1
|
Deng Y, Qiu M, Wu S, Zhong J, Huang J, Luo N, Lu Y, Bao Y. A feasibility study of tumor motion monitoring for SBRT of lung cancer based on 3D point cloud detection and stacking ensemble learning. J Med Imaging Radiat Sci 2024; 55:101729. [PMID: 39128321 DOI: 10.1016/j.jmir.2024.101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE To construct a tumor motion monitoring model for stereotactic body radiation therapy (SBRT) of lung cancer from a feasibility perspective. METHODS A total of 32 treatment plans for 22 patients were collected, whose planning CT and the centroid position of the planning target volume (PTV) were used as the reference. Images of different respiratory phases in 4DCT were acquired to redefine the targets and obtain the floating PTV centroid positions. In accordance with the planning CT and CBCT registration parameters, data augmentation was accomplished, yielding 2130 experimental recordings for analysis. We employed a stacking multi-learning ensemble approach to fit the 3D point cloud variations of body surface and the change of target position to construct the tumor motion monitoring model, and the prediction accuracy was assess using root mean squared error (RMSE) and R-Square (R2). RESULTS The prediction displacement of the stacking ensemble model shows a high degree of agreement with the reference value in each direction. In the first layer of model, the X direction (RMSE =0.019 ∼ 0.145mm, R2 =0.9793∼0.9996) and the Z direction (RMSE = 0.051 ∼ 0.168 mm, R2 = 0.9736∼0.9976) show the best results, while the Y direction ranked behind (RMSE = 0.088 ∼ 0.224 mm, R2 = 0.9553∼ 0.9933). The second layer model summarizes the advantages of unit models of first layer, and RMSE of 0.015 mm, 0.083 mm, 0.041 mm, and R2 of 0.9998, 0.9931, 0.9984 respectively for X, Y, Z were obtained. CONCLUSIONS The tumor motion monitoring method for SBRT of lung cancer has potential application of non-ionization, non-invasive, markerless, and real-time.
Collapse
Affiliation(s)
- Yongjin Deng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Minmin Qiu
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Shuyu Wu
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Jiajian Zhong
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jiexing Huang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ning Luo
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yao Lu
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Yong Bao
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
2
|
Dang HQ, Nguyen CT, Pham HV, Tran LD, Nguyen CD, Truong DVM, Hoang TTK, Van Chau T. The institutional experience of the implementing 4DCT in NSCLC radiotherapy planning. Rep Pract Oncol Radiother 2023; 28:445-453. [PMID: 37795228 PMCID: PMC10547414 DOI: 10.5603/rpor.a2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/20/2023] [Indexed: 10/06/2023] Open
Abstract
Background The study was to evaluate the effectiveness of dose distribution of four-dimensional computed tomography (4DCT) simulation. Materials and methods The gross tumor volume (GTV) and clinical target volume (CTV) were contoured in all 10 respiratory phases of 4DCT in 30 patients with non-small cell lung cancer (NSCLC). Both 3D and 4D treatment plans were made individually for each patient using the planning volume (PTV). The PTV3D was taken from a single CTV plus the recommended margin, and the PTV4D was taken from the 4D internal target volume, including all 10 CTVs plus the setup margins. Results The mean PTV was 460 ± 179 (69-820) cm3 for 3DCT and 401 ± 167 (127-854) cm3 for 4DCT (p = 0.0018). The dose distribution (DD) of organs at risk, especially the lungs, was lower for the 4DCT simulation. The V5%, V10%, and V20% of the total lung dose for 4DCT were significantly lower for the 3DCT. However, lung V30% the heart, esophagus, and spinal cord were not significantly different. In addition, the conformity index and the dose heterogeneity index of the PTV were not significantly different. The normal tissue complication probability (NTCP) of the lung and heart was significantly lower for 4DCT than for 3DCT. Conclusions The 4DCT simulation gives better results on the NTCP. The organs at risk, especially the lungs, receive a significantly lower DD compared with the 3DCT. The conformity index (CI), heterogeneity index (HI) and the DD to the heart, spinal cord, and esophagus were not significantly different between the two techniques.
Collapse
Affiliation(s)
- Huy Quang Dang
- Vietnam National University Ho Chi Minh City University of Science, Ho Chi Minh City, Viet Nam
- Oncology and Nuclear Medicine, Military Hospital 175, Ho Chi Minh City, Viet Nam
| | - Cong Thanh Nguyen
- Oncology and Nuclear Medicine, Military Hospital 175, Ho Chi Minh City, Viet Nam
| | - Hoat Viet Pham
- Oncology and Nuclear Medicine, Military Hospital 175, Ho Chi Minh City, Viet Nam
| | - Linh Duc Tran
- Oncology and Nuclear Medicine, Military Hospital 175, Ho Chi Minh City, Viet Nam
| | - Cong Duc Nguyen
- Oncology and Nuclear Medicine, Military Hospital 175, Ho Chi Minh City, Viet Nam
| | - Dung Vu Manh Truong
- Oncology and Nuclear Medicine, Military Hospital 175, Ho Chi Minh City, Viet Nam
| | - Trang Thi Kieu Hoang
- Vietnam National University Ho Chi Minh City University of Science, Ho Chi Minh City, Viet Nam
| | - Tao Van Chau
- Vietnam National University Ho Chi Minh City University of Science, Ho Chi Minh City, Viet Nam
| |
Collapse
|
3
|
Zhenghuan L, Manya W, Fantu K, Jie D, Yuan C, Qinghe P, Junyue S, Huamei Y, Xiangying X. Investigation on cone-beam computed tomography-based liver cancer radiotherapy clinical target volume planning target volume margin and analysis of dosimetric differences. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2023.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Tajik M, Akhlaqi MM, Gholami S. Advances in anthropomorphic thorax phantoms for radiotherapy: a review. Biomed Phys Eng Express 2021; 8. [PMID: 34736235 DOI: 10.1088/2057-1976/ac369c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/04/2021] [Indexed: 11/12/2022]
Abstract
A phantom is a highly specialized device, which mimic human body, or a part of it. There are three categories of phantoms: physical phantoms, physiological phantoms, and computational phantoms. The phantoms have been utilized in medical imaging and radiotherapy for numerous applications. In radiotherapy, the phantoms may be used for various applications such as quality assurance (QA), dosimetry, end-to-end testing, etc. In thoracic radiotherapy, unique QA problems including tumor motion, thorax deformation, and heterogeneities in the beam path have complicated the delivery of dose to both tumor and organ at risks (OARs). Also, respiratory motion is a major challenge in radiotherapy of thoracic malignancies, which can be resulted in the discrepancies between the planned and delivered doses to cancerous tissue. Hence, the overall treatment procedure needs to be verified. Anthropomorphic thorax phantoms, which are made of human tissue-mimicking materials, can be utilized to obtain the ground truth to validate these processes. Accordingly, research into new anthropomorphic thorax phantoms has accelerated. Therefore, the review is intended to summarize the current status of the commercially available and in-house-built anthropomorphic physical/physiological thorax phantoms in radiotherapy. The main focus is on anthropomorphic, deformable thorax motion phantoms. This review also discusses the applications of three-dimensional (3D) printing technology for the fabrication of thorax phantoms.
Collapse
Affiliation(s)
- Mahdieh Tajik
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Iran Tehran district 6 poursina st Tehran University of Medical Sciences, Tehran, 1416753955, Iran (the Islamic Republic of)
| | - Mohammad Mohsen Akhlaqi
- Shahid Beheshti University of Medical Sciences, Iran,Tehran,Shahid Bahonar roundabout, Darabad Avenue,Masih Daneshvari Hospital, Tehran, 19839-63113, Iran (the Islamic Republic of)
| | - Somayeh Gholami
- Radiotherapy, Tehran University of Medical Sciences, Bolvarekeshavarz AVN, Tehran, Iran, Tehran, 1416753955, Iran (the Islamic Republic of)
| |
Collapse
|
5
|
Zhang J, Wang L, Li X, Huang M, Xu B. Quantification of Intrafraction and Interfraction Tumor Motion Amplitude and Prediction Error for Different Liver Tumor Trajectories in Cyberknife Synchrony Tracking. Int J Radiat Oncol Biol Phys 2020; 109:1588-1605. [PMID: 33227440 DOI: 10.1016/j.ijrobp.2020.11.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/28/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE To research the fiducial-based, real-time tracking intrafraction (during the fraction [intra-]) and interfraction (between fractions [inter-]) tumor respiration amplitude, motion trajectory, and prediction error and quantify their relationships for different types of motion trajectories during Cyberknife-based stereotactic ablation radiotherapy. METHODS AND MATERIALS Twelve patients with liver tumors were treated using a Cyberknife system, and 58 fractions were involved in this study. Real-time target motion tracking data were extracted and transformed from the robot coordinate system into the patient coordinate system by the rotation matrix. Only the time sessions of the beam on were studied according to the data information generated from the Cyberknife motion tracking system. The motion correlation model between the external marker signal and internal fiducial position was built to present the type of motion trajectory. RESULTS Using the correlation model as a function of external marker signal and internal fiducial position, we knew 4 motion trajectories mainly existed for liver cancer patients as follows: perfect linearity (group I), simple linearity (group II), hysteresis (group III), and area respiratory (group IV) patterns. More than half of the patients had a linear breathing trajectory. Analyzing all patients together, the intra-amplitudes were slightly less than those of the inter-amplitudes. The amplitude from large to small was in the superior-inferior, left-right and anterior-posterior directions, regardless of inter- and intra-amplitudes. Then, patients with a larger peak-to-peak have a larger standard deviation of amplitude and a larger amplitude in all fractions/sessions. The prediction errors of the linear motion trajectory were generally less than 1 mm. The prediction errors of the regular hysteresis breathing model were smaller than those of the irregular hysteresis model. Scattered breathing would result in a larger tracking error, such as the area respiratory trajectory. It was logical that prediction errors were larger for patients who showed much variation in their breathing amplitude. CONCLUSIONS This paper showed that the liver motion trajectory model included perfect linearity, sample linearity, hysteresis, and area. The linear motion trajectory presented the minimum tracking error and the best stability, and the hysteresis and area trajectory were the worst. Therefore, breathing management, including respiration training, control, and evaluation of motion trajectory in all directions, was significantly necessary during liver SABR treatment.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China; Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Lin Wang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaobo Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China; Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.
| | - Miaoyun Huang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China; Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
6
|
Saito M, Sano N, Kuriyama K, Komiyama T, Marino K, Aoki S, Maehata Y, Suzuki H, Ueda K, Onishi H. New method for measurement of chest surface motion in lung cancer patients: Quantification using a technique of deformable image registration. Med Dosim 2020; 46:111-116. [PMID: 32972812 DOI: 10.1016/j.meddos.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/27/2020] [Accepted: 09/11/2020] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to measure the motion of the chest surface during breath-holding treatment for lung cancer using deformable image registration (DIR). Forty non-small-cell lung cancer patients treated with breath-holding stereotactic body radiation therapy were retrospectively examined. First, intensity-based DIR between 2 breath-holding computed tomography (CT) images was performed. Subsequently, deformation vector field (DVF) for all dimensions (left-right, anterior-posterior, and superior-inferior) was calculated from the result. For the analysis of chest surface, the DVF value of the only chest surface area was extracted after the chest surface was divided into 12 regions of interest (ROI) based on anatomy. Additionally, for the analysis of the correlation with the internal tumor motion, the median value of DVF for each surface ROI and the motion of the center of gravity of the tumor volume were used. It was possible to calculate the motion of chest surface without any outliers for all patients. For the average of 12 surface ROIs, the motion of 3D chest surface was within 2 mm (30 cases), 3 mm (8 cases), and 4 mm (2 cases). There was no correlation between the motion of the chest surface and that of the tumor for all 12 surface ROIs. We proposed a technique to evaluate the surface motion using DIR between multiple CT images. It could be a useful tool to calculate the motion of chest surface.
Collapse
Affiliation(s)
- Masahide Saito
- Department of Radiology, University of Yamanashi, Yamanashi, Japan.
| | - Naoki Sano
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | - Kengo Kuriyama
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | | | - Kan Marino
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | - Shinichi Aoki
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | | | - Hidekazu Suzuki
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | - Koji Ueda
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
7
|
Lu L, Ouyang Z, Lin S, Mastroianni A, Stephans KL, Xia P. Dosimetric assessment of patient-specific breath-hold reproducibility on liver motion for SBRT planning. J Appl Clin Med Phys 2020; 21:77-83. [PMID: 32337841 PMCID: PMC7386188 DOI: 10.1002/acm2.12887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/02/2020] [Accepted: 03/25/2020] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To investigate the impact of breath-hold reproducibility on liver motion using a respiratory motion management device. METHODS Forty-four patients with hepatic tumors, treated with SBRT with breath-hold, were randomly selected for this study. All patients underwent three consecutive computed tomography (CT) scans using active breath-hold coordinator (ABC) with three repeated single breath-hold during simulation. The three CT scans were labeled as ABC1-CT, ABC2-CT, and ABC3-CT. Displacements of centroids of the entire livers among the three ABC-CTs were measured as a surrogate for intrafractional motion. For each patient, two different treatment plans were prepared: (a) a clinical plan using a 5-mm expansion of an ITV that encompassed all three GTVs from each of the three ABC-CTs, and (b) a research plan using a 5-mm expansion of the GTV from only ABC1-CT to create PTV. The clinical plan acceptance criteria were that 95% of the PTV and 99% of the GTV received 100% of the prescription dose. Dosimetric endpoints were analyzed and compared for the two plans. RESULTS All shifts in the medial-lateral direction (range: -3.9 to 2.0 mm) were within 5 mm while 7% of shifts in the anterior-posterior direction (range: -10.5 to 16.7 mm) and 11% of shifts in the superior-inferior direction (range: -17.0 to 8.7 mm) exceeded 5 mm. Six patients (14%) had an intrafraction motion greater than 5 mm in any direction. For these six patients, if a plan was created based on a PTV from a single CT (ex. ABC1-CT), 5 of 12 GTVs captured from other ABC-CTs would fail to meet the clinical acceptance criteria due to poor breath-hold reproducibility. CONCLUSIONS Non-negligible intrafractional motion occurs in patients with poor breath-hold reproducibility. To identify this subgroup of patients, acquiring three CTs with active breath-hold during simulation is a feasible practical method.
Collapse
Affiliation(s)
- Lan Lu
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Zi Ouyang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Sara Lin
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Anthony Mastroianni
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Kevin L Stephans
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ping Xia
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
8
|
Evaluation of the effect of user-guided deformable image registration of thoracic images on registration accuracy among users. Med Dosim 2020; 45:206-212. [PMID: 32014379 DOI: 10.1016/j.meddos.2019.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 11/20/2022]
Abstract
User-guided deformable image registration (DIR) has allowed users to actively participate in the DIR process and is expected to improve DIR accuracy. The purpose of this study was to evaluate the time required for and effect of user-guided DIR on registration accuracy for thoracic images among users. In this study, 4-dimensional computed tomographic images of 10 thoracic cancer patients were used. The dataset for these patients was provided by DIR-Lab (www.dir-lab.com) and included a coordinate list of anatomical landmarks (300 bronchial bifurcations). Four medical physicists from different institutions performed DIR between peak-inhale and peak-exhale images with/without the user-guided DIR tool, Reg Refine, implemented in MIM Maestro (MIM software, Cleveland, OH). DIR accuracy was quantified by using target registration errors (TREs) for 300 anatomical landmarks in each patient. The average TREs with user-guided DIR in the 10 images by the 4 medical physicists were 1.48, 1.80, 3.46, and 3.55 mm, respectively, whereas the TREs without user-guided DIR were 3.28, 3.45, 3.56, and 3.28 mm, respectively. The average times taken by the 4 physicists to use the user-guided DIR were 10.0, 6.7, 7.1, and 8.0 min, respectively. This study demonstrated that user-guided DIR can improve DIR accuracy and requires only a moderate amount of time (<10 min). However, 2 of the 4 users did not show much improvement in DIR accuracy, which indicated the necessity of training prior to use of user-guided DIR.
Collapse
|
9
|
Shin DS, Kang SH, Kim KH, Kim TH, Kim DS, Chung JB, Lucero SA, Suh TS, Yamamoto T. Development of a deformable lung phantom with 3D-printed flexible airways. Med Phys 2019; 47:898-908. [PMID: 31863479 DOI: 10.1002/mp.13982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Deformable lung phantoms have been proposed to investigate four-dimensional (4D) imaging and radiotherapy delivery techniques. However, most phantoms mimic only the lung and tumor without pulmonary airways. The purpose of this study was to develop a reproducible, deformable lung phantom with three-dimensional (3D)-printed airways. METHODS The phantom consists of: (a) 3D-printed flexible airways, (b) flexible polyurethane foam infused with iodinated contrast agents, and (c) a motion platform. The airways were simulated using publicly available breath-hold computed tomography (CT) image datasets of a human lung through airway segmentation, computer-aided design modeling, and 3D printing with a rubber-like material. The lung was simulated by pouring liquid expanding foam into a mold with the 3D-printed airways attached. Iodinated contrast agents were infused into the lung phantom to emulate the density of the human lung. The lung/airways phantom was integrated into our previously developed motion platform, which allows for compression and decompression of the phantom in the superior-inferior direction. We quantified the reproducibility of the density (lung), motion/deformation (lung and airways), and position (airways) using breath-hold CT scans (with the phantom compressed and decompressed) repeated every two weeks over a 2-month period as well as 4D CT scans (with the phantom continuously compressed and decompressed) repeated twice over four weeks. The density reproducibility was quantified with a difference image (created by subtracting the rigidly registered baseline and the repeated images) in each of the compressed and decompressed states. Reproducibility of the motion/deformation was evaluated by comparing the baseline displacement vector fields (DVFs) derived from deformable image registration (DIR) between the compressed and decompressed phantom CT images with those of repeated scans and calculating the difference in the displacement vectors. Reproducibility of the airway position was quantified based on DIR between the baseline and repeated images. RESULTS For the breath-hold CT scans, the mean difference in lung density between baseline and week 8 was -1.3 (standard deviation 33.5) Hounsfield unit (HU) in the compressed state and 0.4 (36.8) HU in the decompressed state, while large local differences were observed around the high-contrast structures (caused by small misalignments). By visual inspection, the DVFs (between the compressed and decompressed states) at baseline and last time point (week 8 for the breath-hold CT scans) demonstrated a similar pattern. The mean lengths of displacement vector differences between baseline and week 8 were 0.5 (0.4) mm for the lung and 0.3 (0.2) mm for the airways. The mean airway displacements between baseline and week 8 were 0.6 (0.5) mm in the compressed state and 0.6 (0.4) mm in the decompressed state. We also observed similar results for the 4D CT scans (week 0 vs week 4) as well as for the breath-hold CT scans at other time points (week 0 vs weeks 2, 4, and 6). CONCLUSIONS We have developed a deformable lung phantom with 3D-printed airways based on a human lung CT image. Our findings indicate reproducible density, motion/deformation, and position. This phantom is based on widely available materials and technology, which represents advantages over other deformable phantoms.
Collapse
Affiliation(s)
- Dong-Seok Shin
- Department of Biomedical Engineering, Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seong-Hee Kang
- Department of Radiation Oncology, Seoul National University Bundnag Hospital, Bundang, Gyeonggi-do, 13620, Republic of Korea
| | - Kyeong-Hyeon Kim
- Department of Biomedical Engineering, Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Tae-Ho Kim
- Department of Biomedical Engineering, Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dong-Su Kim
- Department of Biomedical Engineering, Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jin-Beom Chung
- Department of Radiation Oncology, Seoul National University Bundnag Hospital, Bundang, Gyeonggi-do, 13620, Republic of Korea
| | - Steven Andrew Lucero
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Tae Suk Suh
- Department of Biomedical Engineering, Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Tokihiro Yamamoto
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California, 95817, USA
| |
Collapse
|
10
|
Agier R, Valette S, Kéchichian R, Fanton L, Prost R. Hubless keypoint-based 3D deformable groupwise registration. Med Image Anal 2019; 59:101564. [PMID: 31590032 DOI: 10.1016/j.media.2019.101564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 08/05/2019] [Accepted: 09/19/2019] [Indexed: 11/30/2022]
Abstract
We present a novel algorithm for Fast Registration Of image Groups (FROG), applied to large 3D image groups. Our approach extracts 3D SURF keypoints from images, computes matched pairs of keypoints and registers the group by minimizing pair distances in a hubless way i.e. without computing any central mean image. Using keypoints significantly reduces the problem complexity compared to voxel-based approaches, and enables us to provide an in-core global optimization, similar to the Bundle Adjustment for 3D reconstruction. As we aim to register images of different patients, the matching step yields many outliers. Then we propose a new EM-weighting algorithm which efficiently discards outliers. Global optimization is carried out with a fast gradient descent algorithm. This allows our approach to robustly register large datasets. The result is a set of diffeomorphic half transforms which link the volumes together and can be subsequently exploited for computational anatomy and landmark detection. We show experimental results on whole-body CT scans, with groups of up to 103 volumes. On a benchmark based on anatomical landmarks, our algorithm compares favorably with the star-groupwise voxel-based ANTs and NiftyReg approaches while being much faster. We also discuss the limitations of our approach for lower resolution images such as brain MRI.
Collapse
Affiliation(s)
- R Agier
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne CNRS, Inserm, CREATIS UMR 5220, U1206, LYON F69621, France
| | - S Valette
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne CNRS, Inserm, CREATIS UMR 5220, U1206, LYON F69621, France.
| | - R Kéchichian
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne CNRS, Inserm, CREATIS UMR 5220, U1206, LYON F69621, France
| | - L Fanton
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne CNRS, Inserm, CREATIS UMR 5220, U1206, LYON F69621, France; Hospices Civils de Lyon, GHC, Hôpital Edouard-Herriot, Service de médecine légale, LYON 69003, FRANCE
| | - R Prost
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne CNRS, Inserm, CREATIS UMR 5220, U1206, LYON F69621, France
| |
Collapse
|
11
|
Choi GW, Suh Y, Das P, Herman J, Holliday E, Koay E, Koong AC, Krishnan S, Minsky BD, Smith GL, Taniguchi CM, Beddar S. Assessment of setup uncertainty in hypofractionated liver radiation therapy with a breath-hold technique using automatic image registration-based image guidance. Radiat Oncol 2019; 14:154. [PMID: 31470860 PMCID: PMC6717376 DOI: 10.1186/s13014-019-1361-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
Background Target localization in radiation therapy is affected by numerous sources of uncertainty. Despite measures to minimize the breathing motion, the treatment of hypofractionated liver radiation therapy is further challenged by residual uncertainty coming from involuntary organ motion and daily changes in the shape and location of abdominal organs. To address the residual uncertainty, clinics implement image-guided radiation therapy at varying levels of soft-tissue contrast. This study utilized the treatment records from the patients that have received hypofractionated liver radiation therapy using in-room computed tomography (CT) imaging to assess the setup uncertainty and to estimate the appropriate planning treatment volume (PTV) margins in the absence of in-room CT imaging. Methods We collected 917 pre-treatment daily in-room CT images from 69 patients who received hypofractionated radiation therapy to the liver with the inspiration breath-hold technique. For each treatment, the daily CT was initially aligned to the planning CT based on the shape of the liver automatically using a CT-CT alignment software. After the initial alignment, manual shift corrections were determined by visual inspection of the two images, and the corrections were applied to shift the patient to the physician-approved treatment position. Considering the final alignment as the gold-standard setup, systematic and random uncertainties in the automatic alignment were quantified, and the uncertainties were used to calculate the PTV margins. Results The median discrepancy between the final and automatic alignment was 1.1 mm (0–24.3 mm), and 38% of treated fractions required manual corrections of ≥3 mm. The systematic uncertainty was 1.5 mm in the anterior-posterior (AP) direction, 1.1 mm in the left-right (LR) direction, and 2.4 mm in the superior-inferior (SI) direction. The random uncertainty was 2.2 mm in the AP, 1.9 mm in the LR, and 2.2 mm in the SI direction. The PTV margins recommended to be used in the absence of in-room CT imaging were 5.3 mm in the AP, 3.5 mm in the LR, and 5.1 mm in the SI direction. Conclusions Manual shift correction based on soft-tissue alignment is substantial in the treatment of the abdominal region. In-room CT can reduce PTV margin by up to 5 mm, which may be especially beneficial for dose escalation and normal tissue sparing in hypofractionated liver radiation therapy.
Collapse
Affiliation(s)
- Gye Won Choi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yelin Suh
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Prajnan Das
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph Herman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Emma Holliday
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eugene Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bruce D Minsky
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Grace L Smith
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Real-Time 2D-3D Deformable Registration with Deep Learning and Application to Lung Radiotherapy Targeting. LECTURE NOTES IN COMPUTER SCIENCE 2019. [DOI: 10.1007/978-3-030-20351-1_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
13
|
Black PJ, Velten C, Wang YF, Na YH, Wuu CS. An investigation of clinical treatment field delivery verification using cherenkov imaging: IMRT positioning shifts and field matching. Med Phys 2018; 46:302-317. [PMID: 30346639 DOI: 10.1002/mp.13250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Cherenkov light emission has been shown to correlate with ionizing radiation dose delivery in solid tissue. An important clinical application of Cherenkov light is the real-time verification of radiation treatment delivery in vivo. To test the feasibility of treatment field verification, Cherenkov light images were acquired concurrent with radiation beam delivery to standard and anthropomorphic phantoms. Specifically, we tested two clinical treatment scenarios: (a) Observation of field overlaps or gaps in matched 3D fields and (b) Patient positioning shifts during intensity modulated radiation therapy (IMRT) field delivery. Further development of this technique would allow real-time detection of treatment delivery errors on the order of millimeters so that patient safety and treatment quality can be improved. METHODS Cherenkov light emission was captured using a PI-MAX4 intensified charge coupled device (ICCD) system (Princeton Instruments). All radiation delivery was performed using a Varian Trilogy linear accelerator (linac) operated at 6 MV or 18 MV for photon and 6 MeV or 16 MeV for electron studies. Field matching studies were conducted with photon and electron beams at gantry angles of 0°, 15°, and 45°. For each modality and gantry angle, a total of three data sets were acquired. Overlap and gap distances of 0, 2, 5, and 10 mm were tested and delivered to solid phantom material of 30 × 30 × 5 cm3 . Phantom materials used were white plastic water and brown solid water. Tests were additionally performed on an anthropomorphic phantom with an irregular surface. Positioning shift studies were performed using IMRT fields delivered to a thoracic anthropomorphic phantom. For thoracic phantom measurements, the camera was placed laterally to observe the entire right side of the phantom. Fields were delivered with known translational patient positioning shifts in four directions. Changes in the Cherenkov fluence were evaluated through the generation of difference maps from unshifted Cherenkov images. All images were evaluated using ImageJ, Python, and MATLAB software packages. RESULTS For matched fields, Cherenkov images were able to quantitate matched field separations with discrepancies between 2 and 4 mm, depending on gantry angle and beam energy or modality. For all photon and electron beams delivered at a gantry angle of 0°, image analysis indicated average discrepancies of less than 2 mm for all field gaps and overlaps, with 83% of matched fields exhibiting discrepancies less than 1 mm. Beams delivered obliquely to the phantom surface exhibited average discrepancies as high as 4 mm for electron beams delivered at large oblique angles. Finally, for IMRT field delivery, vertical and lateral patient positioning shifts of 2 mm were detected in some cases, indicating the potential detectability threshold of using this technique alone. CONCLUSIONS Our study indicates that Cherenkov imaging can be used to support and bolster current treatment delivery verification techniques, improving our ability to recognize and rectify millimeter-scale delivery and positioning errors.
Collapse
Affiliation(s)
- Paul J Black
- Department of Radiation Oncology, Columbia University, New York, NY, 10032, USA.,Department of Radiation Oncology, Novant Health, Winston-Salem, NC, 27103, USA
| | - Christian Velten
- Department of Radiation Oncology, Columbia University, New York, NY, 10032, USA
| | - Yi-Fang Wang
- Department of Radiation Oncology, Columbia University, New York, NY, 10032, USA
| | - Yong Hum Na
- Department of Radiation Oncology, Columbia University, New York, NY, 10032, USA
| | - Cheng-Shie Wuu
- Department of Radiation Oncology, Columbia University, New York, NY, 10032, USA.,Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
14
|
Tang X, Krupinski EA, Xie H, Stillman AE. On the data acquisition, image reconstruction, cone beam artifacts, and their suppression in axial MDCT and CBCT - A review. Med Phys 2018; 45. [PMID: 30019342 DOI: 10.1002/mp.13095] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 06/12/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE In the clinic, computed tomography (CT) has evolved into an essential modality for diagnostic imaging by multidetector row CT (MDCT) and image guided intervention by cone beam CT (CBCT). Recognizing the increasing importance of axial MDCT/CBCT in clinical and preclinical applications, and the existence of CB artifacts in MDCT/CBCT images, we provide a review of CB artifacts' root causes, rendering mechanisms and morphology, and possible solutions for elimination and/or reduction of the artifacts. METHODS By examining the null space in Radon and Fourier domain, the root cause of CB artifacts (i.e., data insufficiency) in axial MDCT/CBCT is analytically investigated, followed by a review of the data sufficiency conditions and the "circle +" source trajectories. The rendering mechanisms and morphology of CB artifacts in axial MDCT/CBCT and their special cases (e.g., half/short scan and full scan with latitudinally displaced detector) are then analyzed, followed by a survey of the potential solutions to suppress the artifacts. The phenomenon of imaged zone indention and its variation over FBP, BPF/DBPF, two-pass and iterative CB reconstruction algorithms and/or schemes are discussed in detail. RESULTS An interdomain examination of the null space provides an insightful understanding of the root cause of CB artifacts in axial MDCT/CBCT. The decomposition of CB artifacts rendering mechanisms facilitates understanding of the artifacts' behavior under different conditions and the potential solutions to suppress them. An inspection of the imaged zone intention phenomenon provides guidance on the design and implementation of CB image reconstruction algorithms and schemes for CB artifacts suppression in axial MDCT/CBCT. CONCLUSIONS With increasing importance of axial MDCT/CBCT in clinical and preclinical applications, this review article can update the community with in-depth information and clarification on the latest progress in dealing with CB artifacts and thus increase clinical/preclinical confidence.
Collapse
Affiliation(s)
- Xiangyang Tang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Dr., C-5018, Atlanta, GA, 30322, USA
| | - Elizabeth A Krupinski
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Dr., C-5018, Atlanta, GA, 30322, USA
| | - Huiqiao Xie
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Dr., C-5018, Atlanta, GA, 30322, USA
| | - Arthur E Stillman
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Dr., C-5018, Atlanta, GA, 30322, USA
| |
Collapse
|
15
|
Thomas DH, Santhanam A, Kishan AU, Cao M, Lamb J, Min Y, O'Connell D, Yang Y, Agazaryan N, Lee P, Low D. Initial clinical observations of intra- and interfractional motion variation in MR-guided lung SBRT. Br J Radiol 2018; 91:20170522. [PMID: 29166129 DOI: 10.1259/bjr.20170522] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate variations in intra- and interfractional tumour motion, and the effect on internal target volume (ITV) contour accuracy, using deformable image registration of real-time two-dimensional-sagittal cine-mode MRI acquired during lung stereotactic body radiation therapy (SBRT) treatments. METHODS Five lung tumour patients underwent free-breathing SBRT treatments on the ViewRay system, with dose prescribed to a planning target volume (defined as a 3-6 mm expansion of the 4DCT-ITV). Sagittal slice cine-MR images (3.5 × 3.5 mm2 pixels) were acquired through the centre of the tumour at 4 frames per second throughout the treatments (3-4 fractions of 21-32 min). Tumour gross tumour volumes (GTVs) were contoured on the first frame of the MR cine and tracked for the first 20 min of each treatment using offline optical-flow based deformable registration implemented on a GPU cluster. A ground truth ITV (MR-ITV20 min) was formed by taking the union of tracked GTV contours. Pseudo-ITVs were generated from unions of the GTV contours tracked over 10 s segments of image data (MR-ITV10 s). RESULTS Differences were observed in the magnitude of median tumour displacement between days of treatments. MR-ITV10 s areas were as small as 46% of the MR-ITV20 min. CONCLUSION An ITV offers a "snapshot" of breathing motion for the brief period of time the tumour is imaged on a specific day. Real-time MRI over prolonged periods of time and over multiple treatment fractions shows that ITV size varies. Further work is required to investigate the dosimetric effect of these results. Advances in knowledge: Five lung tumour patients underwent free-breathing MRI-guided SBRT treatments, and their tumours tracked using deformable registration of cine-mode MRI. The results indicate that variability of both intra- and interfractional breathing amplitude should be taken into account during planning of lung radiotherapy.
Collapse
Affiliation(s)
- David H Thomas
- 1 Department of Radiation Oncology, University of Colorado School of Medicine , Aurora, CO , USA
| | - Anand Santhanam
- 2 Department of Radiation Oncology, University of California , Los Angeles, CA , USA
| | - Amar U Kishan
- 2 Department of Radiation Oncology, University of California , Los Angeles, CA , USA
| | - Minsong Cao
- 2 Department of Radiation Oncology, University of California , Los Angeles, CA , USA
| | - James Lamb
- 2 Department of Radiation Oncology, University of California , Los Angeles, CA , USA
| | - Yugang Min
- 2 Department of Radiation Oncology, University of California , Los Angeles, CA , USA
| | - Dylan O'Connell
- 2 Department of Radiation Oncology, University of California , Los Angeles, CA , USA
| | - Yingli Yang
- 2 Department of Radiation Oncology, University of California , Los Angeles, CA , USA
| | - Nzhde Agazaryan
- 2 Department of Radiation Oncology, University of California , Los Angeles, CA , USA
| | - Percy Lee
- 2 Department of Radiation Oncology, University of California , Los Angeles, CA , USA
| | - Daniel Low
- 2 Department of Radiation Oncology, University of California , Los Angeles, CA , USA
| |
Collapse
|
16
|
Bainbridge H, Salem A, Tijssen RHN, Dubec M, Wetscherek A, Van Es C, Belderbos J, Faivre-Finn C, McDonald F. Magnetic resonance imaging in precision radiation therapy for lung cancer. Transl Lung Cancer Res 2017; 6:689-707. [PMID: 29218271 PMCID: PMC5709138 DOI: 10.21037/tlcr.2017.09.02] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022]
Abstract
Radiotherapy remains the cornerstone of curative treatment for inoperable locally advanced lung cancer, given concomitantly with platinum-based chemotherapy. With poor overall survival, research efforts continue to explore whether integration of advanced radiation techniques will assist safe treatment intensification with the potential for improving outcomes. One advance is the integration of magnetic resonance imaging (MRI) in the treatment pathway, providing anatomical and functional information with excellent soft tissue contrast without exposure of the patient to radiation. MRI may complement or improve the diagnostic staging accuracy of F-18 fluorodeoxyglucose position emission tomography and computerized tomography imaging, particularly in assessing local tumour invasion and is also effective for identification of nodal and distant metastatic disease. Incorporating anatomical MRI sequences into lung radiotherapy treatment planning is a novel application and may improve target volume and organs at risk delineation reproducibility. Furthermore, functional MRI may facilitate dose painting for heterogeneous target volumes and prediction of normal tissue toxicity to guide adaptive strategies. MRI sequences are rapidly developing and although the issue of intra-thoracic motion has historically hindered the quality of MRI due to the effect of motion, progress is being made in this field. Four-dimensional MRI has the potential to complement or supersede 4D CT and 4D F-18-FDG PET, by providing superior spatial resolution. A number of MR-guided radiotherapy delivery units are now available, combining a radiotherapy delivery machine (linear accelerator or cobalt-60 unit) with MRI at varying magnetic field strengths. This novel hybrid technology is evolving with many technical challenges to overcome. It is anticipated that the clinical benefits of MR-guided radiotherapy will be derived from the ability to adapt treatment on the fly for each fraction and in real-time, using 'beam-on' imaging. The lung tumour site group of the Atlantic MR-Linac consortium is working to generate a challenging MR-guided adaptive workflow for multi-institution treatment intensification trials in this patient group.
Collapse
Affiliation(s)
- Hannah Bainbridge
- The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Ahmed Salem
- The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | | | - Michael Dubec
- The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Andreas Wetscherek
- The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Corinne Van Es
- The University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jose Belderbos
- The Netherlands Cancer Institute and The Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Corinne Faivre-Finn
- The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Fiona McDonald
- The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | | |
Collapse
|
17
|
Lu L, Diaconu C, Djemil T, Videtic GM, Abdel-Wahab M, Yu N, Greskovich J, Stephans KL, Xia P. Intra- and inter-fractional liver and lung tumor motions treated with SBRT under active breathing control. J Appl Clin Med Phys 2017; 19:39-45. [PMID: 29152835 PMCID: PMC5768033 DOI: 10.1002/acm2.12220] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/22/2017] [Accepted: 09/21/2017] [Indexed: 11/30/2022] Open
Abstract
Purpose To assess intra‐ and inter‐fractional motions of liver and lung tumors using active breathing control (ABC). Methods and Materials Nineteen patients with liver cancer and 15 patients with lung cancer treated with stereotactic body radiotherapy (SBRT) were included in this retrospective study. All patients received a series of three CTs at simulation to test breath‐hold reproducibility. The centroids of the whole livers and of the lung tumors from the three CTs were compared to assess intra‐fraction variability. For 15 patients (8 liver, 7 lung), ABC‐gated kilovoltage cone‐beam CTs (kV‐CBCTs) were acquired prior to each treatment, and the centroids of the whole livers and of the lung tumors were also compared to those in the planning CTs to assess inter‐fraction variability. Results Liver intra‐fractional systematic/random errors were 0.75/0.39 mm, 1.36/0.97 mm, and 1.55/1.41 mm at medial‐lateral (ML), anterior‐posterior (AP), and superior‐inferior (SI) directions, respectively. Lung intra‐fractional systematic/random errors were 0.71/0.54 mm (ML), 1.45/1.10 mm (AP), and 3.95/1.93 mm (SI), respectively. Substantial intra‐fraction motions (>3 mm) were observed in 26.3% of liver cancer patients and in 46.7% of lung cancer patients. For both liver and lung tumors, most inter‐fractional systematic and random errors were larger than the corresponding intra‐fractional errors. However, these inter‐fractional errors were mostly corrected by the treatment team prior to each treatment based on kV CBCT‐guided soft tissue alignment, thereby eliminating their effects on the treatment planning margins. Conclusions Intra‐fractional motion is the key to determine the planning margins since inter‐fractional motion can be compensated based on daily gated soft tissue imaging guidance of CBCT. Patient‐specific treatment planning margins instead of recipe‐based margins were suggested, which can benefit mostly for the patients with small intra‐fractional motions.
Collapse
Affiliation(s)
- Lan Lu
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Claudiu Diaconu
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Toufik Djemil
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Gregory Mm Videtic
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - May Abdel-Wahab
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Naichang Yu
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - John Greskovich
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Kevin L Stephans
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ping Xia
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
18
|
Kadoya N, Ichiji K, Uchida T, Nakajima Y, Ikeda R, Uozumi Y, Zhang X, Bukovsky I, Yamamoto T, Takeda K, Takai Y, Jingu K, Homma N. Dosimetric evaluation of MLC-based dynamic tumor tracking radiotherapy using digital phantom: Desired setup margin for tracking radiotherapy. Med Dosim 2017; 43:74-81. [PMID: 28958471 DOI: 10.1016/j.meddos.2017.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/12/2017] [Accepted: 08/22/2017] [Indexed: 12/24/2022]
Abstract
The purpose of this study is to evaluate the dosimetric impact of the margin on the multileaf collimator-based dynamic tumor tracking plan. Furthermore, an equivalent setup margin (EM) of the tracking plan was determined according to the gated plan. A 4-dimensional extended cardiac-torso was used to create 9 digital phantom datasets of different tumor diameters (TDs) of 1, 3, and 5 cm and motion ranges (MRs) of 1, 2, and 3 cm. For each dataset, respiratory gating (30% to 70% phase) and tumor tracking treatment plans were prepared using 8-field 3-dimensional conformal radiation therapy by 4-dimensional dose calculation. The total lung V20 was calculated to evaluate the dosimetric impact for each case and to estimate the EM with the same impact on lung V20 obtained with the gating plan with a setup margin of 5 mm. The EMs for {TD = 1 cm, MR = 1 cm}, {TD = 1 cm, MR = 2 cm}, and {TD = 1 cm, MR = 3 cm} were estimated as 5.00, 4.16, and 4.24 mm, respectively. The EMs for {TD = 5 cm, MR = 1 cm}, {TD = 5 cm, MR = 2 cm}, and {TD = 5 cm, MR = 3 cm} were estimated as 4.24 mm, 6.35 mm, and 7.49 mm, respectively. This result showed that with a larger MR, the EM was found to be increased. In addition, with a larger TD, the EM became smaller. Our result showing the EMs provided the desired accuracy for multileaf collimator-based dynamic tumor tracking radiotherapy.
Collapse
Affiliation(s)
- Noriyuki Kadoya
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Kei Ichiji
- Department of Therapeutic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoya Uchida
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yujiro Nakajima
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Radiotherapy, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Ryutaro Ikeda
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yosuke Uozumi
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Xiaoyong Zhang
- Department of Electrical Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ivo Bukovsky
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Takaya Yamamoto
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ken Takeda
- Department of Therapeutic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihiro Takai
- Department of Radiation Oncology, Southern Tohoku BNCT Research Center, Koriyama, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriyasu Homma
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
19
|
Cho J, Cheon W, Ahn S, Jung H, Sheen H, Park HC, Han Y. Development of a real-time internal and external marker tracking system for particle therapy: a phantom study using patient tumor trajectory data. JOURNAL OF RADIATION RESEARCH 2017; 58:710-719. [PMID: 28201522 PMCID: PMC5737584 DOI: 10.1093/jrr/rrw131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Target motion-induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment.
Collapse
Affiliation(s)
- Junsang Cho
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Wonjoong Cheon
- Department of Health Sciences and Technology,
Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, Korea
| | - Sanghee Ahn
- Department of Health Sciences and Technology,
Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, Korea
| | - Hyunuk Jung
- Department of Health Sciences and Technology,
Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, Korea
| | - Heesoon Sheen
- School of Medicine, Sungkyunkwan University, Seoul 135-710, Korea
- GE Healthcare Korea, Seoul, 135-100, Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, SAIHST, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Youngyih Han
- Department of Radiation Oncology, Samsung Medical Center, SAIHST, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| |
Collapse
|
20
|
Archibald-Heeren BR, Byrne MV, Hu Y, Cai M, Wang Y. Robust optimization of VMAT for lung cancer: Dosimetric implications of motion compensation techniques. J Appl Clin Med Phys 2017; 18:104-116. [PMID: 28786213 PMCID: PMC5874938 DOI: 10.1002/acm2.12142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022] Open
Abstract
In inverse planning of lung radiotherapy, techniques are required to ensure dose coverage of target disease in the presence of tumor motion as a result of respiration. A range of published techniques for mitigating motion effects were compared for dose stability across 5 breath cycles of ±2 cm. Techniques included planning target volume (PTV) expansions, internal target volumes with (OITV) and without tissue override (ITV), average dataset scans (ADS), and mini-max robust optimization. Volumetric arc therapy plans were created on a thorax phantom and verified with chamber and film measurements. Dose stability was compared by DVH analysis in calculations across all geometries. The lung override technique resulted in a substantial lack of dose coverage (-10%) to the tumor in the presence of large motion. PTV, ITV and ADS techniques resulted in substantial (up to 25%) maximum dose increases where solid tissue travelled into low density optimized regions. The results highlight the need for care in optimization of highly heterogeneous where density variations may occur with motion. Robust optimization was shown to provide greater stability in both maximum (<3%) and minimum dose variations (<2%) over all other techniques.
Collapse
Affiliation(s)
- Ben R Archibald-Heeren
- Radiation Oncology Centre, Sydney Adventist Hospital, Sydney, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Mikel V Byrne
- Radiation Oncology Centre, Sydney Adventist Hospital, Sydney, NSW, Australia
| | - Yunfei Hu
- Radiation Oncology Centre, Sydney Adventist Hospital, Sydney, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Meng Cai
- Radiation Oncology Centre, Sydney Adventist Hospital, Sydney, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Yang Wang
- Radiation Oncology Centre, Sydney Adventist Hospital, Sydney, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
21
|
Evaluation of mesh- and binary-based contour propagation methods in 4D thoracic radiotherapy treatments using patient 4D CT images. Phys Med 2017; 36:46-53. [DOI: 10.1016/j.ejmp.2017.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/28/2022] Open
|
22
|
Li G, Wei J, Kadbi M, Moody J, Sun A, Zhang S, Markova S, Zakian K, Hunt M, Deasy JO. Novel Super-Resolution Approach to Time-Resolved Volumetric 4-Dimensional Magnetic Resonance Imaging With High Spatiotemporal Resolution for Multi-Breathing Cycle Motion Assessment. Int J Radiat Oncol Biol Phys 2017; 98:454-462. [PMID: 28463165 DOI: 10.1016/j.ijrobp.2017.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/04/2017] [Accepted: 02/10/2017] [Indexed: 11/18/2022]
Abstract
PURPOSE To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. METHODS AND MATERIALS A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions; the intensity-based Demons deformable image registration method was used. Under an institutional review board-approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm3) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm3). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. RESULTS Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were -0.2 ± 0.5 mm (phantom) and -0.2 ± 1.9 mm (diaphragms). CONCLUSION Super-resolution TR-4DMRI has been reconstructed with adequate temporal (2 Hz) and spatial (2 × 2 × 2 mm3) resolutions. Further TR-4DMRI characterization and improvement are necessary before clinical applications. Multi-breathing cycles can be examined, providing patient-specific breathing irregularities and motion statistics for future 4D radiation therapy.
Collapse
Affiliation(s)
- Guang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Jie Wei
- Department of Computer Science, City College of New York, New York, New York
| | - Mo Kadbi
- Philips Healthcare, MR Therapy Cleveland, Ohio
| | - Jason Moody
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - August Sun
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shirong Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Svetlana Markova
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kristen Zakian
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Margie Hunt
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
23
|
Zhang Y, Tehrani JN, Wang J. A Biomechanical Modeling Guided CBCT Estimation Technique. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:641-652. [PMID: 27831866 PMCID: PMC5381525 DOI: 10.1109/tmi.2016.2623745] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two-dimensional-to-three-dimensional (2D-3D) deformation has emerged as a new technique to estimate cone-beam computed tomography (CBCT) images. The technique is based on deforming a prior high-quality 3D CT/CBCT image to form a new CBCT image, guided by limited-view 2D projections. The accuracy of this intensity-based technique, however, is often limited in low-contrast image regions with subtle intensity differences. The solved deformation vector fields (DVFs) can also be biomechanically unrealistic. To address these problems, we have developed a biomechanical modeling guided CBCT estimation technique (Bio-CBCT-est) by combining 2D-3D deformation with finite element analysis (FEA)-based biomechanical modeling of anatomical structures. Specifically, Bio-CBCT-est first extracts the 2D-3D deformation-generated displacement vectors at the high-contrast anatomical structure boundaries. The extracted surface deformation fields are subsequently used as the boundary conditions to drive structure-based FEA to correct and fine-tune the overall deformation fields, especially those at low-contrast regions within the structure. The resulting FEA-corrected deformation fields are then fed back into 2D-3D deformation to form an iterative loop, combining the benefits of intensity-based deformation and biomechanical modeling for CBCT estimation. Using eleven lung cancer patient cases, the accuracy of the Bio-CBCT-est technique has been compared to that of the 2D-3D deformation technique and the traditional CBCT reconstruction techniques. The accuracy was evaluated in the image domain, and also in the DVF domain through clinician-tracked lung landmarks.
Collapse
|
24
|
Exploration of Superior Modality: Safety and Efficacy of Hypofractioned Image-Guided Intensity Modulated Radiation Therapy in Patients with Unresectable but Confined Intrahepatic Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2017; 2017:6267981. [PMID: 29098144 PMCID: PMC5643031 DOI: 10.1155/2017/6267981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/10/2017] [Accepted: 09/17/2017] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To evaluate the efficacy and safety of hypofractioned image-guided intensity modulated radiation therapy (IG-IMRT) for unresectable but confined intrahepatic hepatocellular carcinoma in comparison with conventional 3-dimensional conformal radiotherapy (3D-CRT). METHODS Ninety patients with unresectable but confined intrahepatic hepatocellular carcinoma without distant metastasis and tumor thrombosis received external beam radiation therapy. Of these patients, 45 received IG-IMRT and 45 received 3D-CRT. The IG-IMRT design delivered a median total hypofractionated dose of 54 Gy (2.2-5.5 Gy/fx), and 3D-CRT delivered a median total dose of 54 Gy with a conventional fraction (2.0 Gy/fx). The clinical response, overall survival, and side effects were analyzed. RESULTS The IG-IMRT group showed significantly higher 1-year survival (93.3 versus 77.8%) and 2-year survival (73.3 versus 51.1%) and longer median survival (44.7 versus 24.0 months) than the 3D-CRT group. Multivariate analysis indicated that the patients with intrahepatic tumors smaller than 8 cm, prior TACE before RT, and IG-IMRT would have a survival benefit. There were no significant differences in the rates of side effects between the two groups. CONCLUSION Hypofractioned IG-IMRT could improve the therapeutic response and confer a potential survival of patients with unresectable but confined intrahepatic hepatocellular carcinoma compared to 3D-CRT with acceptable toxicity.
Collapse
|
25
|
Kadoya N, Nakajima Y, Saito M, Miyabe Y, Kurooka M, Kito S, Fujita Y, Sasaki M, Arai K, Tani K, Yagi M, Wakita A, Tohyama N, Jingu K. Multi-institutional Validation Study of Commercially Available Deformable Image Registration Software for Thoracic Images. Int J Radiat Oncol Biol Phys 2016; 96:422-431. [DOI: 10.1016/j.ijrobp.2016.05.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
|
26
|
Nasehi Tehrani J, Wang J. Mooney-Rivlin biomechanical modeling of lung with Inhomogeneous material. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:7897-900. [PMID: 26738123 DOI: 10.1109/embc.2015.7320223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, the Mooney-Rivlin material with hyperelastic strain energy was proposed for biomechanical modeling of the lung. We modeled the lung as an inhomogeneous Mooney-Rivlin material with uncoupled deviatoric and volumetric behavior. The proposed method was evaluated on the lungs of eight lung cancer patients. For each patient, the lung was segmented from the 4D-CT images and tetrahedral volume mesh of the lung in phase 50% was created by using the adaptive mesh generation toolkit. The demons deformable registration algorithm was used to extract the displacement vector fields (DVFs). The Jacobian of the deformation gradient was calculated from DVFs, and the lung strain energy function was optimized to improve the tumor center of mass (TCM) motion simulation accuracy between respiratory phase 50% and 0%. The average TCM motion simulation error for the proposed strategy is 1.95 mm for eight patients. We observed 13% improvement in the TCM position prediction compared with the homogeneous Mooney-Rivlin modeling.
Collapse
|
27
|
Modiri A, Gu X, Hagan A, Bland R, Iyengar P, Timmerman R, Sawant A. Inverse 4D conformal planning for lung SBRT using particle swarm optimization. Phys Med Biol 2016; 61:6181-202. [PMID: 27476472 DOI: 10.1088/0031-9155/61/16/6181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A critical aspect of highly potent regimens such as lung stereotactic body radiation therapy (SBRT) is to avoid collateral toxicity while achieving planning target volume (PTV) coverage. In this work, we describe four dimensional conformal radiotherapy using a highly parallelizable swarm intelligence-based stochastic optimization technique. Conventional lung CRT-SBRT uses a 4DCT to create an internal target volume and then, using forward-planning, generates a 3D conformal plan. In contrast, we investigate an inverse-planning strategy that uses 4DCT data to create a 4D conformal plan, which is optimized across the three spatial dimensions (3D) as well as time, as represented by the respiratory phase. The key idea is to use respiratory motion as an additional degree of freedom. We iteratively adjust fluence weights for all beam apertures across all respiratory phases considering OAR sparing, PTV coverage and delivery efficiency. To demonstrate proof-of-concept, five non-small-cell lung cancer SBRT patients were retrospectively studied. The 4D optimized plans achieved PTV coverage comparable to the corresponding clinically delivered plans while showing significantly superior OAR sparing ranging from 26% to 83% for D max heart, 10%-41% for D max esophagus, 31%-68% for D max spinal cord and 7%-32% for V 13 lung.
Collapse
Affiliation(s)
- A Modiri
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, TX, USA. Department of Radiation Oncology, The University of Maryland, School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Modiri A, Gu X, Hagan AM, Sawant A. Radiotherapy Planning Using an Improved Search Strategy in Particle Swarm Optimization. IEEE Trans Biomed Eng 2016; 64:980-989. [PMID: 27362755 DOI: 10.1109/tbme.2016.2585114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Evolutionary stochastic global optimization algorithms are widely used in large-scale, nonconvex problems. However, enhancing the search efficiency and repeatability of these techniques often requires well-customized approaches. This study investigates one such approach. METHODS We use particle swarm optimization (PSO) algorithm to solve a 4D radiation therapy (RT) inverse planning problem, where the key idea is to use respiratory motion as an additional degree of freedom in lung cancer RT. The primary goal is to administer a lethal dose to the tumor target while sparing surrounding healthy tissue. Our optimization iteratively adjusts radiation fluence-weights for all beam apertures across all respiratory phases. We implement three PSO-based approaches: conventionally used unconstrained, hard-constrained, and our proposed virtual search. As proof of concept, five lung cancer patient cases are optimized over ten runs using each PSO approach. For comparison, a dynamically penalized likelihood (DPL) algorithm-a popular RT optimization technique is also implemented and used. RESULTS The proposed technique significantly improves the robustness to random initialization while requiring fewer iteration cycles to converge across all cases. DPL manages to find the global optimum in 2 out of 5 RT cases over significantly more iterations. CONCLUSION The proposed virtual search approach boosts the swarm search efficiency, and consequently, improves the optimization convergence rate and robustness for PSO. SIGNIFICANCE RT planning is a large-scale, nonconvex optimization problem, where finding optimal solutions in a clinically practical time is critical. Our proposed approach can potentially improve the optimization efficiency in similar time-sensitive problems.
Collapse
|
29
|
Graves EE, Quon A, Loo BW. RT_Image: An Open-Source Tool for Investigating PET in Radiation Oncology. Technol Cancer Res Treat 2016; 6:111-21. [PMID: 17375973 DOI: 10.1177/153303460700600207] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Positron emission tomography (PET) has emerged as a valuable imaging modality for the diagnosis and staging of cancer. However, despite evidence that PET may be useful for defining target volumes for radiation therapy, no standardized methodology for accomplishing this task exists. To facilitate the investigation of the utility of PET imaging in radiotherapy treatment planning and accelerate its integration into clinical radiation oncology, we have developed software for exploratory analysis and segmentation of functional imaging datasets. The application, RT_Image, allows display of multiple imaging datasets and associated three-dimensional regions-of-interest (ROIs) at arbitrary view angles and fields of view. It also includes semi-automated image segmentation tools for defining metabolically active tumor volumes that may aid creation of target volumes for treatment planning. RT_Image is DICOM compliant, permitting the transfer of imaging data and DICOM-RT structure sets between the application and treatment planning software. RT_Image has been used by radiation oncologists, nuclear medicine physicians, and radiation physicists to analyze over 200 PET datasets. Novel segmentation techniques have been implemented within this programming framework for therapy planning and for evaluation of molecular imaging-derived parameters as prognostic indicators. RT_Image represents a freely-available software base on which further investigations of the utlity of PET and molecular imaging in radiation oncology may be built. The development of tools such as this is critical in order to realize the potential of molecular imagingguided radiation therapy.
Collapse
Affiliation(s)
- Edward E Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
30
|
Yoon J, Jung JW, Kim JO, Yi BY, Yeo I. Four-dimensional dose reconstruction through in vivo
phase matching of cine images of electronic portal imaging device. Med Phys 2016; 43:4420. [DOI: 10.1118/1.4954317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
31
|
Kim SK, Wu CC, Horowitz DP. Stereotactic body radiotherapy for the pancreas: a critical review for the medical oncologist. J Gastrointest Oncol 2016; 7:479-86. [PMID: 27284482 DOI: 10.21037/jgo.2015.10.01] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With recent advances in imaging modalities and radiation therapy, stereotactic body radiotherapy (SBRT) has allowed for the delivery of high doses of radiation with accuracy and precision. As such, SBRT has generated favorable results in the treatment of several cancers. Although the role of radiation has been controversial for the treatment of pancreatic ductal adenocarcinoma (PDAC) due to rather lackluster results in clinical trials, SBRT may offer improved outcomes, enhance the quality of life, and aid in palliative care settings for PDAC patients. This review delineates the role of SBRT in the treatment of PDAC, presents the defining principles of radiation biology and the radiation oncology work flow, and discusses the prospects of new treatment regimens involving tumor immunology and radiation therapy.
Collapse
Affiliation(s)
- Samuel K Kim
- Department of Radiation Oncology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA
| | - Cheng-Chia Wu
- Department of Radiation Oncology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA
| | - David P Horowitz
- Department of Radiation Oncology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
32
|
Anetai Y, Sumida I, Takahashi Y, Yagi M, Mizuno H, Ota S, Suzuki O, Tamari K, Seo Y, Ogawa K. A concept for classification of optimal breathing pattern for use in radiotherapy tracking, based on respiratory tumor kinematics and minimum jerk analysis. Med Phys 2016; 43:3168-3177. [DOI: 10.1118/1.4951731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
33
|
Sumida I, Shiomi H, Higashinaka N, Murashima Y, Miyamoto Y, Yamazaki H, Mabuchi N, Tsuda E, Ogawa K. Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid. J Appl Clin Med Phys 2016; 17:74-84. [PMID: 27074474 PMCID: PMC5875552 DOI: 10.1120/jacmp.v17i2.5914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/04/2015] [Accepted: 10/28/2015] [Indexed: 11/23/2022] Open
Abstract
Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film‐based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers’ abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one‐dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers’ breathing patterns, the mean tracking error range was 0.78‐1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient. PACS number(s): 87.55.D‐, 87.55.km, 87.55.Qr, 87.56.Fc
Collapse
Affiliation(s)
- Iori Sumida
- Osaka University Graduate School of Medicine; CyberKnife Center.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Exploratory Study of 4D versus 3D Robust Optimization in Intensity Modulated Proton Therapy for Lung Cancer. Int J Radiat Oncol Biol Phys 2015; 95:523-533. [PMID: 26725727 DOI: 10.1016/j.ijrobp.2015.11.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/01/2015] [Accepted: 11/02/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE The purpose of this study was to compare the impact of uncertainties and interplay on 3-dimensional (3D) and 4D robustly optimized intensity modulated proton therapy (IMPT) plans for lung cancer in an exploratory methodology study. METHODS AND MATERIALS IMPT plans were created for 11 nonrandomly selected non-small cell lung cancer (NSCLC) cases: 3D robustly optimized plans on average CTs with internal gross tumor volume density overridden to irradiate internal target volume, and 4D robustly optimized plans on 4D computed tomography (CT) to irradiate clinical target volume (CTV). Regular fractionation (66 Gy [relative biological effectiveness; RBE] in 33 fractions) was considered. In 4D optimization, the CTV of individual phases received nonuniform doses to achieve a uniform cumulative dose. The root-mean-square dose-volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under the RVH curve (AUCs) were used to evaluate plan robustness. Dose evaluation software modeled time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Dose-volume histogram (DVH) indices comparing CTV coverage, homogeneity, and normal tissue sparing were evaluated using Wilcoxon signed rank test. RESULTS 4D robust optimization plans led to smaller AUC for CTV (14.26 vs 18.61, respectively; P=.001), better CTV coverage (Gy [RBE]) (D95% CTV: 60.6 vs 55.2, respectively; P=.001), and better CTV homogeneity (D5%-D95% CTV: 10.3 vs 17.7, respectively; P=.002) in the face of uncertainties. With interplay effect considered, 4D robust optimization produced plans with better target coverage (D95% CTV: 64.5 vs 63.8, respectively; P=.0068), comparable target homogeneity, and comparable normal tissue protection. The benefits from 4D robust optimization were most obvious for the 2 typical stage III lung cancer patients. CONCLUSIONS Our exploratory methodology study showed that, compared to 3D robust optimization, 4D robust optimization produced significantly more robust and interplay-effect-resistant plans for targets with comparable dose distributions for normal tissues. A further study with a larger and more realistic patient population is warranted to generalize the conclusions.
Collapse
|
35
|
Zhuang T. On the effect of intrafraction motion in a single fraction step-shoot IMRT. Med Phys 2015; 42:4310-9. [DOI: 10.1118/1.4922687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
36
|
Taylor ML, Yeo UA, Supple J, Keehan S, Siva S, Kron T, Pham D, Haworth A, Franich RD. The Importance of Quasi-4D Path-Integrated Dose Accumulation for More Accurate Risk Estimation in Stereotactic Liver Radiotherapy. Technol Cancer Res Treat 2015; 15:428-36. [DOI: 10.1177/1533034615584120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/20/2015] [Indexed: 12/25/2022] Open
Abstract
Intrafraction organ deformation may be accounted for by inclusion of temporal information in dose calculation models. In this article, we demonstrate a quasi-4-dimensional method for improved risk estimation. Conventional 3-dimensional and quasi-4-dimensional calculations employing dose warping for dose accumulation were undertaken for patients with liver metastases planned for 42 Gy in 6 fractions of stereotactic body radiotherapy. Normal tissue complication probabilities and stochastic risks for radiation-induced carcinogenesis and cardiac complications were evaluated for healthy peripheral structures. Hypothetical assessments of other commonly employed dose/fractionation schedules on normal tissue complication probability estimates were explored. Conventional 3-dimensional dose computation may result in significant under- or overestimation of doses to organ at risk. For instance, doses differ (on average) by 17% (σ = 14%) for the left kidney, by 14% (σ = 7%) for the right kidney, by 7% (σ = 9%) for the large bowel, and by 10% (σ = 14%) for the duodenum. Discrepancies in the excess relative risk range up to about 30%. The 3-dimensional approach was shown to result in cardiac complication risks underestimated by >20%. For liver stereotactic body radiotherapy, we have shown that conventional 3-dimensional dose calculation may significantly over-/underestimate dose to organ at risk (90%-120% of the 4-dimensional estimate for the mean dose and 20%-150% for D2%). Providing dose estimates that most closely represent the actual dose delivered will provide valuable information to improve our understanding of the dose response for partial volume irradiation using hypofractionated schedules. Excess relative risks of radiocarcinogenesis were shown to range up to approximately excess relative risk = 4 and the prediction thereof depends greatly on the use of either 3-dimensional or 4-dimensional methods (with corresponding results differing by tens of percent).
Collapse
Affiliation(s)
- Michael L. Taylor
- School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Australia
- Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Unjin A. Yeo
- School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Australia
- Physics Department, Radiation Oncology Victoria, Melbourne, Australia
| | - Jeremy Supple
- School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Australia
| | - Stephanie Keehan
- School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Australia
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Tomas Kron
- School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Australia
- Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Daniel Pham
- Radiation Therapy Services, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Annette Haworth
- School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Australia
- Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Rick D. Franich
- School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Australia
| |
Collapse
|
37
|
Deng Z, Pang J, Yang W, Yue Y, Sharif B, Tuli R, Li D, Fraass B, Fan Z. Four-dimensional MRI using three-dimensional radial sampling with respiratory self-gating to characterize temporal phase-resolved respiratory motion in the abdomen. Magn Reson Med 2015; 75:1574-85. [PMID: 25981762 DOI: 10.1002/mrm.25753] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/17/2015] [Accepted: 04/07/2015] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop a four-dimensional MRI (4D-MRI) technique to characterize the average respiratory tumor motion for abdominal radiotherapy planning. METHODS A continuous spoiled gradient echo sequence was implemented with 3D radial trajectory and 1D self-gating for respiratory motion detection. Data were retrospectively sorted into different respiratory phases based on their temporal locations within a respiratory cycle, and each phase was reconstructed by means of a self-calibrating CG-SENSE program. Motion phantom, healthy volunteer and patient studies were performed to validate the respiratory motion detected by the proposed method against that from a 2D real-time protocol. RESULTS The proposed method successfully visualized the respiratory motion in phantom and human subjects. The 4D-MRI and real-time 2D-MRI yielded comparable superior-inferior (SI) motion amplitudes (intraclass correlation = 0.935) with up-to one pixel mean absolute differences in SI displacements over 10 phases and high cross-correlation between phase-resolved displacements (phantom: 0.985; human: 0.937-0.985). Comparable anterior-posterior and left-right displacements of the tumor or gold fiducial between 4D and real-time 2D-MRI were also observed in the two patients, and the hysteresis effect was shown in their 3D trajectories. CONCLUSION We demonstrated the feasibility of the proposed 4D-MRI technique to characterize abdominal respiratory motion, which may provide valuable information for radiotherapy planning.
Collapse
Affiliation(s)
- Zixin Deng
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Jianing Pang
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Radiology and Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Wensha Yang
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yong Yue
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Behzad Sharif
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Richard Tuli
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Benedick Fraass
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
38
|
Castillo SJ, Castillo R, Castillo E, Pan T, Ibbott G, Balter P, Hobbs B, Guerrero T. Evaluation of 4D CT acquisition methods designed to reduce artifacts. J Appl Clin Med Phys 2015; 16:4949. [PMID: 26103169 PMCID: PMC4504190 DOI: 10.1120/jacmp.v16i2.4949] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 11/21/2014] [Accepted: 11/09/2014] [Indexed: 12/25/2022] Open
Abstract
Four-dimensional computed tomography (4D CT) is used to account for respiratory motion in radiation treatment planning, but artifacts resulting from the acquisition and postprocessing limit its accuracy. We investigated the efficacy of three experimental 4D CT acquisition methods to reduce artifacts in a prospective institutional review board approved study. Eighteen thoracic patients scheduled to undergo radiation therapy received standard clinical 4D CT scans followed by each of the alternative 4D CT acquisitions: 1) data oversampling, 2) beam gating with breathing irregularities, and 3) rescanning the clinical acquisition acquired during irregular breathing. Relative values of a validated correlation-based artifact metric (CM) determined the best acquisition method per patient. Each 4D CT was processed by an extended phase sorting approach that optimizes the quantitative artifact metric (CM sorting). The clinical acquisitions were also postprocessed by phase sorting for artifact comparison of our current clinical implementation with the experimental methods. The oversampling acquisition achieved the lowest artifact presence among all acquisitions, achieving a 27% reduction from the current clinical 4D CT implementation (95% confidence interval = 34-20). The rescan method presented a significantly higher artifact presence from the clinical acquisition (37%; p < 0.002), the gating acquisition (26%; p < 0.005), and the oversampling acquisition (31%; p < 0.001), while the data lacked evidence of a significant difference between the clinical, gating, and oversampling methods. The oversampling acquisition reduced artifact presence from the current clinical 4D CT implementation to the largest degree and provided the simplest and most reproducible implementation. The rescan acquisition increased artifact presence significantly, compared to all acquisitions, and suffered from combination of data from independent scans over which large internal anatomic shifts occurred.
Collapse
|
39
|
Evaluation of respiratory pattern during respiratory-gated radiotherapy. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2014; 37:731-42. [PMID: 25416344 DOI: 10.1007/s13246-014-0310-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 10/29/2014] [Indexed: 12/25/2022]
Abstract
The respiratory cycle is not strictly regular, and generally varies in amplitude and period from one cycle to the next. We evaluated the characteristics of respiratory patterns acquired during respiratory gating treatment in more than 300 patients. A total 331 patients treated with respiratory-gated carbon-ion beam therapy were selected from a group of patients with thoracic and abdominal conditions. Respiratory data were acquired for a total of 3,171 fractions using an external respiratory sensing monitor and evaluated for respiratory cycle, duty cycle, magnitude of baseline drift, and intrafractional/interfractional peak inhalation/exhalation positional variation. Results for the treated anatomical sites and patient positioning were compared. Mean ± SD respiratory cycle averaged over all patients was 4.1 ± 1.3 s. Mean ± SD duty cycle averaged over all patients was 36.5 ± 7.3 %. Two types of baseline drift were seen, the first decremental and the second incremental. For respiratory peak variation, the mean intrafractional variation in peak-inhalation position relative to the amplitude in the first respiratory cycle (15.5 ± 9.3 %) was significantly larger than that in exhalation (7.5 ± 4.6 %). Interfractional variations in inhalation (17.2 ± 18.5 %) were also significantly greater than those in exhalation (9.4 ± 10.0 %). Statistically significant differences were observed between patients in the supine position and those in the prone position in mean respiratory cycle, duty cycle, and intra-/interfractional variations. We quantified the characteristics of the respiratory curve based on a large number of respiratory data obtained during treatment. These results might be useful in improving the accuracy of respiratory-gated treatment.
Collapse
|
40
|
Yeo UA, Taylor ML, Supple JR, Siva S, Kron T, Pham D, Franich RD. Evaluation of dosimetric misrepresentations from 3D conventional planning of liver SBRT using 4D deformable dose integration. J Appl Clin Med Phys 2014; 15:4978. [PMID: 25493523 PMCID: PMC5711129 DOI: 10.1120/jacmp.v15i6.4978] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/27/2014] [Accepted: 07/18/2014] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study is to evaluate dosimetric errors in 3D conventional planning of stereotactic body radiotherapy (SBRT) by using a 4D deformable image registration (DIR)‐based dose‐warping and integration technique. Respiratory‐correlated 4D CT image sets with 10 phases were acquired for four consecutive patients with five liver tumors. Average intensity projection (AIP) images were used to generate 3D conventional plans of SBRT. Quasi‐4D path‐integrated dose accumulation was performed over all 10 phases using dose‐warping techniques based on DIR. This result was compared to the conventional plan in order to evaluate the appropriateness of 3D (static) dose calculations. In addition, we consider whether organ dose metrics derived from contours defined on the average intensity projection (AIP), or on a reference phase, provide the better approximation of the 4D values. The impact of using fewer (<10) phases was also explored. The AIP‐based 3D planning approach overestimated doses to targets by 1.4% to 8.7% (mean 4.2%) and underestimated dose to normal liver by up to 8% (mean −5.5%; range −2.3% to −8.0%), compared to the 4D methodology. The homogeneity of the dose distribution was overestimated when using conventional 3D calculations by up to 24%. OAR doses estimated by 3D planning were, on average, within 10% of the 4D calculations; however, differences of up to 100% were observed. Four‐dimensional dose calculation using 3 phases gave a reasonable approximation of that calculated from the full 10 phases for all patients, which is potentially useful from a workload perspective. 4D evaluation showed that conventional 3D planning on an AIP can significantly overestimate target dose (ITV and GTV+5mm), underestimate normal liver dose, and overestimate dose homogeneity. Implementing nonadaptive quasi‐4D dose calculation can highlight the potential limitation of 3D conventional SBRT planning and the resultant misrepresentations of dose in some regions affected by motion and deformation. Where the 4D approach is unavailable, contouring on the full expiration phase may yield more accurate dose calculations, most relevant in the case of the healthy liver, but the absolute dose differences are in general small for the other healthy organs. The technique has the potential to quantify under‐ and over‐dosage and improve treatment plan evaluation, retrospective plan analysis, and clinical outcome correlation. PACS numbers: 87.55.‐x, 87.55.D‐, 87.55.de, 87.55.dk, 87.55.Qr, 87.57.nj
Collapse
Affiliation(s)
- Unjin A Yeo
- Radiation Oncology Victoria and RMIT University.
| | | | | | | | | | | | | |
Collapse
|
41
|
A method for generating large datasets of organ geometries for radiotherapy treatment planning studies. Radiol Oncol 2014; 48:408-15. [PMID: 25435856 PMCID: PMC4230563 DOI: 10.2478/raon-2014-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/11/2013] [Indexed: 11/25/2022] Open
Abstract
Background With the rapidly increasing application of adaptive radiotherapy, large datasets of organ geometries based on the patient’s anatomy are desired to support clinical application or research work, such as image segmentation, re-planning, and organ deformation analysis. Sometimes only limited datasets are available in clinical practice. In this study, we propose a new method to generate large datasets of organ geometries to be utilized in adaptive radiotherapy. Methods Given a training dataset of organ shapes derived from daily cone-beam CT, we align them into a common coordinate frame and select one of the training surfaces as reference surface. A statistical shape model of organs was constructed, based on the establishment of point correspondence between surfaces and non-uniform rational B-spline (NURBS) representation. A principal component analysis is performed on the sampled surface points to capture the major variation modes of each organ. Results A set of principal components and their respective coefficients, which represent organ surface deformation, were obtained, and a statistical analysis of the coefficients was performed. New sets of statistically equivalent coefficients can be constructed and assigned to the principal components, resulting in a larger geometry dataset for the patient’s organs. Conclusions These generated organ geometries are realistic and statistically representative.
Collapse
|
42
|
Bai T, Zhu J, Yin Y, Lu J, Shu H, Wang L, Yang B. How does four-dimensional computed tomography spare normal tissues in non-small cell lung cancer radiotherapy by defining internal target volume? Thorac Cancer 2014; 5:537-42. [PMID: 26767049 DOI: 10.1111/1759-7714.12126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/14/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To investigate how the four-dimensional computed tomography (4DCT) technique spares normal tissues in non-small cell lung cancer (NSCLC) radiotherapy by defining individualized internal target volume (ITV). MATERIALS AND METHODS Gross tumor volume (GTV) and clinical target volume (CTV) were contoured on all 10 respiratory phases of 4DCT scans in 10 patients with peripheral NSCLC. Both 3D and 4D treatment plans were performed for each patient using planning target volume (PTV)3D (derived from a single CTV plus conventional margins) and PTV4D (derived from 4D internal target volume, which included all 10 CTVs plus setup margins). Dose volume histogram and normal tissue complication probability (NTCP) values were compared for the lung, heart, and spinal cord between 3D and 4D treatment plans. RESULTS The average PTV of the 4D (127.56 ± 70.79) was less than the 3D plans (147.65 ± 76.89). The 4D spared more surrounding normal tissues than the 3D plans, especially in the lung. Compared with 3D plans, V5, V10, V20 and V30 of the total lung decreased from 41.25%, 37.75%, 24.25%, 17.00% to 38.13%, 33.00%, 21.25%, 15.13%, respectively. Without increasing the NTCP of the lung significantly, the 4D plans allowed us to increase the average prescription dose from 60 Gy to 66.00 ± 4.62 Gy. CONCLUSIONS 4DCT based plans can reduce the target volumes, spare more normal tissues, and allow dose escalation compared with 3D plans in NSCLC radiotherapy.
Collapse
Affiliation(s)
- Tong Bai
- Department of Radiation Physics, Shandong Cancer Hospital and Institute Jinan, China; Shandong Provincial Key Laboratory of Radiation Oncology Jinan, China
| | - Jian Zhu
- Department of Radiation Physics, Shandong Cancer Hospital and Institute Jinan, China; Shandong Provincial Key Laboratory of Radiation Oncology Jinan, China
| | - Yong Yin
- Department of Radiation Physics, Shandong Cancer Hospital and Institute Jinan, China; Shandong Provincial Key Laboratory of Radiation Oncology Jinan, China
| | - Jie Lu
- Department of Radiation Physics, Shandong Cancer Hospital and Institute Jinan, China; Shandong Provincial Key Laboratory of Radiation Oncology Jinan, China
| | - Huazhong Shu
- Laboratory of Image Science and Technology, Southeast University Nanjing, China
| | - Lin Wang
- Shandong Provincial Key Laboratory of Network based Intelligent Computing, University of Jinan Jinan, China
| | - Bo Yang
- Shandong Provincial Key Laboratory of Network based Intelligent Computing, University of Jinan Jinan, China
| |
Collapse
|
43
|
Zhang Y, Yang J, Zhang L, Court LE, Gao S, Balter PA, Dong L. Digital reconstruction of high-quality daily 4D cone-beam CT images using prior knowledge of anatomy and respiratory motion. Comput Med Imaging Graph 2014; 40:30-8. [PMID: 25467806 DOI: 10.1016/j.compmedimag.2014.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 10/02/2014] [Accepted: 10/15/2014] [Indexed: 12/25/2022]
Abstract
Conventional in-room cone-beam computed tomography (CBCT) lacks explicit representation of patient respiratory motion and usually has poor image quality and inaccurate CT numbers for target delineation and/or adaptive treatment planning. In-room four-dimensional (4D) CBCT image acquisition is still time consuming and suffers the same issue of poor image quality. To overcome this limitation, we developed a computational framework to digitally synthesize high-quality daily 4D CBCT images using the prior knowledge of motion and appearance learned from the planning 4D CT dataset. A patient-specific respiratory motion model was first constructed from the planning 4D CT images using principal component analysis of displacement vector fields across different respiratory phases. Subsequently, the respiratory motion model as well as the image content of the planning CT was spatially mapped onto the daily CBCT using deformable image registration. The synthesized 4D images possess explicit patient motion while maintaining the geometric accuracy of patient's anatomy at the time of treatment. We validated our model by quantitatively comparing the synthesized 4D CBCT against the 4D CT dataset acquired in the same day from protocol patients undergoing daily in-room CBCT setup and weekly 4D CT for treatment evaluation. Our preliminary results have demonstrated good agreement of contours in different motion phases between the synthesized and acquired scans. Various imaging artifacts were also suppressed and soft-tissue visibility was enhanced.
Collapse
Affiliation(s)
- Yongbin Zhang
- Department of Radiation Physics, Unit 94, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Scripps Proton Therapy Center, 9730 Summers Ridge Road, San Diego, CA, 92121, USA.
| | - Jinzhong Yang
- Department of Radiation Physics, Unit 94, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Lifei Zhang
- Department of Radiation Physics, Unit 94, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Laurence E Court
- Department of Radiation Physics, Unit 94, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Song Gao
- Department of Radiation Physics, Unit 94, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Peter A Balter
- Department of Radiation Physics, Unit 94, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Lei Dong
- Department of Radiation Physics, Unit 94, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Scripps Proton Therapy Center, 9730 Summers Ridge Road, San Diego, CA, 92121, USA
| |
Collapse
|
44
|
Chen T, Qin S, Xu X, Jabbour SK, Haffty BG, Yue NJ. Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management. Radiother Oncol 2014; 112:365-70. [PMID: 25236714 PMCID: PMC10905606 DOI: 10.1016/j.radonc.2014.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/07/2014] [Accepted: 08/07/2014] [Indexed: 12/25/2022]
Abstract
PURPOSE/OBJECTIVES Lung tumor motion may be impacted by heartbeat in addition to respiration. This study seeks to quantitatively analyze heart-motion-induced tumor motion and to evaluate its impact on lung cancer radiotherapy. METHODS/MATERIALS Fluoroscopy images were acquired for 30 lung cancer patients. Tumor, diaphragm, and heart were delineated on selected fluoroscopy frames, and their motion was tracked and converted into temporal signals based on deformable registration propagation. The clinical relevance of heart impact was evaluated using the dose volumetric histogram of the redefined target volumes. RESULTS Correlation was found between tumor and cardiac motion for 23 patients. The heart-induced motion amplitude ranged from 0.2 to 2.6 mm. The ratio between heart-induced tumor motion and the tumor motion was inversely proportional to the amplitude of overall tumor motion. When the heart motion impact was integrated, there was an average 9% increase in internal target volumes for 17 patients. Dose coverage decrease was observed on redefined planning target volume in simulated SBRT plans. CONCLUSIONS The tumor motion of thoracic cancer patients is influenced by both heart and respiratory motion. The cardiac impact is relatively more significant for tumor with less motion, which may lead to clinically significant uncertainty in radiotherapy for some patients.
Collapse
Affiliation(s)
- Ting Chen
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, USA.
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoting Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, USA
| | - Bruce G Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, USA
| | - Ning J Yue
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, USA
| |
Collapse
|
45
|
Li H, Park P, Liu W, Matney J, Liao Z, Balter P, Li Y, Zhang X, Li X, Zhu XR. Patient-specific quantification of respiratory motion-induced dose uncertainty for step-and-shoot IMRT of lung cancer. Med Phys 2014; 40:121712. [PMID: 24320498 DOI: 10.1118/1.4829522] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The objective of this study was to quantify respiratory motion-induced dose uncertainty at the planning stage for step-and-shoot intensity-modulated radiation therapy (IMRT) using an analytical technique. METHODS Ten patients with stage II∕III lung cancer who had undergone a planning four-dimensional (4D) computed tomographic scan and step-and-shoot IMRT planning were selected with a mix of motion and tumor size for this retrospective study. A step-and-shoot IMRT plan was generated for each patient. The maximum and minimum doses with respiratory motion were calculated for each plan, and the mean deviation from the 4D dose was calculated, taking delivery time, fractionation, and patient breathing cycle into consideration. RESULTS For all patients evaluated in this study, the mean deviation from the 4D dose in the planning target volume (PTV) was <2.5%, with a standard deviation <1.2%, and maximum point dose variation from the 4D dose was <6.2% in the PTV assuming delivery dose rate of 200 MU∕min and patient breathing cycle of 8 s. The motion-induced dose uncertainty is a function of motion, fractionation, MU (plan modulation), dose rate, and patient breathing cycle. CONCLUSIONS Respiratory motion-induced dose uncertainty varies from patient to patient. Therefore, it is important to evaluate the dose uncertainty on a patient-specific basis, which could be useful for plan evaluation and treatment strategy determination for selected patients.
Collapse
Affiliation(s)
- Heng Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kupelian P, Sonke JJ. Magnetic Resonance–Guided Adaptive Radiotherapy: A Solution to the Future. Semin Radiat Oncol 2014; 24:227-32. [DOI: 10.1016/j.semradonc.2014.02.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Graeff C. Motion mitigation in scanned ion beam therapy through 4D-optimization. Phys Med 2014; 30:570-7. [DOI: 10.1016/j.ejmp.2014.03.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 11/26/2022] Open
|
48
|
Castillo SJ, Castillo R, Balter P, Pan T, Ibbott G, Hobbs B, Yuan Y, Guerrero T. Assessment of a quantitative metric for 4D CT artifact evaluation by observer consensus. J Appl Clin Med Phys 2014; 15:4718. [PMID: 24892346 PMCID: PMC4048877 DOI: 10.1120/jacmp.v15i3.4718] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/28/2014] [Accepted: 01/06/2014] [Indexed: 12/12/2022] Open
Abstract
The benefits of four-dimensional computed tomography (4D CT) are limited by the presence of artifacts that remain difficult to quantify. A correlation-based metric previously proposed for ciné 4D CT artifact identification was further validated as an independent artifact evaluator by using a novel qualitative assessment featuring a group of observers reaching a consensus decision on artifact location and magnitude. The consensus group evaluated ten ciné 4D CT scans for artifacts over each breathing phase of coronal lung views assuming one artifact per couch location. Each artifact was assigned a magnitude score of 1-5, 1 indicating lowest severity and 5 indicating highest severity. Consensus group results served as the ground truth for assessment of the correlation metric. The ten patients were split into two cohorts; cohort 1 generated an artifact identification threshold derived from receiver operating characteristic analysis using the Youden Index, while cohort 2 generated sensitivity and specificity values from application of the artifact threshold. The Pearson correlation coefficient was calculated between the correlation metric values and the consensus group scores for both cohorts. The average sensitivity and specificity values found with application of the artifact threshold were 0.703 and 0.476, respectively. The correlation coefficients of artifact magnitudes for cohort 1 and 2 were 0.80 and 0.61, respectively, (p < 0.001 for both); these correlation coefficients included a few scans with only two of the five possible magnitude scores. Artifact incidence was associated with breathing phase (p < 0.002), with presentation less likely near maximum exhale. Overall, the correlation metric allowed accurate and automated artifact identification. The consensus group evaluation resulted in efficient qualitative scoring, reduced interobserver variation, and provided consistent identification of artifact location and magnitudes.
Collapse
|
49
|
Fast MF, Wisotzky E, Oelfke U, Nill S. Actively triggered 4d cone-beam CT acquisition. Med Phys 2014; 40:091909. [PMID: 24007160 DOI: 10.1118/1.4817479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this "after-the-fact" binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor. METHODS The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective "Faraday" shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories. RESULTS With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145 projections were acquired per respiratory phase resulting in a dose of ∼1.7-2.6 mGy per respiratory phase. Further dose savings and decreases in the scanning time are possible by acquiring only a subset of all respiratory phases, for example, peak-exhale and peak-inhale only scans. CONCLUSIONS This study is the first experimental demonstration of a new 4d CBCT acquisition paradigm in which imaging dose is efficiently utilized by actively triggering only those projections that are desired for the reconstruction process.
Collapse
Affiliation(s)
- Martin F Fast
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
50
|
Grelewicz Z, Wiersma RD. Combined MV + kV inverse treatment planning for optimal kV dose incorporation in IGRT. Phys Med Biol 2014; 59:1607-21. [DOI: 10.1088/0031-9155/59/7/1607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|