1
|
Adam DP, Bednarz BP, Frigo SP. Static MLC transmission simulation using two-dimensional ray tracing. J Appl Clin Med Phys 2022; 23:e13646. [PMID: 35596533 PMCID: PMC9359033 DOI: 10.1002/acm2.13646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose We investigated the hypothesis that the transmission function of rounded end linearly traveling multileaf collimators (MLCs) is constant with position. This assumption is made by some MLC models used in clinical treatment planning systems (TPSs) and in the Varian MLC calibration convention. If not constant, this would have implications for treatment plan QA results. Methods A two‐dimensional ray‐tracing tool to generate transmission curves as a function of leaf position was created and validated. The curves for clinically available leaf tip positions (−20 to 20 cm) were analyzed to determine the location of the beam edge (half‐attenuation X‐ray [XR]) location, the beam edge broadening (BEB, 80%–20% width), as well as the leaf tip zone width. More generalized scenarios were then simulated to elucidate trends as a function of leaf tip radius. Results In the analysis of the Varian high‐definition MLC, two regions were identified: a quasi‐static inner region centered about central axis (CAX), and an outer one, in which large deviations were observed. A phenomenon was identified where the half‐attenuation ray position, relative to that of the tip or tangential ray, increases dramatically at definitive points from CAX. Similar behavior is seen for BEB. An analysis shows that as the leaf radius parameter value is made smaller, the size of the quasi‐static region is greater (and vice versa). Conclusion The MLC transmission curve properties determined by this study have implications both for MLC position calibrations and modeling within TPSs. Two‐dimensional ray tracing can be utilized to identify where simple behaviors hold, and where they deviate. These results can help clinical physicists engage with vendors to improve MLC models, subsequent fluence calculations, and hence dose calculation accuracy.
Collapse
Affiliation(s)
- David P Adam
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Bryan P Bednarz
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Sean P Frigo
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Boudet J, Aubignac L, Beneux A, Mazoyer F, Bessieres I. Evaluation of QA software system analysis for the static picket fence test. J Appl Clin Med Phys 2022; 23:e13618. [PMID: 35570379 PMCID: PMC9278673 DOI: 10.1002/acm2.13618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Intensity modulation treatments are widely used in radiotherapy because of many known advantages. In this context, the picket fence test (PF) is a relevant test to check the Multileaf Collimator (MLC) performances. So this work compares and evaluates three analysis platforms for the PF used routinely by three different institutions. This study covers two linear accelerators (Linac) with two MLC types, a Millenium 120 MLC and Millenium 120 High Definition MLC respectively on a Varian Truebeam and Truebeam STx. Both linacs include an As 1200 portal imager (EPID). From a reference PF plan, MLC errors have been introduced to modify the slits in position or width (shifts from 0.1 to 0.5 mm on one or both banks). Then errors have been defined on the EPID to investigate detection system deviations (signal sensitivity and position variations). Finally, 110 DICOM‐RT images have been generated and analyzed by each software system. All software systems have shown good performances to quantify the position errors, even though the leaf pair identifications can be wrong in some cases regarding the analysis method considered. The slit width measurement (not calculated by all software systems) has shown good sensitivity, but some quantification difficulties have been highlighted regardless of the analysis method used. Linked to the expected accuracy of the PF test, the imager variations have demonstrated considerable influence in the results. Differences in the results and the analysis methods have been pointed out for each software system. The results can be helpful to optimize the settings of each analysis software system depending on expectations and treatment modalities of each institution.
Collapse
Affiliation(s)
- Julien Boudet
- Department of Physics Centre Georges François Leclerc Dijon France
| | - Léone Aubignac
- Department of Physics Centre Georges François Leclerc Dijon France
| | - Amandine Beneux
- Department of Physics Hospices Civils de Lyon Pierre Bénite France
| | - Frédéric Mazoyer
- Department of Radiotherapy Centre Hospitalier Annecy Genevois Epagny Metz‐Tessy France
| | - Igor Bessieres
- Department of Physics Centre Georges François Leclerc Dijon France
| |
Collapse
|
3
|
Hanley J, Dresser S, Simon W, Flynn R, Klein EE, Letourneau D, Liu C, Yin FF, Arjomandy B, Ma L, Aguirre F, Jones J, Bayouth J, Holmes T. AAPM Task Group 198 Report: An implementation guide for TG 142 quality assurance of medical accelerators. Med Phys 2021; 48:e830-e885. [PMID: 34036590 DOI: 10.1002/mp.14992] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/16/2021] [Accepted: 04/28/2021] [Indexed: 11/11/2022] Open
Abstract
The charges on this task group (TG) were as follows: (a) provide specific procedural guidelines for performing the tests recommended in TG 142; (b) provide estimate of the range of time, appropriate personnel, and qualifications necessary to complete the tests in TG 142; and (c) provide sample daily, weekly, monthly, or annual quality assurance (QA) forms. Many of the guidelines in this report are drawn from the literature and are included in the references. When literature was not available, specific test methods reflect the experiences of the TG members (e.g., a test method for door interlock is self-evident with no literature necessary). In other cases, the technology is so new that no literature for test methods was available. Given broad clinical adaptation of volumetric modulated arc therapy (VMAT), which is not a specific topic of TG 142, several tests and criteria specific to VMAT were added.
Collapse
Affiliation(s)
- Joseph Hanley
- Princeton Radiation Oncology, Monroe, New Jersey, 08831, USA
| | - Sean Dresser
- Winship Cancer Institute, Radiation Oncology, Emory University, Atlanta, Georgia, 30322, USA
| | | | - Ryan Flynn
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Eric E Klein
- Brown university, Rhode Island Hospital, Providence, Rhode Island, 02905, USA
| | | | - Chihray Liu
- University of Florida, Gainesville, Florida, 32610-0385, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Bijan Arjomandy
- Karmanos Cancer Institute at McLaren-Flint, Flint, Michigan, 48532, USA
| | - Lijun Ma
- Department of Radiation Oncology, University of California San Francisco, San Francisco, 94143-0226, USA
| | | | - Jimmy Jones
- Department of Radiation Oncology, The University of Colorado Health-Poudre Valley, Fort Collins, Colorado, 80525, USA
| | - John Bayouth
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53792-0600, USA
| | - Todd Holmes
- Varian Medical Systems, Palo Alto, California, 94304, USA
| |
Collapse
|
4
|
Saez J, Hernandez V, Goossens J, De Kerf G, Verellen D. A novel procedure for determining the optimal MLC configuration parameters in treatment planning systems based on measurements with a Farmer chamber. Phys Med Biol 2020; 65:155006. [PMID: 32330917 DOI: 10.1088/1361-6560/ab8cd5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Modelling of the multi-leaf collimator (MLC) in treatment planning systems (TPS) is crucial for the dose calculation accuracy of intensity-modulated radiation therapy plans. However, no standardised methodology for their configuration exists to date. In this study we present a method that separates the effect of each dosimetric characteristic of the MLC, offering comprehensive equations for the determination of the configuration parameters used in the TPS model. The main advantage of the method is that it only requires prior knowledge of the nominal leaf width and is based on doses measured with a Farmer chamber, which is a very well established and robust methodology. Another significant advantage is the required time, since measuring the tests takes only about 30 minutes per energy. Firstly, we provide a theoretical general formalism in terms of the primary fluence constructed from the transmission map obtained from an MLC model for synchronous and asynchronous sweeping beams. Secondly, we apply the formalism to the RayStation TPS as a proof of concept and we derive analytical expressions that allow the determination of the configuration parameters (leaf tip width, tongue-and-groove width, x-position offset and MLC transmission) and describe how they intertwine. Finally, we apply the method to Varian's Millennium120 and HD120 MLCs in a TrueBeam linear accelerator for different energies and determine the optimal configuration parameters. The proposed procedure is much faster and streamlined than the typical trial-and-error methods and increases the accuracy of dose calculation in clinical plans. Additionally, the procedure can be useful for standardising the MLC configuration process and it exposes the limitations of the implemented MLC model, providing guidance for further improvement of these models in TPSs.
Collapse
Affiliation(s)
- Jordi Saez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, 08036 Barcelona, Spain. The first two authors contributed equally to this work
| | | | | | | | | |
Collapse
|
5
|
Tanabe Y, Ishida T, Eto H, Sera T, Emoto Y. Evaluation of the correlation between prostatic displacement and rectal deformation using the Dice similarity coefficient of the rectum. Med Dosim 2019; 44:e39-e43. [PMID: 30642696 DOI: 10.1016/j.meddos.2018.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Accepted: 12/26/2018] [Indexed: 11/28/2022]
Abstract
To estimate the relationship between the three-dimensional (3D) displacement error of the prostate and rectal deformation for reduction of deviation between the planned and treatment dose, using multiple acquisition planning CT (MPCT) and the Dice similarity coefficient (DSC) for rectal deformation for treatment of patients with prostate cancer. The 3D displacement error between the pelvic bone and a matching fiducial marker was calculated using MPCT in 24 patients who underwent prostate volumetric-modulated arc therapy for prostate cancer. We calculated the 3D displacement error between the pelvic bone and a matching fiducial marker on MPCT. The correlation of the 3D displacement error with the DSC of the rectum, calculated from MPCT images, was evaluated based on deformable image registration. The 3D displacement error of the prostate showed a slight correlation between MPCT and cone-beam computed tomography (adjusted r2 = 0.241). The 3D displacement error, based on the pelvic bone and a fiducial marker on MPCT images, showed a moderate correlation with the DSC of the rectum (adjusted r2 = 0.645) and was improved by a mean of 3.94 mm, based on MPCT, during the treatment period. The 3D displacement error on MPCT correlates with the 3D displacement error of daily cone-beam computed tomography; optimal selection of MPCT can potentially facilitate on-board setup of prostate patients to enable more accurate radiotherapy. The advance information of the 3D displacement error and rectal deformation is useful for optimal planning CT that can minimize the deviation between the planned dose and the treatment dose in patients receiving treatment for prostate cancer.
Collapse
Affiliation(s)
- Yoshinori Tanabe
- Department of Radiology, Yamaguchi University Hospital, Ube, Yamaguchi 755-8505, Japan; Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka, Suita 565-0871, Japan
| | - Takayuki Ishida
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka, Suita 565-0871, Japan.
| | - Hidetoshi Eto
- Department of Radiology, Yamaguchi University Hospital, Ube, Yamaguchi 755-8505, Japan
| | - Tatsuhiro Sera
- Department of Radiology, Yamaguchi University Hospital, Ube, Yamaguchi 755-8505, Japan
| | - Yuki Emoto
- Department of Radiology, Yamaguchi University Hospital, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
6
|
Lin T, Hossain M, Fan J, Ma CMC. When and how to treat an IMRT patient on a second accelerator without replanning? Med Dosim 2017; 43:334-343. [PMID: 29287919 DOI: 10.1016/j.meddos.2017.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
When a linear accelerator is unavailable for treatment, a clinical decision is imminent regarding whether a patient should be treated on a linear accelerator other than the machine the patient was scheduled on, or whether treatment should be postponed until the original Linac becomes available. This work investigates the feasibility of switching patients to different accelerators for intensity-modulated radiation therapy (IMRT). We have performed Monte Carlo simulations of photon beams from different Linac models and vendors. Prostate and head and neck (H&N) treatment plans for Siemens Primus, Primart, and Varian 21EX accelerators are studied in this work. Dose distributions for given plans are recalculated using different beam data with the same nominal energy from different Linacs. We have compared dose-volume histograms (DVHs) and the maximum, the minimum, and the mean doses to the target and critical structures because of switching accelerators. In the process of switching a treatment plan to a different accelerator, issues exist, including optimum penumbra compensation, dose distribution at the boundary of target and critical structures, and multileaf collimator (MLC) leaf-width effects, which need to be considered and verified with measurements. Our Monte Carlo simulation results confirm that, for the cases we tested, the dose received by 95% of the planning target volume differs by 0.2% to 1.5% between Siemens Primus and Varian 21EX Linacs. The discrepancy is within our clinical acceptance criteria of 3% for IMRT treatments. In making the final decision on whether to switch machines or not, the tumor control probabilities (TCPs) based on a linear-quadratic model are compared. Based on the analyses performed in this work, it is therapeutically more beneficial to switch a patient to a different machine than to postpone a treatment until the original machine is available, especially for fast-growing tumors such as H&N cancers.
Collapse
Affiliation(s)
- Teh Lin
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | - Murshed Hossain
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Jiajin Fan
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - C-M Charlie Ma
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
7
|
Grigorov GN, Chow JCL. Leakage-Penumbra effect in intensity modulated radiation therapy step-and-shoot dose delivery. World J Radiol 2016; 8:73-81. [PMID: 26834945 PMCID: PMC4731350 DOI: 10.4329/wjr.v8.i1.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/05/2015] [Accepted: 12/03/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To study the leakage-penumbra (LP) effect with a proposed correction method for the step-and-shoot intensity modulated radiation therapy (IMRT). METHODS Leakage-penumbra dose profiles from 10 randomly selected prostate IMRT plans were studied. The IMRT plans were delivered by a Varian 21 EX linear accelerator equipped with a 120-leaf multileaf collimator (MLC). For each treatment plan created by the Pinnacle(3) treatment planning system, a 3-dimensional LP dose distribution generated by 5 coplanar photon beams, starting from 0(o) with equal separation of 72(o), was investigated. For each photon beam used in the step-and-shoot IMRT plans, the first beam segment was set to have the largest area in the MLC leaf-sequencing, and was equal to the planning target volume (PTV). The overshoot effect (OSE) and the segment positional errors were measured using a solid water phantom with Kodak (TL and X-OMAT V) radiographic films. Film dosimetric analysis and calibration were carried out using a film scanner (Vidar VXR-16). The LP dose profiles were determined by eliminating the OSE and segment positional errors with specific individual irradiations. RESULTS A non-uniformly distributed leaf LP dose ranging from 3% to 5% of the beam dose was measured in clinical IMRT beams. An overdose at the gap between neighboring segments, represented as dose peaks of up to 10% of the total BP, was measured. The LP effect increased the dose to the PTV and surrounding critical tissues. In addition, the effect depends on the number of beams and segments for each beam. Segment positional error was less than the maximum tolerance of 1 mm under a dose rate of 600 monitor units per minute in the treatment plans. The OSE varying with the dose rate was observed in all photon beams, and the effect increased from 1 to 1.3 Gy per treatment of the rectal intersection. As the dosimetric impacts from the LP effect and OSE may increase the rectal post-radiation effects, a correction of LP was proposed and demonstrated for the central beam profile for one of the planned beams. CONCLUSION We concluded that the measured dosimetric impact of the LP dose inaccuracy from photon beam segment in step-and-shoot IMRT can be corrected.
Collapse
|
8
|
Kielar KN, Mok E, Hsu A, Wang L, Luxton G. Verification of dosimetric accuracy on the TrueBeam STx: rounded leaf effect of the high definition MLC. Med Phys 2012; 39:6360-71. [PMID: 23039672 DOI: 10.1118/1.4752444] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The dosimetric leaf gap (DLG) in the Varian Eclipse treatment planning system is determined during commissioning and is used to model the effect of the rounded leaf-end of the multileaf collimator (MLC). This parameter attempts to model the physical difference between the radiation and light field and account for inherent leakage between leaf tips. With the increased use of single fraction high dose treatments requiring larger monitor units comes an enhanced concern in the accuracy of leakage calculations, as it accounts for much of the patient dose. This study serves to verify the dosimetric accuracy of the algorithm used to model the rounded leaf effect for the TrueBeam STx, and describes a methodology for determining best-practice parameter values, given the novel capabilities of the linear accelerator such as flattening filter free (FFF) treatments and a high definition MLC (HDMLC). METHODS During commissioning, the nominal MLC position was verified and the DLG parameter was determined using MLC-defined field sizes and moving gap tests, as is common in clinical testing. Treatment plans were created, and the DLG was optimized to achieve less than 1% difference between measured and calculated dose. The DLG value found was tested on treatment plans for all energies (6 MV, 10 MV, 15 MV, 6 MV FFF, 10 MV FFF) and modalities (3D conventional, IMRT, conformal arc, VMAT) available on the TrueBeam STx. RESULTS The DLG parameter found during the initial MLC testing did not match the leaf gap modeling parameter that provided the most accurate dose delivery in clinical treatment plans. Using the physical leaf gap size as the DLG for the HDMLC can lead to 5% differences in measured and calculated doses. CONCLUSIONS Separate optimization of the DLG parameter using end-to-end tests must be performed to ensure dosimetric accuracy in the modeling of the rounded leaf ends for the Eclipse treatment planning system. The difference in leaf gap modeling versus physical leaf gap dimensions is more pronounced in the more recent versions of Eclipse for both the HDMLC and the Millennium MLC. Once properly commissioned and tested using a methodology based on treatment plan verification, Eclipse is able to accurately model radiation dose delivered for SBRT treatments using the TrueBeam STx.
Collapse
Affiliation(s)
- Kayla N Kielar
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
9
|
Sudahar H, Kurup PGG, Murali V, Velmurugan J. Dose linearity and monitor unit stability of a G4 type cyberknife robotic stereotactic radiosurgery system. J Med Phys 2012; 37:4-7. [PMID: 22363106 PMCID: PMC3283915 DOI: 10.4103/0971-6203.92714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 09/03/2011] [Accepted: 09/05/2011] [Indexed: 11/08/2022] Open
Abstract
Dose linearity studies on conventional linear accelerators show a linearity error at low monitor units (MUs). The purpose of this study was to establish the dose linearity and MU stability characteristics of a cyberknife (Accuray Inc., USA) stereotactic radiosurgery system. Measurements were done at a depth of 5 cm in a stereotactic dose verification phantom with a source to surface distance of 75 cm in a Generation 4 (G4) type cyberknife system. All the 12 fixed-type collimators starting from 5 to 60 mm were used for the dose linearity study. The dose linearity was examined in small (1–10), medium (15–100) and large (125–1000) MU ranges. The MU stability test was performed with 60 mm collimator for 10 MU and 20 MU with different combinations. The maximum dose linearity error of –38.8% was observed for 1 MU with 5 mm collimator. Dose linearity error in the small MU range was considerably higher than in the medium and large MU ranges. The maximum error in the medium range was –2.4%. In the large MU range, the linearity error varied between –0.7% and 1.2%. The maximum deviation in the MU stability was –3.03%.
Collapse
Affiliation(s)
- H Sudahar
- Department of Radiotherapy, Apollo Speciality Hospital, Chennai, India
| | | | | | | |
Collapse
|
10
|
Reena P, Dayananda S, Pai R, Jamema SV, Gupta T, Deepak D, Rajeev S. Performance characterization of siemens primus linear accelerator under small monitor unit and small segments for the implementation of step-and-shoot intensity-modulated radiotherapy. J Med Phys 2011; 31:269-74. [PMID: 21206643 PMCID: PMC3004102 DOI: 10.4103/0971-6203.29197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 09/02/2006] [Indexed: 11/24/2022] Open
Abstract
Implementation of step-and-shoot intensity-modulated radiotherapy (IMRT) needs careful understanding of the accelerator start-up characteristic to ensure accurate and precise delivery of radiation dose to patient. The dosimetric characteristic of a Siemens Primus linear accelerator (LA) which delivers 6 and 18 MV x-rays at the dose rate of 300 and 500 monitor unit (MU) per minutes (min) respectively was studied under the condition of small MU ranging from 1 to 100. Dose monitor linearity was studied at different dose calibration parameter (D1_C0) by measuring ionization at 10 cm depth in a solid water phantom using a 0.6 cc ionization chamber. Monitor unit stability was studied from different intensity modulated (IM) groups comprising various combinations of MU per field and number of fields. Stability of beam flatness and symmetry was investigated under normal and IMRT mode for 20×20 cm2 field under small MU using a 2D Profiler kept isocentrically at 5 cm depth. Inter segment response was investigated form 1 to 10 MU by measuring the dose per MU from various IM groups, each consisting of four segments with inter-segment separation of 2 cm. In the range 1-4 MU, the dose linearity error was more than 5% (max −32% at 1 MU) for 6 MV x-rays at factory calibrated D1_C0 value of 6000. The dose linearity error was reduced to −10.95% at 1 MU, within −3% for 2 and 3 MU and ±1% for MU ≥4 when the D1_C0 was subsequently tuned at 4500. For 18 MV x-rays, the dose linearity error at factory calibrated D1_C0 value of 4400 was within ±1% for MU ≥3 with maximum of −13.5 observed at 1 MU. For both the beam energies and MU/field ≥4, the stability of monitor unit tested for different IM groups was within ±1% of the dose from the normal treatment field. This variation increases to −2.6% for 6 MV and −2.7% for 18 MV x-rays for 2 MU/field. No significant variation was observed in the stability of beam profile measured from normal and IMRT mode. The beam flatness was within 3% for 6 MV x-rays and more than 3% (Max 3.5%) for 18 MV x-rays at lesser irradiation time ≤3 MU. The beam stability improves with the increase in irradiation time. Both the beam energies show very good symmetry (≤2%) at all irradiation time. For all the three segment sizes studied, the nonlinearity was observed at smaller MU/segment in both the energies. When the MU/segment is ≥4, all segment size shows fairly linear relation with dose/MU. The smaller segment size shows larger nonlinearity at smaller MU/segment and become more linear at larger MU/segment. Based on our study, we conclude that the Primus LA from Siemens installed at our hospital is ideally suited for step-and-shoot IMRT preferably for radiation ON time ≥4MU per segment.
Collapse
Affiliation(s)
- P Reena
- Department of Radiation Oncology, ACTREC, TMC, Kharghar, New Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
11
|
Mohan R, Jayesh K, Joshi RC, Al-Idrisi M, Narayanamurthy P, Majumdar SKD. Dosimetric evaluation of 120-leaf multileaf collimator in a Varian linear accelerator with 6-MV and 18-MV photon beams. J Med Phys 2011; 33:114-8. [PMID: 19893701 PMCID: PMC2772037 DOI: 10.4103/0971-6203.42757] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Accepted: 05/29/2008] [Indexed: 11/04/2022] Open
Abstract
In this study the dosimetric characteristics of 120-leaf multileaf collimators (MLCs) were evaluated for 6-MV and 18-MV photon beams. The dose rate, percentage depth dose, surface dose, dose in the build-up region, beam profile, flatness, symmetry, and penumbra width were measured using three field-defining methods: (i) 'Jaw only', (ii) 'MLC only', and (iii) 'MLC+Jaw'. Analysis of dose rate shows that the dose rate for 'MLC only' field was higher than that for 'Jaw only" and 'MLC+Jaw' fields in both the energies. The 'percentage of difference' of dose rates between 'MLC only' and 'MLC+Jaw' was (0.9% to 4.4%) and (1.14% to 7%) for 6 MV and 18 MV respectively. The surface dose and dose in the build-up region were more pronounced for 'MLC only' fields for both energies, and no significant difference was found in percentage depth dose beyond dmax for both energies. Beam profiles show that flatness and symmetry for both the energies were less than the 3%. The penumbra width for 'MLC only' field was more than that for the other two field-defining methods by (1 to 2 mm) and (0.8 to 1.3 mm) for 6-MV and 18-MV photon beams respectively. Analysis of 'width of 50% dose level' of the beam profiles at dmax to reflect the field size shows 1 to 2 mm more for 6-MV photons and 2.2 to 2.4 mm morefor 18-MV photons for 'MLC only' fields. The results of this study suggest that the characteristics of 120-leaf MLC system with 6 MV and 18 MV are same in all aspects except the surface dose, penumbra, dose in the build-up region, and width of 50% dose levels.
Collapse
Affiliation(s)
- R Mohan
- Department of Radiation Oncology, King Fahad Specialist Hospital, Ministry of Health, Dammam, Kingdom of Saudi Arabia
| | | | | | | | | | | |
Collapse
|
12
|
Sharma DS, Dongre PM, Mhatre V, Heigrujam M. Physical and dosimetric characteristic of high-definition multileaf collimator (HDMLC) for SRS and IMRT. J Appl Clin Med Phys 2011; 12:3475. [PMID: 21844860 PMCID: PMC5718650 DOI: 10.1120/jacmp.v12i3.3475] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 02/09/2011] [Accepted: 02/07/2011] [Indexed: 11/23/2022] Open
Abstract
Physical and dosimetric characteristics of HDMLC were studied for SRS6, 6, and 10 MV X‐rays from Novalis Tx. This in‐built tertiary collimator consists of 60 pairs (32×0.25 cm; 26×0.5 cm and 2×0.7 cm) of leaves. Properties of HDMLC studied included alignment, readout and radiation field congruence, radiation penumbra, accuracy and reproducibility of leaf position and gap width, static and dynamic leaf shift, tongue‐and‐groove effect, leaf transmission and leakage, leaf travel speed, and delivery of dynamic conformal arc and IMRT. All tests were performed using a calibrated ionization chamber, film dosimetry and DynaLog file analysis. Alignment of leaves with isocenter plane was better than 0.03 cm at all gantry and collimator positions. The congruence of HDMLC readout and radiation field agreed to within ± 0.03cm for filed sizes ranging from 1×1 to 20×20 cm2. Mean 80% to 20% penumbra width parallel (perpendicular) to leaf motion was 0.24±0.05(0.21±0.02) cm, 0.37±0.12(0.29±0.07) cm, and 0.51±0.13(0.43±0.07) cm for SRS6, 6, and 10 MV X‐rays, respectively. Circular field penumbra was comparable to corresponding square field. Average penumbra of 1×20 cm2 field was effectively constant over off‐axis positions of up to 12 cm with mean value of 0.16 (± 0.01)cm at 1.5 cm depth and 0.38 (± 0.04)cm at 10 cm depth. Minimum and maximum effective penumbra along the straight diagonal edge of irregular fields increased from 0.3 and 0.32 cm at 70° steep angle to 0.35 and 0.56 cm at 20° steep angle. Modified Picket Fence test showed average FWHM of 0.18 cm and peak‐to‐peak distance of 1.99 cm for 0.1 cm band and 2 cm interband separation. Dynamic multileaf collimation (DMLC) output factor remained within ± 1% for 6 MV and ± 0.5% for 10 MV X‐rays at all gantry positions, and was reproducible within ± 0.5% over a period of 14 months. The static leaf shift was 0.03 cm for all energies, while dynamic leaf shift was 0.044 cm for 10 MV and 0.039 cm for both SRS6 and 6 MV X‐rays. The dose depression and corresponding tongue‐and‐groove size were 24% and 0.17 cm for 6 MV and 19% and 0.20 cm for 10 MV X‐rays. Average transmission through HDMLC was 1.09%, 1.14% and 1.34% for SRS6, 6 and 10 MV X‐rays. Analysis of DynaLog files for leaf speed test in arc dynamic mode, delivery test of dynamic conformal arc, and step‐and‐shoot and sliding window IMRT showed at least 95% or more of the error counts had misplacements < 0.2cm, with maximum root mean square (RMS) error value calculated at 0.13 cm. Accurate and reproducible leaf position and gap width, and less leakage and small consistent penumbra over the fields demonstrate HDMLC suitable for high‐dose resolution SRS and IMRT. PACS number: 87.56.N‐, 87.55.Qr, 87.50.cm, 87.55.de, 87.53.Ly
Collapse
|
13
|
Klüter S, Sroka-Perez G, Schubert K, Debus J. Leakage of the Siemens 160 MLC multileaf collimator on a dual energy linear accelerator. Phys Med Biol 2010; 56:N29-37. [PMID: 21178240 DOI: 10.1088/0031-9155/56/2/n02] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multileaf collimators (MLCs) have been in clinical use for many years and meanwhile are commonly used to deliver intensity-modulated radiotherapy (IMRT) beams. For this purpose it is important to know their dosimetric properties precisely, one of them being inter- and intraleaf leakage. The Siemens 160 MLC features a single focus design with flat-sided and tilted leaves instead of tongue-and-groove. The leakage performance of the 160 MLC was investigated on a dual energy linear accelerator Siemens ARTISTE with 6 MV and 18 MV photon energies. While the intraleaf leakage amounted to nearly the same dose for 6 and for 18 MV, a much higher interleaf leakage for 6 MV was measured. It could be reduced by simply rotating the collimator, and also by changing the voltage applied to the beam steering coils. The leakage of the 160 MLC is shown to be sensitive to beam alignment. This is of special interest for dual energy accelerators, as the two focal spots of both energies, neither in position nor in shape, do not necessarily always coincide. As a consequence of that, a higher leakage can be expected for one out of two energies for the 160 MLC.
Collapse
Affiliation(s)
- Sebastian Klüter
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Jin Sheng Li
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | | | |
Collapse
|
15
|
Klein EE, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, Serago C, Aguirre F, Ma L, Arjomandy B, Liu C, Sandin C, Holmes T. Task Group 142 report: quality assurance of medical accelerators. Med Phys 2009; 36:4197-212. [PMID: 19810494 DOI: 10.1118/1.3190392] [Citation(s) in RCA: 1041] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The task group (TG) for quality assurance of medical accelerators was constituted by the American Association of Physicists in Medicine's Science Council under the direction of the Radiation Therapy Committee and the Quality Assurance and Outcome Improvement Subcommittee. The task group (TG-142) had two main charges. First to update, as needed, recommendations of Table II of the AAPM TG-40 report on quality assurance and second, to add recommendations for asymmetric jaws, multileaf collimation (MLC), and dynamic/virtual wedges. The TG accomplished the update to TG-40, specifying new test and tolerances, and has added recommendations for not only the new ancillary delivery technologies but also for imaging devices that are part of the linear accelerator. The imaging devices include x-ray imaging, photon portal imaging, and cone-beam CT. The TG report was designed to account for the types of treatments delivered with the particular machine. For example, machines that are used for radiosurgery treatments or intensity-modulated radiotherapy (IMRT) require different tests and/or tolerances. There are specific recommendations for MLC quality assurance for machines performing IMRT. The report also gives recommendations as to action levels for the physicists to implement particular actions, whether they are inspection, scheduled action, or immediate and corrective action. The report is geared to be flexible for the physicist to customize the QA program depending on clinical utility. There are specific tables according to daily, monthly, and annual reviews, along with unique tables for wedge systems, MLC, and imaging checks. The report also gives specific recommendations regarding setup of a QA program by the physicist in regards to building a QA team, establishing procedures, training of personnel, documentation, and end-to-end system checks. The tabulated items of this report have been considerably expanded as compared with the original TG-40 report and the recommended tolerances accommodate differences in the intended use of the machine functionality (non-IMRT, IMRT, and stereotactic delivery).
Collapse
Affiliation(s)
- Eric E Klein
- Washington University, St. Louis, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Das IJ, Cheng CW, Watts RJ, Ahnesjö A, Gibbons J, Li XA, Lowenstein J, Mitra RK, Simon WE, Zhu TC. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM. Med Phys 2008; 35:4186-215. [PMID: 18841871 DOI: 10.1118/1.2969070] [Citation(s) in RCA: 315] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tacke MB, Nill S, Häring P, Oelfke U. 6 MV dosimetric characterization of the 160 MLC, the new Siemens multileaf collimator. Med Phys 2008; 35:1634-42. [PMID: 18561638 DOI: 10.1118/1.2889782] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
New technical developments constantly aim at improving the outcome of radiation therapy. With the use of a computer-controlled multileaf collimator (MLC), the quality of the treatment and the efficiency in patient throughput is significantly increased. New MLC designs aim to further enhance the advantages. In this article, we present the first detailed experimental investigation of the new 160 MLC, Siemens Medical Solutions. The assessment included the experimental investigation of typical MLC characteristics such as leakage, tongue-and-groove effect, penumbra, leaf speed, and leaf positioning accuracy with a 6 MV treatment beam. The leakage is remarkably low with an average of 0.37% due to a new design principle of slightly tilted leaves instead of the common tongue-and-groove design. But due to the tilt, the triangular tongue-and-groove effect occurs. Its magnitude of approximately 19% is similar to the dose defect measured for MLCs with the common tongue-and-groove design. The average longitudinal penumbra measured at depth d(max) = 15 mm with standard 100 x 100 mm2 fields is 4.1 +/- 0.5 mm for the central range and increases to 4.9 +/- 1.3 mm for the entire field range of 400 x 400 mm2. The increase is partly due to the single-focusing design and the large distance between the MLC and the isocenter enabling a large patient clearance. Regarding the leaf speed, different velocity tests were performed. The positions of the moving leaves were continuously recorded with the kilovoltage-imaging panel. The maximum leaf velocities measured were 42.9 +/- 0.6 mm/s. In addition, several typical intensity-modulated radiation therapy treatments were performed and the delivery times compared to the Siemens OPTIFOCUS MLC. An average decrease of 11% in delivery time was observed. The experimental results presented in this article indicate that the dosimetric characteristics of the 160 MLC are capable of improving the quality of dose delivery with respect to precision and dose conformity.
Collapse
Affiliation(s)
- Martin B Tacke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
18
|
Comparison of dosimetric characteristics of 120-leaf and 80-leaf multi-leaf collimators in a Varian linear accelerator for a 6-MV photon beam. Radiol Phys Technol 2008; 1:223-8. [DOI: 10.1007/s12194-008-0032-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 05/31/2008] [Accepted: 06/02/2008] [Indexed: 10/21/2022]
|
19
|
Bayouth JE. Siemens multileaf collimator characterization and quality assurance approaches for intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2008; 71:S93-7. [PMID: 18406947 DOI: 10.1016/j.ijrobp.2007.07.2394] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 07/10/2007] [Accepted: 07/12/2007] [Indexed: 12/01/2022]
Abstract
Application of the multileaf collimator (MLC) has evolved from replacing blocks to create treatment fields to creating photon fluence modulation for intensity-modulated radiotherapy (IMRT). Multileaf collimator system performance requirements are far more stringent for such applications and will require increased performance for future applications, such as motion tracking. This article reviews Siemens MLC systems, including a technical description and dosimetric characteristics of 56-, 82-, and 160-leaf designs. Routine quality assurance of MLC for IMRT necessitates frequent and critical assessment of MLC leaf position calibration errors that can present in many different ways (e.g., accuracy, reproducibility, longevity, hysteresis, and collimator/gantry angle dependencies). Several techniques for measuring these errors are presented, along with qualitative and quantitative techniques for analyzing results. In particular, increased accuracy of leaf position measurement at variable gantry angles is enabled by spatial transformations to electronic portal imaging device position quantified by calibration protocols introduced with megavoltage cone beam. Measured values of X-ray transmission (intra-leaf, inter-leaf, and through abutting leaf pairs) and penumbra (leaf end, leaf tongue, leaf groove) are presented with an evaluation of their characterization by a treatment-planning system. The dosimetric impact of planning system model inadequacies is demonstrated for collimator scatter, dose profile values within 30 mm of the field edge, and the resultant effect demonstrated on clinical cases. Finally, a description of automated quality assurance delivery, analysis, and calibration protocols applicable for the specific vendor's system is provided.
Collapse
Affiliation(s)
- John E Bayouth
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| |
Collapse
|
20
|
Lee JW, Choi KS, Hong S, Kim YL, Chung JB, Lee DH, Choe BY, Jang HS, Suh TS. Effects of static dosimetric leaf gap on MLC-based small-beam dose distribution for intensity-modulated radiosurgery. J Appl Clin Med Phys 2007; 8:54-64. [PMID: 18449146 PMCID: PMC5722628 DOI: 10.1120/jacmp.v8i4.2397] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 08/01/2007] [Accepted: 08/31/2007] [Indexed: 12/02/2022] Open
Abstract
The aim of the present study was to evaluate the effect of various specific dosimetric leaf gaps on the multileaf collimator (MLC)–based small‐beam dose distribution. The dosimetric static leaf gap was determined by comparing the profiles of small MLC‐based beams with those of small collimated fields (square fields of 1, 2, 3, and 4cm). The results showed that an approximately 2‐mm gap was optimal with the Millennium 120‐leaf MLC (Varian Medical Systems, Palo Alto, CA) and a Varian 21EX 6‐MV photon beam. We also investigated how much the leaf gap affects the planning results and the actual dose distribution. A doughnut‐shaped planning target volume (PTV, 6.1 cm3) and inner organ at risk (OAR, 0.3 cm3) were delineated for delicate intensity‐modulated radiosurgery test planning. The applied leaf gaps were 0, 1, and 2 mm. The measured dose distributions were compared with the dose distribution in the treatment planning system. The maximum dose differences at inside PTV, outside PTV, and inner OAR were, respectively, 22.3%, 20.2%, and 35.2% for the 0‐mm leaf gap; 17.8%, 22.8%, and 30.8% for the 1‐mm leaf gap; and 5.5%, 8.5%, and 6.3% for the 2‐mm leaf gap. In a human head phantom (model 605: CIRS, Norfolk, VA) study, large dose differences of 1.3% – 12.7% were noted for the measurements made using the MLC files generated by the three different leaf gaps. The planned results were similar, and measurements showed a large dose difference associated with the various leaf gaps. These results strongly suggest that plans generated by a commercial inverse planning system commissioned using general collimated field data will probably demonstrate discrepancies between the planned treatments and the measured results. PACS number: 87.53.Dq
Collapse
Affiliation(s)
- Jeong-Woo Lee
- Department of Radiation Oncology, Konkuk University School of Medicine, Konkuk University Hospital.,Department of Biomedical Engineering, The Catholic University of Korea School of Medicine
| | - Kyoung-Sik Choi
- Department of Radiation Oncology, Ajou University School of Medicine, Ajou University Hospital
| | - Semie Hong
- Department of Radiation Oncology, Konkuk University School of Medicine, Konkuk University Hospital
| | - Yon-Lae Kim
- Department of Radiation Oncology, Konkuk University School of Medicine, Konkuk University Hospital
| | - Jin-Beom Chung
- Department of Biomedical Engineering, The Catholic University of Korea School of Medicine
| | - Doo-Hyun Lee
- Department of Biomedical Engineering, The Catholic University of Korea School of Medicine
| | - Bo-Young Choe
- Department of Biomedical Engineering, The Catholic University of Korea School of Medicine
| | - Hong-Seok Jang
- Department of Radiation Oncology, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea
| | - Tae-Suk Suh
- Department of Biomedical Engineering, The Catholic University of Korea School of Medicine
| |
Collapse
|
21
|
Sarkar V, Lin L, Shi C, Papanikolaou N. Quality assurance of the multileaf collimator with helical tomotherapy: Design and implementation. Med Phys 2007; 34:2949-56. [PMID: 17822003 DOI: 10.1118/1.2748105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Quality assurance (QA) of the multileaf collimator (MLC) is a critical step for the delivery of intensity modulated radiation therapy treatment plan. While QA procedures for motor-driven MLC have been published extensively, those for binary MLCs such as the one used for helical tomotherapy have not been presented in the literature, as this is still a fairly new technology. In this study, seven test patterns for the MLC QA of a helical tomotherapy unit have been designed and implemented. The seven test patterns check the MLC alignment, MLC leakage, MLC timing and MLC leaf position error in detail. Those patterns can be easily implemented in any center with a helical tomotherapy unit as part of the routine QA. The QA procedures can be performed using existing QA resources such as solid water phantom and EDR2 film. A software toolkit called "Tomo MLC QA" has been developed to assist in generating the QA procedures and analyzing the results. Our results showed that the helical tomotherapy MLC is very robust, exhibiting interleaf leakage of 0.53% +/-0.09%. Several issues with the MLC have been found and discussed. The QA results also illustrate the utilization and usefulness of the proposed QA procedures.
Collapse
Affiliation(s)
- Vikren Sarkar
- University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
22
|
Mohammadi M, Bezak E. Evaluation of MLC leaf positioning using a scanning liquid ionization chamber EPID. Phys Med Biol 2006; 52:N21-33. [PMID: 17183123 DOI: 10.1088/0031-9155/52/1/n03] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A method was developed to determine the accuracy of multileaf collimator (MLC) positioning using transmitted dose maps measured by a scanning liquid ionization chamber electronic portal imaging device (SLIC-EPID). Several MLC fields were designed, using the Varian C-series standard MLC-80, as reference fields for open fields. The MLC leaves were then shifted from the reference positions along the direction of MLC leaf movement towards the central axis from 0.1 to 1.6 mm. The electronic portal images (EPIs), acquired for each case, were converted to two-dimensional dose maps using an appropriate calibration method and the relative dose difference maps were then calculated. The experiment was then performed at non-zero gantry angles in the presence of an anthropomorphic phantom for typical prostate and head and neck fields. Several standard edge detection algorithms were also used in order to find the shifted MLC leaf position. In addition, the short-term reproducibility of MLC leaf positioning was evaluated using the above-mentioned methods. It was found that the relationship between the relative dose difference and MLC leaf spatial displacement is linear. A variation of 0.2 mm in leaf position leads to approximately 4% change in the relative dose values for open fields. The variation of the relative dose difference for phantom studies depends on the phantom positioning and the EPI normalization. From the standard edge detection algorithms, used in the current study, the 'Canny' algorithm was found to be the optimum method to identify the minimum detectable MLC leaf displacements with a precision of approximately 0.1 mm for all cases. However, the result of edge detection algorithms generally is binary and there is no additional information compared to the relative dose maps. The reproducibility of MLC positions was found to be within 0.3 mm. In conclusion, a SLIC-EPID can be used for regular quality assurance (QA) of MLC leaf positioning. Despite significant difference in the pixel size of the acquired SLIC-EPIs, it can be concluded that the SLIC-EPID can be used for MLC quality assurance protocols with similar accuracy compared to amorphous silicon (a-Si) EPID results.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA 5000, Australia.
| | | |
Collapse
|
23
|
Pasquino M, Borca VC, Catuzzo P, Ozzello F, Tofani S. Transmission, Penumbra and Leaf Positional Accuracy in Commissioning and Quality Assurance Program of a Multileaf Collimator for Step-and-Shoot IMRT Treatments. TUMORI JOURNAL 2006; 92:511-6. [PMID: 17260492 DOI: 10.1177/030089160609200608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims and background The performance characteristics of a commercial multileaf collimator (MLC) for intensity modulated radiation therapy (IMRT) and a comprehensive quality assurance program (QA) to be performed during the commissioning of the MLC were investigated. Materials and methods The midleaf transmission and interleaf leakage, the in-plane penumbra and its in-plane/cross-plane variation, the cross-plane penumbra and its in-plane/cross-plane variation, and the leaf positional accuracy of a high-energy photon (6 MV) Sli Precise Elekta linear accelerator were measured. Kodak EDR2 Ready Pack film was used for MLC transmission measurement; for the other characterization measurements we used Kodak X-Omat XV2 Ready Pack film placed at 5 cm depth in a solid RW3 phantom. Each film was digitized with a laser scanning photodensitometer VXR-12 Plus using the Omni Pro-Accept 6.0A film dosimetry system and converted to dose by means of H&D curves. The dose calibration measurements were performed with a Farmer ionization chamber according to the guidelines of the IAEA Technical Report No. 277. Results The average midleaf transmission and interleaf leakage were 1.8% ± 0.1% and 2.1% ± 0.2%, respectively. The average value of the cross-plane penumbra was 5.4 mm ± 0.3 mm with maximum variation less than 0.4 mm and 1.0 mm in the in-plane and cross-plane direction, respectively. The average value of the in-plane penumbra was 3.2 mm ± 0.2 mm and 3.5 mm ± 0.2 mm for the step side and groove side of the leaves, respectively. A dose profile perpendicular to the direction of the leaf travel passing through the central axis shows a tongue-and-groove effect of about 33%. The positional accuracy of the leaves was investigated according to AAPM Report No. 72 TG50; the deviation of the net optical density along all the match lines was less than ± 20%. Moreover, the results obtained with a step field technique showed a positional accuracy of less than 1 mm. Conclusions The results suggest the necessity of extensive knowledge of the MLC dosimetric characteristics for IMRT applications in order to allow physicists to study their influence on treatment delivery and to perform a comprehensive routine QA program of the investigated parameters.
Collapse
Affiliation(s)
- Massimo Pasquino
- SC Fisica Sanitaria,, Azienda Ospedaliera ASL 9, Ivrea, Turin, Italy.
| | | | | | | | | |
Collapse
|
24
|
Kehwar TS, Bhardwaj AK, Chakarvarti SK. Evaluation of dosimetric effect of leaf position in a radiation field of an 80 leaf multileaf collimator fitted to the LINAC head as tertiary collimator. J Appl Clin Med Phys 2006; 7:43-54. [PMID: 17533348 PMCID: PMC5722428 DOI: 10.1120/jacmp.v7i3.2310] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/14/2006] [Accepted: 12/31/1969] [Indexed: 11/23/2022] Open
Abstract
This study evaluates changes in the dosimetric characteristics of a Varian Millennium 80‐leaf multileaf collimator (MLC) in a radiation field. In this study, dose rate, scatter factor, percentage depth dose, surface dose and dose in the buildup region, beam profile, flatness and symmetry, and penumbra width measurements were made for 6‐MV and 15‐MV photon beams. Analysis of widths between 50% dose levels of the beam profiles to reflect the field size at the level of profile measurement shows a significant difference between the fields defined by MLC and/or jaws and MLC (zero gap) and the fields defined by jaws only. The position of the MLC leaves in the radiation field also significantly affects scatter factors. A new relationship has, therefore, been established between the scatter factors and the position of the MLC, which will indeed be useful in the dose calculation for irregular fields. Penumbra widths increase with field size and were higher for fields defined by jaws and/or MLC than jaws and MLC (zero gap) by 1.5 mm to 4.2 mm and 3.8 mm to 5.0 mm, for 6‐MV, and 1.5 mm to 2.4 mm and 3.0 mm to 5.6 mm, for 15‐MV, at 20% to 80% and 10% to 90% levels, respectively. The surface dose and the dose in the buildup region were smaller for fields defined by jaws and MLC (zero gap) than the fields defined by jaws and/or MLC for both photon energies. No significant differences were found in percentage depth dose beyond dmax, beam profiles above 80% dose level, and flatness and symmetry for both energies. The results of this study suggest that while one collects linear accelerator beam data with a MLC, the effects of the positions of the MLC leaves play an important role in dosimetric characteristics of 3D conformal radiation therapy as well as intensity‐modulated radiotherapy. PACS number: 87.53.Dq
Collapse
Affiliation(s)
- Than S. Kehwar
- Department of Radiation OncologyUniversity of Pittsburgh Cancer InstitutePittsburghPennsylvaniaU.S.A.
| | - Anup K. Bhardwaj
- Department of Radiation OncologyPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Shiv K. Chakarvarti
- Department of Applied PhysicsNational Institute of TechnologyKurukshetraIndia
| |
Collapse
|
25
|
Tacke MB, Szymanowski H, Oelfke U, Schulze C, Nuss S, Wehrwein E, Leidenberger S. Assessment of a new multileaf collimator concept usingGEANT4Monte Carlo simulations. Med Phys 2006; 33:1125-32. [PMID: 16696490 DOI: 10.1118/1.2181298] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The aim of the work was to investigate in advance the dosimetric properties of a new multileaf collimator (MLC) concept with the help of Monte Carlo (MC) simulations prior to the production of a prototype. The geometrical design of the MLC was implemented in the MC code GEANT4. For the simulation of a 6 MV treatment beam, an experimentally validated phase space and a virtual spatial Gaussian-shaped model placed in the origin were used. For the simulation of the geometry in GEANT4, the jaws and the two leaf packages were implemented with the help of computer-aided design data. First, transmission values for different tungsten alloys were extracted using the simulation codes GEANT4 and BEAMnrc and compared to experimental measurements. In a second step, high-resolution simulations were performed to detect the leakage at depth of maximum dose. The 20%-80% penumbra along the travel direction of the leaves was determined using 10 x 10 cm2 fields shifted along the x- and y-axis. The simulated results were compared with measured data. The simulation of the transmission values for different tungsten alloys showed a good agreement with the experimental measurements (within 2.0%). This enabled an accurate estimation of the attenuation coefficient for the various leaf materials. Simulations with varying width of the spatial Gaussian distribution showed that the leakage and the penumbra depend very much on this parameter: for instance, for widths of 2 and 4 mm, the interleaf leakage is below 0.3% and 0.75%, respectively. The results for the leakage and the penumbra (4.7+/-0.5 mm) are in good agreement with the measurements. This study showed that GEANT4 is appropriate for the investigation of the dosimetric properties of a multileaf collimator. In particular, a quantification of the leakage, the penumbra, and the tongue-and-groove effect and an evaluation of the influence of the beam parameters such as the width of the Gaussian distribution was possible.
Collapse
Affiliation(s)
- Martin B Tacke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Williams MJ, Metcalfe P. Verification of a rounded leaf-end MLC model used in a radiotherapy treatment planning system. Phys Med Biol 2006; 51:N65-78. [PMID: 16467576 DOI: 10.1088/0031-9155/51/4/n03] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A new multileaf collimator (MLC) model has been incorporated into version 7.4 of the Pinnacle radiotherapy treatment planning system (Philips Radiation Oncology Systems, Milpitas, CA). The MLC model allows for rounded MLC leaf-ends and provides separate parameters for inter-leaf transmission, intra-leaf transmission and the tongue width of the MLC leaf. In this report we detail the method followed to commission the MLC model for a Varian 120-leaf Millennium MLC (Varian Medical Systems, Palo Alto, CA, USA) for both 6 and 10 MV photons, and test the validity of the model for an IMRT field. Dose profiles in water were measured for a range of square MLC field sizes and compared to the Pinnacle computed dose profiles; in addition, the dose distribution for a series of adjacent MLC fields was measured to observe the model's behaviour along match-lines. Based on these results intra-leaf transmissions of 1.5% for 6 MV and 1.8% for 10 MV, leaf-tip radius of 12.0 cm, an inter-leaf transmission of 0.5%, and a tongue width of 0.1 cm were chosen. Using these values to compute the planar dose distribution for a 6 MV IMRT field, the new version of Pinnacle displayed improved dosimetric agreement with the dose-to-water EPID image and ion chamber measurements when compared to the old version of Pinnacle, particularly along the MLC tongue edge and across match-lines. Discrepancies of up to 5% were observed between calculated and measured doses along match-lines for both 6 MV and 10 MV photons; however, the new MLC model did predict the presence of match-lines and was a significant improvement on the previous model.
Collapse
Affiliation(s)
- M J Williams
- Department of Medical Physics, Illawarra Cancer Care Centre, Crown St, Wollongong, NSW 2500, Australia
| | | |
Collapse
|
27
|
Chow JCL, Seguin M, Alexander A. Dosimetric effect of collimating jaws for small multileaf collimated fields. Med Phys 2005; 32:759-65. [PMID: 15839348 DOI: 10.1118/1.1861413] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The dosimetric effects from the jaw positioned close to the small field (0.5 x 0.5, 1 x 1, and 2 x 2 cm2) side-edge generated by a single-focused multileaf collimator (MLC) were measured and studied. The measurement is important in intensity modulated radiotherapy (IMRT) because generally the jaw cannot perfectly cover all the leaf-ends in a segment of irregular field. This leads to additional dose contributed by (1) the end surface of the jaw, (2) the leaf-end, and (3) the inter- and intraleaf leakage/transmissions during the dosimetric measurement. Moreover, most of the conventional treatment planning systems ignore these effects in the dose calculation. In this study, measurements were made using a Varian 21 EX linear accelerator with 6 MV photon beam through a MLC containing 120 leaves. Percentage depth dose, beam profile, and output for small fields were measured by varying the jaw at different positions away from the leaf-ends in the field side-edge. Moving the jaw away from the leaf-ends increases the output and penumbra width for the small fields. Such increase is particularly significant when the field size is small (0.5 x 0.5 cm2) and the degree of increase changes quickly when the jaw-end is at about 1-2 cm from the leaf-end. It is suggested that measurements should be carried out in the IMRT commissioning to provide information to physicists in reviewing the treatment planning system's accuracy regarding leaf leakage/transmission and jaw effects.
Collapse
Affiliation(s)
- James C L Chow
- Medical Physics Department, Grand River Regional Cancer Center, Grand River Hospital, PO. Box 9056, 835 King Street West, Kitchener, Ontario N2G 1G3, Canada.
| | | | | |
Collapse
|
28
|
Dini SA, Koona RA, Ashburn JR, Meigooni AS. Dosimetric evaluation of GAFCHROMIC XR type T and XR type R films. J Appl Clin Med Phys 2005; 6:114-34. [PMID: 15770202 PMCID: PMC5723503 DOI: 10.1120/jacmp.v6i1.2051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The high spatial resolution of radiochromic film makes it ideal for dosimetric measurements and dose distributions in regions of high dose gradient. Intensity‐modulated radiation therapy, intravascular brachytherapy, and eye‐plaque radiation therapy demand precise spatial dosimetric calculations. Such precision is not possible with conventional dosimeters, such as thermoluminescent dosimeters and ionization chambers. Recently, new GAFCHROMIC® XR type T and type R films have been developed for radiation dosimetry, specifically in interventional radiology procedures. Dosimetric characteristics (i.e., linearity, post‐exposure density growth, energy dependence, dose‐rate dependence, and UV light sensitivity) of these new films were investigated. To evaluate the clinical applications of these films, their characteristics were compared with other commercially available film models. GAFCHROMIC® XR type T and type R films were found to be more sensitive to low‐energy doses as compared with GAFCHROMIC® MD‐55 films. PACS numbers: 87.66‐a, 87.53‐j
Collapse
Affiliation(s)
- Sharifeh A. Dini
- Department of Radiation MedicineUniversity of Kentucky Medical Center800 Rose StreetLexingtonKentucky40536U.S.A.
| | - Rafiq A. Koona
- Department of Radiation MedicineUniversity of Kentucky Medical Center800 Rose StreetLexingtonKentucky40536U.S.A.
| | - John R. Ashburn
- Department of Radiation MedicineUniversity of Kentucky Medical Center800 Rose StreetLexingtonKentucky40536U.S.A.
| | - Ali S. Meigooni
- Department of Radiation MedicineUniversity of Kentucky Medical Center800 Rose StreetLexingtonKentucky40536U.S.A.
| |
Collapse
|
29
|
Georg D, Olofsson J, Künzler T, Karlsson M. On empirical methods to determine scatter factors for irregular MLC shaped beams. Med Phys 2004; 31:2222-9. [PMID: 15377088 DOI: 10.1118/1.1767695] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Multileaf collimators (MLCs) are in clinical use for more than a decade and are a well accepted tool in radiotherapy. For almost each MLC design different empirical or semianalytical methods have been presented for calculating output ratios in air for irregularly shaped beams. However, until now no clear recommendations have been given on how to handle irregular fields shaped by multileaf collimators for independent monitor unit (MU) verification. The present article compares different empirical methods, which have been proposed for independent MU verification, to determine (1) output ratios in air (Sc) and (2) phantom scatter factors (Sp) for irregular MLC shaped fields. Ten dedicated field shapes were applied to five different types of MLCs (Elekta, Siemens, Varian, Scanditronix, General Electric). All calculations based on empirical relations were compared with measurements and with calculations performed by a treatment planning system with a fluence based algorithm. For most irregular MLC shaped beams output ratios in air could be adequately modeled with an accuracy of about 1%-1.5% applying a method based on the open field aperture defined by the leaf and jaw setting combined with the equivalent square formula suggested by Vadash and Bjärngard [P. Vadash and B. E. Bjärngard, Med. Phys. 20, 733-734 (1993)]. The accuracy of this approach strongly depends on the inherent head scatter characteristics of the accelerator in use and on the irregular field under consideration. Deviations of up to 3% were obtained for fields where leaves obscure central parts of the flattening filter. Simple equivalent square methods for Sp calculations in irregular fields did not provide acceptable results (deviations mostly >3%). Sp values derived from Clarkson integration, based on published tables of phantom scatter correction factors, showed the same accuracy level as calculations performed using a pencil beam algorithm of a treatment planning system (in a homogeneous media). The separation of head scatter and phantom scatter contributions is strongly recommended for irregular MLC shaped beams as both contributions have different factors of influence. With rather simple methods Sc and Sp can be determined for independent MU calculation with an accuracy better than 1.5% for most clinical situations encountered in conformal radiotherapy.
Collapse
Affiliation(s)
- Dietmar Georg
- Department of Radiotherapy and Radiobiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | | | | | | |
Collapse
|