% and 0.36 mm, respectively. (3) Baseline characteristics of OBI and ETX: The isocenter localization errors in the left/right, posterior/anterior, and superior/inferior directions were, respectively, -0.2 ± 0.2 mm, -0.8 ± 0.2 mm, and -0.8 ± 0.4 mm for ETX, and 0.5 ± 0.7 mm, 0.6 ± 0.5 mm, and 0.0 ± 0.5 mm for OBI cone-beam computed tomography. The registration angular discrepancy was 0.1 ± 0.2°, and the maximum robotic couch error was 0.2°. (4) End-to-end tests: The measured isocenter dose differences from the planned values were 0.8% and 0.4%, measured respectively by an ion chamber and film. The gamma pass rate, measured by EBT2 film, was 95% (3% DD and 1 mm DTA). Through a systematic series of quantitative commissioning experiments and end-to-end tests and our initial clinical experience, described in this report, we demonstrate that the NTX is a robust system, with the image guidance and MLC requirements to treat a wide variety of sites - in particular for highly accurate delivery of SRS and SBRT-based treatments.
Collapse
Affiliation(s)
- Jinkoo Kim
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Craft D, McQuaid D, Wala J, Chen W, Salari E, Bortfeld T. Multicriteria VMAT optimization. Med Phys 2012; 39:686-96. [PMID: 22320778 DOI: 10.1118/1.3675601] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To make the planning of volumetric modulated arc therapy (VMAT) faster and to explore the tradeoffs between planning objectives and delivery efficiency. METHODS A convex multicriteria dose optimization problem is solved for an angular grid of 180 equi-spaced beams. This allows the planner to navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus organ at risk sparing. The selected plan is then made VMAT deliverable by a fluence map merging and sequencing algorithm, which combines neighboring fluence maps based on a similarity score and then delivers the merged maps together, simplifying delivery. Successive merges are made as long as the dose distribution quality is maintained. The complete algorithm is called VMERGE. RESULTS VMERGE is applied to three cases: a prostate, a pancreas, and a brain. In each case, the selected Pareto-optimal plan is matched almost exactly with the VMAT merging routine, resulting in a high quality plan delivered with a single arc in less than 5 min on average. CONCLUSIONS VMERGE offers significant improvements over existing VMAT algorithms. The first is the multicriteria planning aspect, which greatly speeds up planning time and allows the user to select the plan, which represents the most desirable compromise between target coverage and organ at risk sparing. The second is the user-chosen epsilon-optimality guarantee of the final VMAT plan. Finally, the user can explore the tradeoff between delivery time and plan quality, which is a fundamental aspect of VMAT that cannot be easily investigated with current commercial planning systems.
Collapse
Affiliation(s)
- David Craft
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Doerner E, Hartmann GH. Development and validation of a BEAMnrc component module for a miniature multileaf collimator. Phys Med Biol 2012; 57:3093-105. [DOI: 10.1088/0031-9155/57/10/3093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Fujimoto S, Ono K, Furukawa K, Kudo T, Akagi Y, Koyama T, Hirokawa Y, Kawai S, Nakashima T. [Influence of high-definition multileaf collimator for three-dimensional conformal radiotherapy and intensity-modulated radiotherapy of prostate cancer]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2012; 68:825-834. [PMID: 22821155 DOI: 10.6009/jjrt.2012_jsrt_68.7.825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The focus of this work is to evaluate the dosimetric impact of treatment planning for three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) of prostate cancer using Varian/BrainLAB 120-leaf high-definition multileaf collimator (HD120 MLC) with 2.5 mm leaf width and Varian 120-leaf millennium multileaf collimator (M120 MLC) with 5 mm leaf width. We measured the leaf transmission and dosimetric leaf gap (DLG) of two multileaf collimator (MLC) systems using Farmer ionization chamber. The dosimetric impact of treatment planning for 3DCRT and IMRT of prostate cancer for ten clinical cases using two MLC systems was evaluated quantitatively. 3DCRT was divided to 3DCRT(middle) as fitting at middle of leaf tip and 3DCRT(outside) as fitting at outside of leaf tip. The leaf transmission factor and DLG of HD120 MLC for 6 and 10 MV X-ray decreased by 0.2% and 1 mm, respectively, compared to M120 MLC. The mean conformity index of PTV of treatment planning for prostate 3DCRT(middle), 3DCRT(outside) , and IMRT decreased by 0.9%, 6.6%, and 0.9% and the mean homogeneity index increased 2.3%, 13.0%, and 4.2%, respectively. The mean V20, V40, and V65 decreased by 2.4%, 6.6%, and 4.5% for bladder and 3.3%, 6.1%, and 5.9% for rectum, respectively. The results of this work demonstrated that the dose conformity of PTV improved and the dose of bladder and rectum decreased for 3DCRT and IMRT of prostate cancer using HD120 MLC compared to M120 MLC, because of reduction of leaf width, leaf transmission, and rounded leaf end transmission.
Collapse
|
30
|
Eley JG, Hogstrom KR, Matthews KL, Parker BC, Price MJ. Potential of discrete Gaussian edge feathering method for improving abutment dosimetry in eMLC-delivered segmented-field electron conformal therapy. Med Phys 2011; 38:6610-22. [PMID: 22149843 DOI: 10.1118/1.3660289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of this work was to investigate the potential of discrete Gaussian edge feathering of the higher energy electron fields for improving abutment dosimetry in the planning volume when using an electron multileaf collimator (eMLC) to deliver segmented-field electron conformal therapy (ECT). METHODS A discrete (five-step) Gaussian edge spread function was used to match dose penumbras of differing beam energies (6-20 MeV) at a specified depth in a water phantom. Software was developed to define the leaf eMLC positions of an eMLC that most closely fit each electron field shape. The effect of 1D edge feathering of the higher energy field on dose homogeneity was computed and measured for segmented-field ECT treatment plans for three 2D PTVs in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of the x-axis (parallel to leaf motion) and remained constant along the y-axis (perpendicular to leaf motion). Additionally, the effect of 2D edge feathering was computed and measured for one radially symmetric, 3D PTV in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of both axes. For the 3D PTV, the feathering scheme was evaluated for 0.1-1.0-cm leaf widths. Dose calculations were performed using the pencil beam dose algorithm in the Pinnacle(3) treatment planning system. Dose verification measurements were made using a prototype eMLC (1-cm leaf width). RESULTS 1D discrete Gaussian edge feathering reduced the standard deviation of dose in the 2D PTVs by 34, 34, and 39%. In the 3D PTV, the broad leaf width (1 cm) of the eMLC hindered the 2D application of the feathering solution to the 3D PTV, and the standard deviation of dose increased by 10%. However, 2D discrete Gaussian edge feathering with simulated eMLC leaf widths of 0.1-0.5 cm reduced the standard deviation of dose in the 3D PTV by 33-28%, respectively. CONCLUSIONS A five-step discrete Gaussian edge spread function applied in 2D improves the abutment dosimetry but requires an eMLC leaf resolution better than 1 cm.
Collapse
Affiliation(s)
- John G Eley
- Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, Louisiana 70803-4001, USA.
| | | | | | | | | |
Collapse
|
31
|
Fenwick JD, Pardo-Montero J. Numbers of beam angles required for near-optimal IMRT: theoretical limits and numerical studies. Med Phys 2011; 38:4518-30. [PMID: 21928622 DOI: 10.1118/1.3606457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To derive limits on the numbers of beams needed to deliver near-optimal IMRT, and to assess the accuracy of the limits. METHODS The authors four different limits have been derived. One, K(A), has been obtained by coupling Fourier techniques with a proof used to obtain Bortfeld's limit, K, that if all the cross-profiles of a many-field plan can be represented as polynomials of order (K-1) over the range [-R, + R], then within the radius R circle an identical dose-distribution can be created using just K fields. Two further limits, K(H) and K(N), have been obtained using sampling theory, the K(N) limit describing fields spaced at the Nyquist frequency. K(N) can be generalized to K(N,Fbeamlet), a limit that accounts for the finite size of the beamlets from which modulated fields are constructed. Using Bortfeld's theoretical framework, the accuracy of the limits has been explored by testing how well the cross-profiles of an 8 MV double-Gaussian pencil beam and of 1 and 4 cm wide fields can be approximated by polynomials of orders equal to the different limits minus one. The dependence of optimized cost function values of IMRT plans, generated for a simple geometry and for a head-and-neck (oropharynx) case, on the numbers of beams used to construct the plans has also been studied. RESULTS The limits are all multiples of R/W (W being the 20%-80% penumbra-width of a broad field) and work out at K = 27, K(A) = 43, K(H) = 34, and K(N) = 68 fields for R = 10 cm and W = 5.3 mm. All and none of the cross-profiles are approximated well by polynomials of order K(N)-1 and K-1, respectively, suggesting some inaccuracy in the assumptions used to derive the limit K. Order K(A)-1 polynomials cannot accurately describe the pencil beam profile, but do approximate the 1- and 4-cm profiles reasonably well because higher spatial frequencies are attenuated in these wider fields. All the profiles are represented well by polynomials of order K(N,Fbeamlet(-1)), which decreases from K(N) as beamlet width increases. Cost functions generated in the IMRT planning study fall as greater numbers of fields are used, before plateauing out around K(N,Fbeamlet) fields. CONCLUSIONS Numerical calculations suggest that the minimum number of fields required for near-optimal IMRT lies around the generalized Nyquist limit K(N,Fbeamlet). For a clinically realistic 20%-80% penumbra-width of 5.3 mm and a radius of interest of 10 cm, K(N,Fbeamlet) falls from 68 to 47 fields as the beamlet width rises from 0 to 1 cm.
Collapse
Affiliation(s)
- John D Fenwick
- School of Cancer Studies, University of Liverpool, Liverpool L69 3GA, United Kingdom.
| | | |
Collapse
|
32
|
Prah DE, Kainz K, Peng C, Li XA. The Dosimetric and Delivery Advantages of a New 160-leaf MLC. Technol Cancer Res Treat 2011; 10:219-29. [DOI: 10.7785/tcrt.2012.500197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study was to conduct a measurement and treatment planning study on the dosimetric and delivery advantages of a new 160-leaf multileaf collimator (MLC). Recently, a new 160-leaf multileaf collimator (Siemens 160 MLC™) was introduced. The 160-MLC is a single focused design that consists of 160-leafs (80 pairs), each 95 mm thick with a projected leaf width of 5 mm at the machine isocenter. Compared to its double focused predecessors, the 82-leaf MLC (Siemens OPTIVIEW™ MLC) and 58-leaf MLC (Siemens 3-D MLC™), the 160-MLC has leaf widths of half the size. The most notable difference is the new slanted leaf design that replaced the tongue and groove system and allows for complete interdigitation. A systematic study that compared the dosimetric and delivery differences among the 160-MLC, 58-MLC, and divergent Cerrobend blocks was performed. Dosimetric conformity for each collimator type was determined by conforming each to circular targets of various diameters. The effective penumbra for each collimator type was calculated by conforming each, at various collimator angles, to a square stationary target. The quality of 3D conformal radiotherapy treatment (3D-CRT) plans and the quality intensity modulated radiation treatment (IMRT) plans were respectively compared with each collimator type. The 160-MLC was found to have improved dosimetric conformity over the 58-MLC. The divergent Cerrobend block showed marginal dosimetric conformity improvement over the 160-LMC. Overall, the 160-MLC had a 45% and 29% reduction in the 20/80 and 30/90 effective penumbra over the 58-MLC, respectively, while exhibiting only a slightly larger effective penumbra over the divergent Cerrobend block. Comparing 3D-CRT plans generated for small lesions of the head and neck, the V100 for the PTV of the plans generated with the Cerrobend blocks, the 58-MLC, and the 160-MLC were 97.78%, 92.51%, and 99.18%, respectively, while with regards to the OARs, the three produced similar DVHs. IMRT plans generated with the 160-MLC were found to significantly reduce the total delivered monitor units by up to 14.7% and the number of segments by as much as 10.7% compared to the 58-MLC. The average delivery time for the direct aperture optimized (DAO) IMRT plans generated with the 160-MLC was approximately 5 minutes. Overall, compared to the 58-MLC, the new 160-MLC was found to improve dosimetric conformity and IMRT delivery efficiency.
Collapse
Affiliation(s)
- D. E. Prah
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - K. Kainz
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - C. Peng
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - X. A. Li
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
33
|
Physical characterization and comparison of two commercially available micro-MLCs. Phys Med 2011; 27:52-7. [DOI: 10.1016/j.ejmp.2010.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 12/28/2009] [Accepted: 01/27/2010] [Indexed: 11/24/2022] Open
|
34
|
Tanyi JA, Kato CM, Chen Y, Chen Z, Fuss M. Impact of the high-definition multileaf collimator on linear accelerator-based intracranial stereotactic radiosurgery. Br J Radiol 2010; 84:629-38. [PMID: 20923911 DOI: 10.1259/bjr/19726857] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES The impact of two multileaf collimator (MLC) systems for linear accelerator-based intracranial stereotactic radiosurgery (SRS) was assessed. METHODS 68 lesions formed the basis of this study. 2.5 mm leaf width plans served as reference. Comparative plans, with identical planning parameters, were based on a 5 mm leaf width MLC system. Two collimation strategies, with collimation fixed at 0° or 90° and optimised per arc or beam, were also assessed. Dose computation was based on the pencil beam algorithm with allowance for tissue heterogeneity. Plan normalisation was such that 100% of the prescription dose covered 95% of the planning target volume. Plan evaluation was based on target coverage and normal tissue avoidance criteria. RESULTS The median conformity index difference between the MLC systems ranged between 0.8% and 14.2%; the 2.5 mm MLC exhibited better dose conformation. The median reduction of normal tissue exposed to ≥100%, ≥50% and ≥25% of the prescription dose ranged from 13.4% to 29.7%, favouring the 2.5 mm MLC system. Dose fall-off was steeper for the 2.5 mm MLC system with an overall median absolute difference ranging from 0.4 to 1.2 mm. The use of collimation optimisation resulted in a decrease in differences between the MLC systems. The results demonstrated the dosimetric merit of the 2.5 mm leaf width MLC system over the 5 mm leaf width system, albeit small, for the investigated range of intracranial SRS targets. CONCLUSION The clinical significance of these results warrants further investigation to determine whether the observed dosimetric advantages translate into outcome improvements.
Collapse
Affiliation(s)
- J A Tanyi
- Department of Radiation Medicine, Oregon Health and Science University, Portland, 97239, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
INTRODUCTION High resolution beam delivery may be required for optimal biology-guided adaptive therapy. In this work, we have studied the influence of multi leaf collimator (MLC) leaf widths on the treatment outcome following adapted IMRT of a hypoxic tumour. MATERIAL AND METHODS Dynamic contrast enhanced MR images of a dog with a spontaneous tumour in the nasal region were used to create a tentative hypoxia map following a previously published procedure. The hypoxia map was used as a basis for generating compartmental gross tumour volumes, which were utilised as planning structures in biologically adapted IMRT. Three different MLCs were employed in inverse treatment planning, with leaf widths of 2.5 mm, 5 mm and 10 mm. The number of treatment beams and the degree of step-and-shoot beam modulation were varied. By optimising the tumour control probability (TCP) function, optimal compartmental doses were derived and used as target doses in the inverse planning. Resulting IMRT dose distributions and dose volume histograms (DVHs) were exported and analysed, giving estimates of TCP and compartmental equivalent uniform doses (EUDs). The impact of patient setup accuracy was simulated. RESULTS The MLC with the smallest leaf width (2.5 mm) consistently gave the highest TCPs and compartmental EUDs, assuming no setup error. The difference between this MLC and the 5 mm MLC was rather small, while the MLC with 10 mm leaf width gave considerably lower TCPs. When including random and systematic setup errors, errors larger than 5 mm gave only small differences between the MLC types. For setup errors larger than 7 mm no differences were found between non-uniform and uniform dose distributions. CONCLUSIONS Biologically adapted radiotherapy may require MLCs with leaf widths smaller than 10 mm. However, for a high probability of cure it is crucial that accurate patient setup is ensured.
Collapse
Affiliation(s)
- Jan Rødal
- Department of Medical Physics, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo, Norway.
| | | | | |
Collapse
|
36
|
Dhabaan A, Elder E, Schreibmann E, Crocker I, Curran WJ, Oyesiku NM, Shu HK, Fox T. Dosimetric performance of the new high-definition multileaf collimator for intracranial stereotactic radiosurgery. J Appl Clin Med Phys 2010; 11:3040. [PMID: 20717077 PMCID: PMC5720445 DOI: 10.1120/jacmp.v11i3.3040] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 10/22/2009] [Accepted: 02/08/2010] [Indexed: 11/23/2022] Open
Abstract
The objective was to evaluate the performance of a high-definition multileaf collimator (MLC) of 2.5 mm leaf width (MLC2.5) and compare to standard 5 mm leaf width MLC (MLC5) for the treatment of intracranial lesions using dynamic conformal arcs (DCA) technique with a dedicated radiosurgery linear accelerator. Simulated cases of spherical targets were created to study solely the effect of target volume size on the performance of the two MLC systems independent of target shape complexity. In addition, 43 patients previously treated for intracranial lesions in our institution were retrospectively planned using DCA technique with MLC2.5 and MLC5 systems. The gross tumor volume ranged from 0.07 to 40.57 cm3 with an average volume of 5.9 cm3. All treatment parameters were kept the same for both MLC-based plans. The plan evaluation was performed using figures of merits (FOM) for a rapid and objective assessment on the quality of the two treatment plans for MLC2.5 and MLC5. The prescription isodose surface was selected as the greatest isodose surface covering >or= 95% of the target volume and delivering 95% of the prescription dose to 99% of target volume. A Conformity Index (CI) and conformity distance index (CDI) were used to quantifying the dose conformity to a target volume. To assess normal tissue sparing, a normal tissue difference (NTD) was defined as the difference between the volume of normal tissue receiving a certain dose utilizing MLC5 and the volume receiving the same dose using MLC2.5. The CI and normal tissue sparing for the simulated spherical targets were better with the MLC2.5 as compared to MLC5. For the clinical patients, the CI and CDI results indicated that the MLC2.5 provides better treatment conformity than MLC5 even at large target volumes. The CI's range was 1.15 to 2.44 with a median of 1.59 for MLC2.5 compared to 1.60-2.85 with a median of 1.71 for MLC5. Improved normal tissue sparing was also observed for MLC2.5 over MLC5, with the NTD always positive, indicating improvement, and ranging from 0.1 to 8.3 for normal tissue receiving 50% (NTV50), 70% (NTV70) and 90% (NTV90) of the prescription dose. The MLC2.5 has a dosimetric advantage over the MLC5 in Linac-based radiosurgery using DCA method for intracranial lesions, both in treatment conformity and normal tissue sparing when target shape complexity increases.
Collapse
Affiliation(s)
- Anees Dhabaan
- Emory University, Department of Radiation Oncology, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zwicker F, Hauswald H, Nill S, Rhein B, Thieke C, Roeder F, Timke C, Zabel-du Bois A, Debus J, Huber PE. New multileaf collimator with a leaf width of 5 mm improves plan quality compared to 10 mm in step-and-shoot IMRT of HNC using integrated boost procedure. Strahlenther Onkol 2010; 186:334-43. [PMID: 20495969 DOI: 10.1007/s00066-010-2103-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/18/2010] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate whether a new multileaf collimator with a leaf width of 5 mm (MLC-5) over the entire field size of 40 x 40 cm(2) improves plan quality compared to a leaf width of 10 mm (MLC-10) in intensity-modulated radiotherapy (IMRT) with integrated boost for head and neck cancer. PATIENTS AND METHODS A plan comparison was performed for ten patients with head and neck cancer. For each patient, seven plans were calculated: one plan with MLC-10 and nine beams, four plans with MLC-5 and nine beams (with different intensity levels and two-dimensional median filter sizes [2D-MFS]), and one seven-beam plan with MLC-5 and MLC-10, respectively. Isocenter, beam angles and planning constraints were not changed. Mean values of common plan parameters over all ten patients were estimated, and plan groups of MLC-5 and MLC-10 with nine and seven beams were compared. RESULTS The use of MLC-5 led to a significantly higher conformity index and an improvement of the 90% coverage of PTV1 (planning target volume) and PTV2 compared with MLC-10. This was noted in the nine- and seven-beam plans. Within the nine-beam group with MLC-5, a reduction of the segment number by up to 25% at reduced intensity levels and for increased 2D-MFS did not markedly worsen plan quality. Interestingly, a seven-beam IMRT with MLC-5 was inferior to a nine-beam IMRT with MLC-5, but superior to a nine-beam IMRT with MLC-10. CONCLUSION The use of an MLC-5 has significant advantages over an MLC-10 with respect to target coverage and protection of normal tissues in step-and-shoot IMRT of head and neck cancer.
Collapse
Affiliation(s)
- Felix Zwicker
- Department of Radiation Oncology, University of Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fischer M, Todorovic M, Drud E, Cremers F. Commissioning of a double-focused micro multileaf collimator (muMLC). J Appl Clin Med Phys 2010; 11:3131. [PMID: 20592698 PMCID: PMC5719954 DOI: 10.1120/jacmp.v11i2.3131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 01/13/2010] [Accepted: 01/13/2010] [Indexed: 11/23/2022] Open
Abstract
Double-focused muMLCs are able to create fields with steeper dose gradients at the field edges and are, therefore, an advancement in delivering stereotactic treatments. A double-focused muMLC has been installed at a Siemens Primus linear accelerator (linac) as a first research installation in Europe. The basic dosimetric parameters, such as leakage, output factors, depth-dose curves and penumbra, have been measured in 6 and 15 MV-mode by use of radiochromic films (GafChromic EBT), ionization chambers and our solid water QA-phantom (Easy Cube). The leakage between the leaves is minimal and lower than that of most commercially available MLCs. Therefore, the field size of the linac can be kept constant while the leaves of the muMLC are creating different aperture shapes. Percentage depth doses (PDDs) generated by the double-focused muMLC are equal to depth-dose curves of the original linac. That means the muMLC affects only the off-axis ratio (OAR). Based on the fact that the muMLC is double-focused and the source-to-collimator distance is larger, the penumbra is sharper than that for fields defined by the original linac MLC. The mechanical and dosimetric investigations show the benefit of the double-focused muMLC attached to a Siemens Primus linear accelerator.
Collapse
Affiliation(s)
- Marcus Fischer
- Department of Radiotherapy and Radio-Oncology, Center for Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|
39
|
Bortfeld T. The number of beams in IMRT--theoretical investigations and implications for single-arc IMRT. Phys Med Biol 2010; 55:83-97. [PMID: 19949256 DOI: 10.1088/0031-9155/55/1/006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The first purpose of this paper is to shed some new light on the old question of selecting the number of beams in intensity-modulated radiation therapy (IMRT). The second purpose is to illuminate the related issue of discrete static beam angles versus rotational techniques, which has recently re-surfaced due to the advancement of volumetric modulated arc therapy (VMAT). A specific objective is to find analytical expressions that allow one to address the points raised above. To make the problem mathematically tractable, it is assumed that the depth dose is flat and that the lateral dose profile can be approximated by polynomials, specifically Chebyshev polynomials of the first kind, of finite degree. The application of methods known from image reconstruction then allows one to answer the first question above as follows: the required number of beams is determined by the maximum degree of the polynomials used in the approximation of the beam profiles, which is a measure of the dose variability. There is nothing to be gained by using more beams. In realistic cases, in which the variability of the lateral dose profile is restricted in several ways, the required number of beams is of the order of 10-20. The consequence of delivering the beams with a 'leaf sweep' technique during continuous rotation of the gantry, as in VMAT, is also derived in an analytical form. The main effect is that the beams fan out, but the effect near the axis of rotation is small. This result can serve as a theoretical justification of VMAT. Overall the analytical derivations in this paper, albeit based on strong simplifications, provide new insights into, and a deeper understanding of, the beam angle problem in IMRT. The decomposition of the beam profiles into well-behaved and easily deliverable smooth functions, such as Chebyshev polynomials, could be of general interest in IMRT treatment planning.
Collapse
Affiliation(s)
- Thomas Bortfeld
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, 30 Fruit St, Boston, MA 02114, USA.
| |
Collapse
|
40
|
Tanyi JA, Summers PA, McCracken CL, Chen Y, Ku LC, Fuss M. Implications of a high-definition multileaf collimator (HD-MLC) on treatment planning techniques for stereotactic body radiation therapy (SBRT): a planning study. Radiat Oncol 2009; 4:22. [PMID: 19591687 PMCID: PMC2716348 DOI: 10.1186/1748-717x-4-22] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 07/10/2009] [Indexed: 12/26/2022] Open
Abstract
Purpose To assess the impact of two multileaf collimator (MLC) systems (2.5 and 5 mm leaf widths) on three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, and dynamic conformal arc techniques for stereotactic body radiation therapy (SBRT) of liver and lung lesions. Methods Twenty-nine SBRT plans of primary liver (n = 11) and lung (n = 18) tumors were the basis of this study. Five-millimeter leaf width 120-leaf Varian Millennium (M120) MLC-based plans served as reference, and were designed using static conformal beams (3DCRT), sliding-window intensity-modulated beams (IMRT), or dynamic conformal arcs (DCA). Reference plans were either re-optimized or recomputed, with identical planning parameters, for a 2.5-mm width 120-leaf BrainLAB/Varian high-definition (HD120) MLC system. Dose computation was based on the anisotropic analytical algorithm (AAA, Varian Medical Systems) with tissue heterogeneity taken into account. Each plan was normalized such that 100% of the prescription dose covered 95% of the planning target volume (PTV). Isodose distributions and dose-volume histograms (DVHs) were computed and plans were evaluated with respect to target coverage criteria, normal tissue sparing criteria, as well as treatment efficiency. Results Dosimetric differences achieved using M120 and the HD120 MLC planning were generally small. Dose conformality improved in 51.7%, 62.1% and 55.2% of the IMRT, 3DCRT and DCA cases, respectively, with use of the HD120 MLC system. Dose heterogeneity increased in 75.9%, 51.7%, and 55.2% of the IMRT, 3DCRT and DCA cases, respectively, with use of the HD120 MLC system. DVH curves demonstrated a decreased volume of normal tissue irradiated to the lower (90%, 50% and 25%) isodose levels with the HD120 MLC. Conclusion Data derived from the present comparative assessment suggest dosimetric merit of the high definition MLC system over the millennium MLC system. However, the clinical significance of these results warrants further investigation in order to determine whether the observed dosimetric advantages translate into outcome improvements.
Collapse
Affiliation(s)
- James A Tanyi
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Fujimoto R, Takayanagi T, Fujitaka S. Design of a ridge filter structure based on the analysis of dose distributions. Phys Med Biol 2009; 54:N273-82. [DOI: 10.1088/0031-9155/54/13/n03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Cui W, Dai J. Optimizing leaf widths for a multileaf collimator. Phys Med Biol 2009; 54:3051-62. [DOI: 10.1088/0031-9155/54/10/006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Djouguela A, Harder D, Kollhoff R, Foschepoth S, Kunth W, Rühmann A, Willborn K, Poppe B. Fourier deconvolution reveals the role of the Lorentz function as the convolution kernel of narrow photon beams. Phys Med Biol 2009; 54:2807-27. [DOI: 10.1088/0031-9155/54/9/015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
|
45
|
McMahon R, Berbeco R, Nishioka S, Ishikawa M, Papiez L. A real-time dynamic-MLC control algorithm for delivering IMRT to targets undergoing 2D rigid motion in the beam's eye view. Med Phys 2008; 35:3875-88. [DOI: 10.1118/1.2963987] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
46
|
Tacke MB, Nill S, Häring P, Oelfke U. 6 MV dosimetric characterization of the 160 MLC, the new Siemens multileaf collimator. Med Phys 2008; 35:1634-42. [PMID: 18561638 DOI: 10.1118/1.2889782] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
New technical developments constantly aim at improving the outcome of radiation therapy. With the use of a computer-controlled multileaf collimator (MLC), the quality of the treatment and the efficiency in patient throughput is significantly increased. New MLC designs aim to further enhance the advantages. In this article, we present the first detailed experimental investigation of the new 160 MLC, Siemens Medical Solutions. The assessment included the experimental investigation of typical MLC characteristics such as leakage, tongue-and-groove effect, penumbra, leaf speed, and leaf positioning accuracy with a 6 MV treatment beam. The leakage is remarkably low with an average of 0.37% due to a new design principle of slightly tilted leaves instead of the common tongue-and-groove design. But due to the tilt, the triangular tongue-and-groove effect occurs. Its magnitude of approximately 19% is similar to the dose defect measured for MLCs with the common tongue-and-groove design. The average longitudinal penumbra measured at depth d(max) = 15 mm with standard 100 x 100 mm2 fields is 4.1 +/- 0.5 mm for the central range and increases to 4.9 +/- 1.3 mm for the entire field range of 400 x 400 mm2. The increase is partly due to the single-focusing design and the large distance between the MLC and the isocenter enabling a large patient clearance. Regarding the leaf speed, different velocity tests were performed. The positions of the moving leaves were continuously recorded with the kilovoltage-imaging panel. The maximum leaf velocities measured were 42.9 +/- 0.6 mm/s. In addition, several typical intensity-modulated radiation therapy treatments were performed and the delivery times compared to the Siemens OPTIFOCUS MLC. An average decrease of 11% in delivery time was observed. The experimental results presented in this article indicate that the dosimetric characteristics of the 160 MLC are capable of improving the quality of dose delivery with respect to precision and dose conformity.
Collapse
Affiliation(s)
- Martin B Tacke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
47
|
Achterberg N, Müller RG. Multibeam tomotherapy: a new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy. Med Phys 2007; 34:3926-42. [PMID: 17985638 DOI: 10.1118/1.2779129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A fully integrated system for treatment planning, application, and verification for automated multileaf collimator (MLC) based, intensity-modulated, image-guided, and adaptive radiation therapy (IMRT, IGRT and ART, respectively) is proposed. Patient comfort, which was the major development goal, will be achieved through a new unit design and short treatment times. Our device for photon beam therapy will consist of a new dual energy linac with five fixed treatment heads positioned evenly along one plane but one electron beam generator only. A minimum of moving parts increases technical reliability and reduces motion times to a minimum. Motion is allowed solely for the MLCs, the robotic patient table, and the small angle gantry rotation of +/- 36 degrees. Besides sophisticated electron beam guidance, this compact setup can be built using existing modules. The flattening-filter-free treatment heads are characterized by reduced beam-on time and contain apertures restricted in one dimension to the area of maximum primary fluence output. In the case of longer targets, this leads to a topographic intensity modulation, thanks to the combination of "step and shoot" MLC delivery and discrete patient couch motion. Owing to the limited number of beam directions, this multislice cone beam serial tomotherapy is referred to as "multibeam tomotherapy." Every patient slice is irradiated by one treatment head at any given moment but for one subfield only. The electron beam is then guided to the next head ready for delivery, while the other heads are preparing their leaves for the next segment. The "Multifocal MLC-positioning" algorithm was programmed to enable treatment planning and optimize treatment time. We developed an overlap strategy for the longitudinally adjacent fields of every beam direction, in doing so minimizing the field match problem and the effects of possible table step errors. Clinical case studies show for the same or better planning target volume coverage, better organ-at-risk sparing, and comparable mean integral dose to the normal tissue a reduction in treatment time by more than 50% to only a few minutes in comparison to high-quality 3-D conformal and IMRT treatments. As a result, it will be possible to incorporate features for better patient positioning and image guidance, while sustaining reasonable overall treatment times at the same time. The virtual multibeam tomotherapy design study TOM'5-CT contains a dedicated electron beam CT (TOM'AGE) and an objective optical topometric patient positioning system (TOPOS). Thanks to the wide gantry bore of 120 cm and slim gantry depths of 70 cm, patients can be treated very comfortably, in all cases tumor-isocentrically, as well as with noncoplanar beam arrangements as in stereotactic radiosurgery with a couch rotation of up to +/- 54 degrees. The TOM'5 treatment unit on which this theoretical concept is based has a stand-alone depth of 40 cm and an outer diameter of 245 cm; the focus-isocenter distance of the heads is 100 cm with a field size of 40 cm x 7 cm and 0.5 cm leaves, which operate perpendicular to the axis of table motion.
Collapse
Affiliation(s)
- Nils Achterberg
- Strahlenklinik, Universitätsklinikum Erlangen, Universitätstrasse 27, 91054 Erlangen, Germany.
| | | |
Collapse
|
48
|
Popple RA, Fiveash JB, Brezovich IA. Effect of beam number on organ-at-risk sparing in dynamic multileaf collimator delivery of intensity modulated radiation therapy. Med Phys 2007; 34:3752-9. [DOI: 10.1118/1.2779862] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
Huntzinger C, Friedman W, Bova F, Fox T, Bouchet L, Boeh L. Trilogy Image-Guided Stereotactic Radiosurgery. Med Dosim 2007; 32:121-33. [PMID: 17472891 DOI: 10.1016/j.meddos.2007.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2007] [Indexed: 11/22/2022]
Abstract
Full integration of advanced imaging, noninvasive immobilization, positioning, and motion-management methods into radiosurgery have resulted in fundamental changes in therapeutic strategies and approaches that are leading us to the treatment room of the future. With the introduction of image-guided radiosurgery (IGRS) systems, such as Trilogy, physicians have for the first time a practical means of routinely identifying and treating very small lesions throughout the body. Using new imaging processes such as positron emission tomography/computed tomography (PET/CT) scans, clinics may be able to detect these lesions and then eradicate them with image-guided stereotactic radiosurgery treatments. Thus, there is promise that cancer could be turned into a chronic disease, managed through a series of checkups, and Trilogy treatments when metastatic lesions reappear.
Collapse
|
50
|
Crop F, Reynaert N, Pittomvils G, Paelinck L, De Gersem W, De Wagter C, Vakaet L, De Neve W, Thierens H. Monte Carlo modeling of the ModuLeaf miniature MLC for small field dosimetry and quality assurance of the clinical treatment planning system. Phys Med Biol 2007; 52:3275-90. [PMID: 17505102 DOI: 10.1088/0031-9155/52/11/022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this investigation was the verification of both the measured data and quality of the implementation of the add-on ModuLeaf miniature multileaf collimator (ML mMLC) into the clinical treatment planning system for conformal stereotactic radiosurgery treatment. To this end the treatment head with ML mMLC was modeled in the BEAMnrc Monte Carlo (MC) code. The 6 MV photon beams used in the setup were first benchmarked with a set of measurements. A total ML mMLC transmission of 1.13% of the 10 x 10 cm2 open field dose was measured and reproduced with the BEAMnrc/DOSXYZnrc code. Correspondence between calculated and measured output factors (OFs) was within 2%. Correspondence between MC and measured profiles was within 2% dose and 2 mm distance, only for the smallest 0.5 x 0.5 cm2 field the results were within 3% dose. In the next step, the MC model was compared with Gafchromic film measurements and Pinnacle(3) 7.4 f (convolution superposition algorithm) calculated dose distributions, using a gamma evaluation comparison, for a multi-beam patient setup delivered to a Lucytrade mark phantom. The gamma evaluation of the MC versus Gafchromic film resulted in 3.4% of points not fulfilling gamma <or= 1 for a 2%/2 mm criterion, the Pinnacle(3) 7.4 f versus Gafchromic results 3.8% and Pinnacle versus MC less than 1%. For specific patients with lesions of 8 cc and 0.2 cc, Monte Carlo and Pinnacle simulations of the plans were performed and compared using DVH evaluation. DVHs corresponded within 2% dose and 2% volume.
Collapse
Affiliation(s)
- F Crop
- Department of Medical Physics, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|