1
|
Rafic KHM, Sujith C, Rajesh B, Babu S ES, Timothy PB, Selvamani B, Ravindran PB. A new strategy for craniospinal axis localization and adaptive dosimetric evaluation using cone beam CT. Rep Pract Oncol Radiother 2020; 25:282-292. [PMID: 32140087 PMCID: PMC7052077 DOI: 10.1016/j.rpor.2019.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/02/2019] [Accepted: 11/29/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIM Computational complexities encountered in craniospinal irradiation (CSI) have been widely investigated with different planning strategies. However, localization of the entire craniospinal axis (CSA) and evaluation of adaptive treatment plans have traditionally been ignored in CSI treatment. In this study, a new strategy for CSI with comprehensive CSA localization and adaptive plan evaluation has been demonstrated using cone beam CT with extended longitudinal field-of-view (CBCTeLFOV). MATERIALS AND METHODS Multi-scan CBCT images were acquired with fixed longitudinal table translations (with 1 cm cone-beam overlap) and then fused into a single DICOM-set using the custom software coded in MatLab™. A novel approach for validation of CBCTeLFOV was demonstrated by combined geometry of Catphan-504 and Catphan-604 phantoms. To simulate actual treatment scenarios, at first, the end-to-end workflow of CSI with VMAT was investigated using an anthropomorphic phantom and then applied for two patients (based on random selection). RESULTS The fused CBCTeLFOV images were in excellent agreement with planning CT (pCT). The custom developed software effectively manages spatial misalignments arising out of the uncertainties in treatment/setup geometry. Although the structures mapped from pCT to CBCTeLFOV showed minimal variations, a maximum spatial displacement of up to 1.2 cm (and the mean of 0.8 ± 0.3 cm) was recorded in phantom study. Adaptive plan evaluation of patient paradigms showed the likelihood of under-dosing the craniospinal target. CONCLUSION Our protocol serves as a guide for precise localization of entire CSA and to ensure adequate dose to the large and complex targets. It can also be adapted for other complex treatment techniques such as total-marrow-irradiation and total-lymphoid-irradiation.
Collapse
Affiliation(s)
| | | | | | | | - Peace Balasingh Timothy
- Department of Radiation Oncology, Christian Medical College, Vellore 632 004, Tamil Nadu, India
| | | | | |
Collapse
|
2
|
Cho B. Intensity-modulated radiation therapy: a review with a physics perspective. Radiat Oncol J 2018; 36:1-10. [PMID: 29621869 PMCID: PMC5903356 DOI: 10.3857/roj.2018.00122] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
Intensity-modulated radiation therapy (IMRT) has been considered the most successful development in radiation oncology since the introduction of computed tomography into treatment planning that enabled three-dimensional conformal radiotherapy in 1980s. More than three decades have passed since the concept of inverse planning was first introduced in 1982, and IMRT has become the most important and common modality in radiation therapy. This review will present developments in inverse IMRT treatment planning and IMRT delivery using multileaf collimators, along with the associated key concepts. Other relevant issues and future perspectives are also presented.
Collapse
Affiliation(s)
- Byungchul Cho
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Donato V, Caruso C, Bressi C, Pressello MC, Salvati M, Delitala A, Delfini R. Evaluation of Helical Tomotherapy in the Treatment of High-Grade Gliomas near Critical Structures. TUMORI JOURNAL 2018; 98:636-42. [DOI: 10.1177/030089161209800515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Our purpose was to investigate the role of helical tomotherapy using a simultaneous integrated boost technique for the treatment of high-grade gliomas near intracranial critical structures. Methods and materials Of 27 patients treated with helical tomotherapy, 11 were eligible. Only patients whose tumors were within 0.5 cm of the optic chiasm, the optic nerve or the brainstem were included. The therapeutic approach was a simultaneous integrated boost, prescribing 66 and 60 Gy to the PTV1 and PTV2, respectively, in 30 fractions. All patients received concomitant temozolomide at a dose of 75 mg/m2 daily during radiation therapy. Results Of the 11 patients considered, 3 patients (27%) died after 4 months from the completion of the combined treatment. Three patients (27%) presented local progression, and the median time to disease progression was 6 months (range, 1–12). Five patients (45%), at the time of this evaluation, did not have signs or symptoms of recurrence or progression of the disease. Acute toxicity, evaluated during radiochemotherapy, was minimal, with all patients experiencing RTOG grade 0 and grade 1 toxicity. Conclusions Helical tomotherapy proved to be an effective and safe treatment modality, with an improvement of accuracy in delivery of highdose radiotherapy despite the presence of nearby critical structures.
Collapse
Affiliation(s)
- Vittorio Donato
- Department of Radiation Oncology, S Camillo-Forlanini Hospital, Rome
| | - Cristina Caruso
- Department of Radiation Oncology, S Camillo-Forlanini Hospital, Rome
| | | | | | | | - Alberto Delitala
- Department of Neurosurgery, S Camillo-Forlanini Hospital, Rome, Italy
| | | |
Collapse
|
4
|
Chargari C, Goodman KA, Diallo I, Guy JB, Rancoule C, Cosset JM, Deutsch E, Magne N. Risk of second cancers in the era of modern radiation therapy: does the risk/benefit analysis overcome theoretical models? Cancer Metastasis Rev 2017; 35:277-88. [PMID: 26970966 DOI: 10.1007/s10555-016-9616-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the era of modern radiation therapy, the compromise between the reductions in deterministic radiation-induced toxicities through highly conformal devices may be impacting the stochastic risk of second malignancies. We reviewed the clinical literature and evolving theoretical models evaluating the impact of intensity-modulated radiation therapy (IMRT) on the risk of second cancers, as a consequence of the increase in volumes of normal tissues receiving low doses. The risk increase (if any) is not as high as theoretical models have predicted in adults. Moreover, the increase in out-of-field radiation doses with IMRT could be counterbalanced by the decrease in volumes receiving high doses. Clinical studies with short follow-up have not corroborated the hypothesis that IMRT would drastically increase the incidence of second cancers. In children, the risk of radiation-induced carcinogenesis increases from low doses and consequently the relative risk of second cancers after IMRT could be higher than in adults, justifying current developments of proton therapy with priority given to this population. Although only longer follow-up will allow a true assessment of the real impact of these modern techniques on radiation-induced carcinogenesis, a comprehensive risk-adapted strategy will help minimize the probability of second cancers.
Collapse
Affiliation(s)
- Cyrus Chargari
- Radiotherapy Department, Hôpital d'Instruction des Armées du Val-de-Grâce, Paris, France.,INSERM 1030, Molecular Radiotherapy, Gustave Roussy campus Cancer, Grand Paris, France
| | - Karyn A Goodman
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ibrahima Diallo
- U1018 Institut National de la Santé et de la Recherche Médicale, Villejuif, France
| | - Jean-Baptiste Guy
- Cellular and Molecular Radiotherapy Laboratory, EMR3738, 69921, Oullins, France.,Department of Radiotherapy, Lucien Neuwirth Cancer Institute, Saint Priest en Jarez, France
| | - Chloe Rancoule
- Department of Radiotherapy, Lucien Neuwirth Cancer Institute, Saint Priest en Jarez, France
| | - Jean-Marc Cosset
- Oncology/Radiotherapy Department, Institut Curie, 75005, Paris, France.,Charlebourg-La Défense Radiotherapy Center, Amethyst Group, La Garenne-Colombes, 92250, Paris, France
| | - Eric Deutsch
- INSERM 1030, Molecular Radiotherapy, Gustave Roussy campus Cancer, Grand Paris, France
| | - Nicolas Magne
- Cellular and Molecular Radiotherapy Laboratory, EMR3738, 69921, Oullins, France. .,Department of Radiotherapy, Lucien Neuwirth Cancer Institute, Saint Priest en Jarez, France. .,Chef du Département de Radiothérapie, Directeur de la Recherche et de l'Innovation, Institut de Cancérologie Lucien Neuwirth, 108 bis, avenue Albert Raimond, BP 60008, 42270, Saint-Priest en Jarez cedex, France.
| |
Collapse
|
5
|
Fan Q, Nanduri A, Yang J, Yamamoto T, Loo B, Graves E, Zhu L, Mazin S. Toward a planning scheme for emission guided radiation therapy (EGRT): FDG based tumor tracking in a metastatic breast cancer patient. Med Phys 2014; 40:081708. [PMID: 23927305 DOI: 10.1118/1.4812427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Emission guided radiation therapy (EGRT) is a new modality that uses PET emissions in real-time for direct tumor tracking during radiation delivery. Radiation beamlets are delivered along positron emission tomography (PET) lines of response (LORs) by a fast rotating ring therapy unit consisting of a linear accelerator (Linac) and PET detectors. The feasibility of tumor tracking and a primitive modulation method to compensate for attenuation have been demonstrated using a 4D digital phantom in our prior work. However, the essential capability of achieving dose modulation as in conventional intensity modulated radiation therapy (IMRT) treatments remains absent. In this work, the authors develop a planning scheme for EGRT to accomplish sophisticated intensity modulation based on an IMRT plan while preserving tumor tracking. METHODS The planning scheme utilizes a precomputed LOR response probability distribution to achieve desired IMRT planning modulation with effects of inhomogeneous attenuation and nonuniform background activity distribution accounted for. Evaluation studies are performed on a 4D digital patient with a simulated lung tumor and a clinical patient who has a moving breast cancer metastasis in the lung. The Linac dose delivery is simulated using a voxel-based Monte Carlo algorithm. The IMRT plan is optimized for a planning target volume (PTV) that encompasses the tumor motion using the MOSEK package and a Pinnacle3™ workstation (Philips Healthcare, Fitchburg, WI) for digital and clinical patients, respectively. To obtain the emission data for both patients, the Geant4 application for tomographic emission (GATE) package and a commercial PET scanner are used. As a comparison, 3D and helical IMRT treatments covering the same PTV based on the same IMRT plan are simulated. RESULTS 3D and helical IMRT treatments show similar dose distribution. In the digital patient case, compared with the 3D IMRT treatment, EGRT achieves a 15.1% relative increase in dose to 95% of the gross tumor volume (GTV) and a 31.8% increase to 50% of the GTV. In the patient case, EGRT yields a 15.2% relative increase in dose to 95% of the GTV and a 20.7% increase to 50% of the GTV. The organs at risk (OARs) doses are kept similar or lower for EGRT in both cases. Tumor tracking is observed in the presence of planning modulation in all EGRT treatments. CONCLUSIONS As compared to conventional IMRT treatments, the proposed EGRT planning scheme allows an escalated target dose while keeping dose to the OARs within the same planning limits. With the capabilities of incorporating planning modulation and accurate tumor tracking, EGRT has the potential to greatly improve targeting in radiation therapy and enable a practical and effective implementation of 4D radiation therapy for planning and delivery.
Collapse
Affiliation(s)
- Qiyong Fan
- Nuclear and Radiological Engineering Program, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
[The issue of low doses in radiation therapy and impact on radiation-induced secondary malignancies]. Bull Cancer 2014; 100:1333-42. [PMID: 24257106 DOI: 10.1684/bdc.2013.1855] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several studies have well documented that the risk of secondary neoplasms is increasing among patients having received radiation therapy as part of their primary anticancer treatment. Most frequently, radiation-induced neoplasms occur in volume exposed to high doses. However, the impact of "low" doses (<5 Gy) in radiation-induced carcinogenesis should be clinically considered because modern techniques of intensity-modulated radiation therapy (IMRT) or stereotactic irradiation significantly increase tissue volumes receiving low doses. The risk inherent to these technologies remains uncertain and estimates closely depend on the chosen risk model. According to the (debated) linear no-threshold model, the risk of secondary neoplasms could be twice higher with IMRT, as compared to conformal radiation therapy. It seems that only proton therapy could decrease both high and low doses delivered to non-target volumes. Except for pediatric tumors, for which the unequivocal risk of second malignancies (much higher than in adults) should be taken into account, epidemiological data suggest that the risk of secondary cancer related to low doses could be very low, even negligible in some cases. However, clinical follow-up remains insufficient and a marginal increase in secondary tumors could counterbalance the benefit of a highly sophisticated irradiation technique. It therefore remains necessary to integrate the potential risk of new irradiation modalities in a risk-adapted strategy taking into account therapeutic objectives but also associated risk factors, such as age (essentially), chemotherapy, or life style.
Collapse
|
7
|
Elith C, Dempsey SE, Findlay N, Warren-Forward HM. An Introduction to the Intensity-modulated Radiation Therapy (IMRT) Techniques, Tomotherapy, and VMAT. J Med Imaging Radiat Sci 2011; 42:37-43. [DOI: 10.1016/j.jmir.2010.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/10/2010] [Indexed: 12/31/2022]
|
8
|
Palma DA, Verbakel WFAR, Otto K, Senan S. New developments in arc radiation therapy: a review. Cancer Treat Rev 2010; 36:393-9. [PMID: 20181430 DOI: 10.1016/j.ctrv.2010.01.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/14/2010] [Accepted: 01/24/2010] [Indexed: 12/01/2022]
Abstract
Arc therapies have gained widespread clinical interest in radiation oncology over the past decade. Arc therapies have several potential advantages over standard techniques such as intensity-modulated radiation therapy, with implications for patients, administrators, and oncologists. This review focuses on the rationale for arc therapy, descriptions of the modern arc techniques that are currently clinically available, and highlights some distinguishing features of arc therapies, such as dose distributions, treatment times, and imaging capabilities. Arc therapies are exciting examples of progress in radiotherapy through technological innovation, aimed at ultimately improving the therapeutic ratio for patients receiving radiation.
Collapse
Affiliation(s)
- David A Palma
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
9
|
Qi XS, Semenenko VA, Li XA. Improved critical structure sparing with biologically based IMRT optimization. Med Phys 2009; 36:1790-9. [DOI: 10.1118/1.3116775] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|