1
|
Mota AM, Mendes J, Matela N. Digital Breast Tomosynthesis: Towards Dose Reduction through Image Quality Improvement. J Imaging 2023; 9:119. [PMID: 37367467 DOI: 10.3390/jimaging9060119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Currently, breast cancer is the most commonly diagnosed type of cancer worldwide. Digital Breast Tomosynthesis (DBT) has been widely accepted as a stand-alone modality to replace Digital Mammography, particularly in denser breasts. However, the image quality improvement provided by DBT is accompanied by an increase in the radiation dose for the patient. Here, a method based on 2D Total Variation (2D TV) minimization to improve image quality without the need to increase the dose was proposed. Two phantoms were used to acquire data at different dose ranges (0.88-2.19 mGy for Gammex 156 and 0.65-1.71 mGy for our phantom). A 2D TV minimization filter was applied to the data, and the image quality was assessed through contrast-to-noise ratio (CNR) and the detectability index of lesions before and after filtering. The results showed a decrease in 2D TV values after filtering, with variations of up to 31%, increasing image quality. The increase in CNR values after filtering showed that it is possible to use lower doses (-26%, on average) without compromising on image quality. The detectability index had substantial increases (up to 14%), especially in smaller lesions. So, not only did the proposed approach allow for the enhancement of image quality without increasing the dose, but it also improved the chances of detecting small lesions that could be overlooked.
Collapse
Affiliation(s)
- Ana M Mota
- Faculdade de Ciências, Instituto de Biofísica e Engenharia Biomédica, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - João Mendes
- Faculdade de Ciências, Instituto de Biofísica e Engenharia Biomédica, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Faculdade de Ciências, LASIGE, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Nuno Matela
- Faculdade de Ciências, Instituto de Biofísica e Engenharia Biomédica, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
2
|
Boita J, Mackenzie A, van Engen RE, Broeders M, Sechopoulos I. Validation of a mammographic image quality modification algorithm using 3D-printed breast phantoms. J Med Imaging (Bellingham) 2021; 8:033502. [PMID: 34026921 PMCID: PMC8134780 DOI: 10.1117/1.jmi.8.3.033502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/28/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: To validate a previously proposed algorithm that modifies a mammogram to appear as if it was acquired with different technique factors using realistic phantom-based mammograms. Approach: Two digital mammography systems (an indirect- and a direct-detector-based system) were used to acquire realistic mammographic images of five 3D-printed breast phantoms with the technique factors selected by the automatic exposure control and at various other conditions (denoted by the original images). Additional images under other simulated conditions were also acquired: higher or lower tube voltages, different anode/filter combinations, or lower tube current-time products (target images). The signal and noise in the original images were modified to simulate the target images (simulated images). The accuracy of the image modification algorithm was validated by comparing the target and simulated images using the local mean, local standard deviation (SD), local variance, and power spectra (PS) of the image signals. The absolute relative percent error between the target and simulated images for each parameter was calculated at each sub-region of interest (local parameters) and frequency (PS), and then averaged. Results: The local mean signal, local SD, local variance, and PS of the target and simulated images were very similar, with a relative percent error of 5.5%, 3.8%, 7.8%, and 4.4% (indirect system), respectively, and of 3.7%, 3.8%, 7.7%, and 7.5% (direct system), respectively. Conclusions: The algorithm is appropriate for simulating different technique factors. Therefore, it can be used in various studies, for instance to evaluate the impact of technique factors in cancer detection using clinical images.
Collapse
Affiliation(s)
- Joana Boita
- Radboud University Medical Center, Department of Medical Imaging, Nijmegen, The Netherlands
- Dutch Expert Centre for Screening (LRCB), Nijmegen, The Netherlands
| | - Alistair Mackenzie
- Royal Surrey NHS Foundation Trust, National Coordinating Centre for the Physics of Mammography, Guildford, United Kingdom
| | | | - Mireille Broeders
- Dutch Expert Centre for Screening (LRCB), Nijmegen, The Netherlands
- Radboud University Medical Center, Department for Health Evidence, Nijmegen, The Netherlands
| | - Ioannis Sechopoulos
- Radboud University Medical Center, Department of Medical Imaging, Nijmegen, The Netherlands
- Dutch Expert Centre for Screening (LRCB), Nijmegen, The Netherlands
| |
Collapse
|
3
|
Söderman C, Johnsson ÅA, Vikgren J, Norrlund RR, Molnar D, Mirzai M, Svalkvist A, Månsson LG, Båth M. Detection of Pulmonary Nodule Growth with Chest Tomosynthesis: A Human Observer Study Using Simulated Nodules. Acad Radiol 2019; 26:508-518. [PMID: 29903641 DOI: 10.1016/j.acra.2018.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/08/2018] [Accepted: 05/13/2018] [Indexed: 12/20/2022]
Abstract
RATIONALE AND OBJECTIVES Chest tomosynthesis has been suggested as a suitable alternative to CT for follow-up of pulmonary nodules. The aim of the present study was to investigate the possibility of detecting pulmonary nodule growth using chest tomosynthesis. MATERIALS AND METHODS Simulated nodules with volumes of approximately 100 mm3 and 300 mm3 as well as additional versions with increasing volumes were created. The nodules were inserted into images from pairs of chest tomosynthesis examinations, simulating cases where the nodule had either remained stable in size or increased in size between the two imaging occasions. Nodule volume growths ranging from 11% to 252% were included. A simulated dose reduction was applied to a subset of the cases. Cases differing in terms of nodule size, dose level, and nodule position relative to the plane of image reconstruction were included. Observers rated their confidence that the nodules were stable in size or not. The rating data for the nodules that were stable in size was compared to the rating data for the nodules simulated to have increased in size using ROC analysis. RESULTS Area under the curve values ranging from 0.65 to 1 were found. The lowest area under the curve values were found when there was a mismatch in nodule position relative to the reconstructed image plane between the two examinations. Nodule size and dose level affected the results. CONCLUSION The study indicates that chest tomosynthesis can be used to detect pulmonary nodule growth. Nodule size, dose level, and mismatch in position relative to the image reconstruction plane in the baseline and follow-up examination may affect the precision.
Collapse
|
4
|
Kim D, Lee D, Lee H, Kim H, Chao Z, Lee M, Kim HJ. Comparison study of various beam modulation schemes on image quality in chest digital tomosynthesis (CDT) system. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Model evaluation of rapid 4-dimensional lung tomosynthesis. Adv Radiat Oncol 2018; 3:431-438. [PMID: 30202810 PMCID: PMC6128102 DOI: 10.1016/j.adro.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/29/2017] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
Abstract
Purpose This is an investigation of a lung motion digital tomosynthesis (DTS) model using combined stationary detector and stationary cold cathode x-ray sources at projection acquisition rates that exceed the present norms. The intent is to reduce anatomical uncertainties from artifacts inherent in thoracic 4-dimensional computed tomography (CT). Methods and materials Parameters necessary to perform rapid lung 4-dimensional DTS were studied using a conventional radiographic system with linear motion of the x-ray source and a simple hypothetical hardware performance model. Hypothetical rapid imaging parameters of sweep duration, projections per second, pulse duration, and tube current (mA) were derived on the basis of 0.5 mm and 1 mm motion captures per phase, 10 and 15 breaths per minute (bpm), 10 to 40 mm breathing amplitude, and 2 signal-to-noise ratio (SNR) levels. Anterior-posterior and lateral projection images of a normal size anthropomorphic thorax phantom with iodine contrast inserts were collected and reconstructed with an algebraic algorithm to study the effects of reduced x-ray output associated with field emission cold cathodes composed of carbon nanotubes or metal Spindt-type. Radiographic projections were collected at 3 SNR levels that were set at standard clinical DTS milliampere-seconds (mAs) and reduced corresponding to 50% and 25% standard DTS mAs to simulate a reduced x-ray output. Results The DTS SNR of the inserts was superior in all reconstructions at clinical mAs versus automatic exposure-control radiographs and superior in 3 of 4 at the 50% and 25% mAs levels. The most demanding performance parameters corresponding to 40 mm amplitude, 15 bpm, 0.5 mm motion capture limit, and 61 projections were sweep duration (10.4 msec), projection rate (5862 projections per second), pulse duration (0.161 msec), current 189 mA anterior-posterior, and 653 mA lateral. Conclusions Feasibility depends on the output performance of stationary cold cathode hardware being developed for DTS. Present image receptor technology can accommodate frame acquisition rates.
Collapse
|
6
|
Borges LR, Oliveira HCRD, Nunes PF, Bakic PR, Maidment ADA, Vieira MAC. Method for simulating dose reduction in digital mammography using the Anscombe transformation. Med Phys 2017; 43:2704-2714. [PMID: 27277017 PMCID: PMC4859831 DOI: 10.1118/1.4948502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. METHODS The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. RESULTS The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. CONCLUSIONS A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions.
Collapse
Affiliation(s)
- Lucas R Borges
- Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador São-Carlense Avenue, São Carlos 13566-590, Brazil
| | - Helder C R de Oliveira
- Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador São-Carlense Avenue, São Carlos 13566-590, Brazil
| | - Polyana F Nunes
- Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador São-Carlense Avenue, São Carlos 13566-590, Brazil
| | - Predrag R Bakic
- Department of Radiology, Hospital of the University of Pennsylvania, University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104
| | - Andrew D A Maidment
- Department of Radiology, Hospital of the University of Pennsylvania, University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104
| | - Marcelo A C Vieira
- Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador São-Carlense Avenue, São Carlos 13566-590, Brazil
| |
Collapse
|
7
|
Abstract
OBJECTIVE The purpose of this study was to quantitatively and qualitatively determine the impact of radiation dose reduction on the image noise and quality of tomosynthesis studies of the wrist. MATERIALS AND METHODS Imaging of six cadaver wrists was performed with tomosynthesis in anteroposterior position at a tube voltage of 60 kV and tube current of 80 mA and subsequently at 60 or 50 kV with different tube currents of 80, 40, or 32 mA. Dose-area products (DAP) were obtained from the electronically logged protocol. Image noise was measured with an ROI. Two independent and blinded readers evaluated all images. Interreader agreement was measured with a Cohen kappa. Readers assessed overall quality and delineation of soft tissue, cortical bone, and trabecular bone on a 4-point Likert scale. RESULTS The highest DAP (3.892 ± 0.432 Gy · cm2) was recorded for images obtained with 60 kV and 80 mA; the lowest (0.857 ± 0.178 Gy · cm2) was recorded for images obtained with 50 kV and 32 mA. Noise was highest when a combination of 50 kV and 32 mA (389 ± 26.6) was used and lowest when a combination of 60 kV and 80 mA (218 ± 12.3) was used. The amount of noise on images acquired using 60 kV and 80 mA was statistically significantly different from the amount measured on all other images (p < 0.0001). Interreader agreement was excellent (κ = 0.93). Delineation of anatomy and overall quality were scored best on images obtained with 60 kV and 80 mA and worst on images obtained with 50 kV and 32 mA. The difference in delineation and quality on images obtained using 50 kV and 40 mA was not statistically significantly different compared with images obtained using 60 kV and 80 mA. CONCLUSION Significant dose reduction for tomosynthesis of the wrist is possible while image quality and delineation of anatomic structures remain preserved.
Collapse
|
8
|
Söderman C, Johnsson ÅA, Vikgren J, Norrlund RR, Molnar D, Svalkvist A, Månsson LG, Båth M. EFFECT OF RADIATION DOSE LEVEL ON ACCURACY AND PRECISION OF MANUAL SIZE MEASUREMENTS IN CHEST TOMOSYNTHESIS EVALUATED USING SIMULATED PULMONARY NODULES. RADIATION PROTECTION DOSIMETRY 2016; 169:188-198. [PMID: 26994093 PMCID: PMC4911967 DOI: 10.1093/rpd/ncw041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of the present study was to investigate the dependency of the accuracy and precision of nodule diameter measurements on the radiation dose level in chest tomosynthesis. Artificial ellipsoid-shaped nodules with known dimensions were inserted in clinical chest tomosynthesis images. Noise was added to the images in order to simulate radiation dose levels corresponding to effective doses for a standard-sized patient of 0.06 and 0.04 mSv. These levels were compared with the original dose level, corresponding to an effective dose of 0.12 mSv for a standard-sized patient. Four thoracic radiologists measured the longest diameter of the nodules. The study was restricted to nodules located in high-dose areas of the tomosynthesis projection radiographs. A significant decrease of the measurement accuracy and intraobserver variability was seen for the lowest dose level for a subset of the observers. No significant effect of dose level on the interobserver variability was found. The number of non-measurable small nodules (≤5 mm) was higher for the two lowest dose levels compared with the original dose level. In conclusion, for pulmonary nodules at positions in the lung corresponding to locations in high-dose areas of the projection radiographs, using a radiation dose level resulting in an effective dose of 0.06 mSv to a standard-sized patient may be possible in chest tomosynthesis without affecting the accuracy and precision of nodule diameter measurements to any large extent. However, an increasing number of non-measurable small nodules (≤5 mm) with decreasing radiation dose may raise some concerns regarding an applied general dose reduction for chest tomosynthesis examinations in the clinical praxis.
Collapse
Affiliation(s)
- Christina Söderman
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Åse Allansdotter Johnsson
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Jenny Vikgren
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Rauni Rossi Norrlund
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - David Molnar
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Angelica Svalkvist
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Lars Gunnar Månsson
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Magnus Båth
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
9
|
Petersson H, Warren LM, Tingberg A, Dustler M, Timberg P. VALIDATION OF A SIMULATION PROCEDURE FOR GENERATING BREAST TOMOSYNTHESIS PROJECTION IMAGES. RADIATION PROTECTION DOSIMETRY 2016; 169:386-91. [PMID: 26842713 DOI: 10.1093/rpd/ncv555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In order to achieve optimal diagnostic performance in breast tomosynthesis (BT) imaging, the parameters of the imaging chain should be evaluated. For the purpose of such evaluations, a simulation procedure based on the Monte Carlo code system Penelope and the geometry of a Siemens BT system has been developed to generate BT projection images. In this work, the simulation procedure is validated by comparing contrast and sharpness in simulated images with contrast and sharpness in real images acquired with the BT system. The results of the study showed a good agreement of sharpness in real and simulated reconstructed image planes, but the contrast was shown to be higher in the simulated compared with the real projection images. The developed simulation procedure could be used to generate BT images, but it is of interest to further investigate how the procedure could be modified to generate more realistic image noise and contrast.
Collapse
Affiliation(s)
- Hannie Petersson
- Medical Radiation Physics Malmö, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Lucy M Warren
- National Coordinating Centre for the Physics of Mammography, Medical Physics, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
| | - Anders Tingberg
- Medical Radiation Physics Malmö, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Magnus Dustler
- Medical Radiation Physics Malmö, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Pontus Timberg
- Medical Radiation Physics Malmö, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| |
Collapse
|
10
|
Ceder E, Danielson B, Kovàč P, Fogel H, Svalkvist A, Vikgren J, Båth M. THORACIC SPINE IMAGING: A COMPARISON BETWEEN RADIOGRAPHY AND TOMOSYNTHESIS USING VISUAL GRADING CHARACTERISTICS. RADIATION PROTECTION DOSIMETRY 2016; 169:204-210. [PMID: 26868012 DOI: 10.1093/rpd/ncv559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of the present study was to evaluate digital tomosynthesis (DTS) in thoracic spine imaging, comparing the reproduction of anatomical structures with that achieved using digital radiography (DR). In a prospective visual grading study, 23 patients referred in 2014 for elective radiographic examination of the thoracic spine were examined using lateral DR and DTS. The DR image and the DTS section images were read in random order by four radiologists, evaluating the ability of the modalities to present a clear reproduction of nine specific relevant structures of the thoracic vertebrae 3, 6 and 9 (T3, T6 and T9). The data were analysed using visual grading characteristics (VGC) analysis. The VGC analysis revealed a statistically significant difference in favour of DTS for all evaluated structures, except for the anterior vertebral edges and lower end plate surfaces of T6 and T9 and the cancellous bone of T9. The difference was most striking in T3 and for posterior structures. For no structure in any vertebra was the reproduction rated significantly better for DR. In conclusion, DTS of the thoracic spine appears to be a promising alternative to DR, especially in areas where the problem of overlaying anatomy is accentuated, such as posterior and upper thoracic structures.
Collapse
Affiliation(s)
- Erik Ceder
- Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Barbro Danielson
- Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Peter Kovàč
- Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Hanna Fogel
- Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Angelica Svalkvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Jenny Vikgren
- Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Magnus Båth
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
11
|
Båth M, Söderman C, Svalkvist A. RETROSPECTIVE ESTIMATION OF PATIENT DOSE-AREA PRODUCT IN THORACIC SPINE TOMOSYNTHESIS PERFORMED USING VOLUMERAD. RADIATION PROTECTION DOSIMETRY 2016; 169:281-285. [PMID: 26590395 DOI: 10.1093/rpd/ncv475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of this study was to evaluate the use of a recently developed method of retrospectively estimating the patient dose-area product (DAP) of a chest tomosynthesis examination, performed using VolumeRAD, in thoracic spine tomosynthesis and to determine the necessary field-size correction factor. Digital imaging and communications in medicine (DICOM) data for the projection radiographs acquired during a thoracic spine tomosynthesis examination were retrieved directly from the modality for 17 patients. Using the previously developed method, an estimated DAP for the tomosynthesis examination was determined from DICOM data in the scout image. By comparing the estimated DAP with the actual DAP registered for the projection radiographs, a field-size correction factor was determined. The field-size correction factor for thoracic spine tomosynthesis was determined to 0.92. Applying this factor to the DAP estimated retrospectively, the maximum difference between the estimated DAP and the actual DAP was <3 %. In conclusion, the previously developed method of retrospectively estimating the DAP in chest tomosynthesis can be applied to thoracic spine tomosynthesis.
Collapse
Affiliation(s)
- Magnus Båth
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Christina Söderman
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Angelica Svalkvist
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
12
|
Jadidi M, Sundin A, Aspelin P, Båth M, Nyrén S. Evaluation of a new system for chest tomosynthesis: aspects of image quality of different protocols determined using an anthropomorphic phantom. Br J Radiol 2015; 88:20150057. [PMID: 26118300 DOI: 10.1259/bjr.20150057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To compare the image quality obtained with the different protocols in a new chest digital tomosynthesis (DTS) system. METHODS A chest phantom was imaged with chest X-ray equipment with DTS. 10 protocols were used, and for each protocol, nine acquisitions were performed. Four observers visually rated the quality of the reconstructed section images according to pre-defined quality criteria in four different classes. The data were analysed with visual grading characteristics (VGC) analysis, using the vendor-recommended protocol [12-s acquisition time, source-to-image distance (SID) 180 cm] as reference, and the area under the VGC curve (AUCVGC) was determined for each protocol and class of criteria. RESULTS Protocols with a smaller swing angle resulted in a lower image quality for the classes of criteria "disturbance" and "homogeneity in nodule" but a higher image quality for the class "structure". The class "demarcation" showed little dependency on the swing angle. All protocols but one (6.3 s, SID 130 cm) obtained an AUCVGC significantly <0.5 (indicating lower quality than reference) for at least one class of criteria. CONCLUSION The study indicates that the DTS protocol with 6.3 s yields image quality similar to that obtained with the vendor-recommended protocol (12 s) but with the clinically important advantage for patients with respiratory impairment of a shorter acquisition time. ADVANCES IN KNOWLEDGE The study demonstrates that the image quality may be strongly affected by the choice of protocol and that the vendor-recommended protocol may not be optimal.
Collapse
Affiliation(s)
- M Jadidi
- 1 Departments of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - A Sundin
- 2 Radiology Department, Uppsala University Hospital, Uppsala, Sweden.,3 Radiology, Oncology and Radiation Science, Uppsala University, Uppsala, Sweden
| | - P Aspelin
- 4 Departments of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden.,5 Radiology Department, Karolinska University Hospital, Stockholm, Sweden
| | - M Båth
- 6 Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,7 Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - S Nyrén
- 8 Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,9 Radiology Department, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
13
|
Söderman C, Asplund S, Allansdotter Johnsson Å, Vikgren J, Rossi Norrlund R, Molnar D, Svalkvist A, Gunnar Månsson L, Båth M. Image quality dependency on system configuration and tube voltage in chest tomosynthesis-A visual grading study using an anthropomorphic chest phantom. Med Phys 2015; 42:1200-12. [DOI: 10.1118/1.4907963] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
Mackenzie A, Dance DR, Diaz O, Young KC. Image simulation and a model of noise power spectra across a range of mammographic beam qualities. Med Phys 2014; 41:121901. [PMID: 25471961 DOI: 10.1118/1.4900819] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/13/2014] [Accepted: 10/13/2014] [Indexed: 02/11/2024] Open
Abstract
PURPOSE The aim of this work is to create a model to predict the noise power spectra (NPS) for a range of mammographic radiographic factors. The noise model was necessary to degrade images acquired on one system to match the image quality of different systems for a range of beam qualities. METHODS Five detectors and x-ray systems [Hologic Selenia (ASEh), Carestream computed radiography CR900 (CRc), GE Essential (CSI), Carestream NIP (NIPc), and Siemens Inspiration (ASEs)] were characterized for this study. The signal transfer property was measured as the pixel value against absorbed energy per unit area (E) at a reference beam quality of 28 kV, Mo/Mo or 29 kV, W/Rh with 45 mm polymethyl methacrylate (PMMA) at the tube head. The contributions of the three noise sources (electronic, quantum, and structure) to the NPS were calculated by fitting a quadratic at each spatial frequency of the NPS against E. A quantum noise correction factor which was dependent on beam quality was quantified using a set of images acquired over a range of radiographic factors with different thicknesses of PMMA. The noise model was tested for images acquired at 26 kV, Mo/Mo with 20 mm PMMA and 34 kV, Mo/Rh with 70 mm PMMA for three detectors (ASEh, CRc, and CSI) over a range of exposures. The NPS were modeled with and without the noise correction factor and compared with the measured NPS. A previous method for adapting an image to appear as if acquired on a different system was modified to allow the reference beam quality to be different from the beam quality of the image. The method was validated by adapting the ASEh flat field images with two thicknesses of PMMA (20 and 70 mm) to appear with the imaging characteristics of the CSI and CRc systems. RESULTS The quantum noise correction factor rises with higher beam qualities, except for CR systems at high spatial frequencies, where a flat response was found against mean photon energy. This is due to the dominance of secondary quantum noise in CR. The use of the quantum noise correction factor reduced the difference from the model to the real NPS to generally within 4%. The use of the quantum noise correction improved the conversion of ASEh image to CRc image but had no difference for the conversion to CSI images. CONCLUSIONS A practical method for estimating the NPS at any dose and over a range of beam qualities for mammography has been demonstrated. The noise model was incorporated into a methodology for converting an image to appear as if acquired on a different detector. The method can now be extended to work for a wide range of beam qualities and can be applied to the conversion of mammograms.
Collapse
Affiliation(s)
- Alistair Mackenzie
- National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - David R Dance
- National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Oliver Diaz
- Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom and Computer Vision and Robotics Research Institute, University of Girona, Girona 17071, Spain
| | - Kenneth C Young
- National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| |
Collapse
|
15
|
Johnsson ÅA, Vikgren J, Båth M. A retrospective study of chest tomosynthesis as a tool for optimizing the use of computed tomography resources and reducing patient radiation exposure. Acad Radiol 2014; 21:1427-33. [PMID: 25097012 DOI: 10.1016/j.acra.2014.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 11/18/2022]
Abstract
RATIONALE AND OBJECTIVES To investigate potential benefits and drawbacks of the clinical use of chest tomosynthesis (CTS), to what extent CTS obviates the need for chest computed tomography (CT), and what reduction in radiation dose thereby can be achieved. MATERIALS AND METHODS The Regional Ethical Review Board approved the follow-up study of patients examined with CTS as part of clinical routine. For each case, two radiologists in consensus determined whether CT would have been performed, had CTS not been an option, and whether CTS was an adequate examination. Thereafter, it was determined whether the use of CTS instead of CT in retrospect was beneficial, neutral, or detrimental for the radiological work-up. The radiation dose to the patient population was determined both for the actual clinical situation and for the alternative scenario that would result, had CTS not been available. RESULTS During 1 month 3.5 years before the survey, 149 patients (74 women, age 18-91 years) had undergone CTS for clinical purposes. It was judged that CT would have been performed in 100 cases, had CTS not been available, and that CTS obviated the need for CT in 80 cases. CTS was judged as beneficial, neutral, and detrimental for the radiological work-up in 85, 13, and two cases, respectively. For the entire study population, the use of CTS decreased the average effective dose from 2.7 to 0.7 mSv. CONCLUSIONS The present study indicates that CTS may have benefits for the radiological work-up as it has the potential to both optimize the use of CT resources and reduce the effective dose to the patient population. A drawback is that CTS examinations may fail to reveal pathology visible with CT and in clinically doubtful cases further investigations including other imaging procedures should be considered.
Collapse
Affiliation(s)
- Åse A Johnsson
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Jenny Vikgren
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Magnus Båth
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Muenzel D, Koehler T, Brown K, Žabić S, Fingerle AA, Waldt S, Bendik E, Zahel T, Schneider A, Dobritz M, Rummeny EJ, Noël PB. Validation of a low dose simulation technique for computed tomography images. PLoS One 2014; 9:e107843. [PMID: 25247422 PMCID: PMC4172631 DOI: 10.1371/journal.pone.0107843] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/21/2014] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Evaluation of a new software tool for generation of simulated low-dose computed tomography (CT) images from an original higher dose scan. MATERIALS AND METHODS Original CT scan data (100 mAs, 80 mAs, 60 mAs, 40 mAs, 20 mAs, 10 mAs; 100 kV) of a swine were acquired (approved by the regional governmental commission for animal protection). Simulations of CT acquisition with a lower dose (simulated 10-80 mAs) were calculated using a low-dose simulation algorithm. The simulations were compared to the originals of the same dose level with regard to density values and image noise. Four radiologists assessed the realistic visual appearance of the simulated images. RESULTS Image characteristics of simulated low dose scans were similar to the originals. Mean overall discrepancy of image noise and CT values was -1.2% (range -9% to 3.2%) and -0.2% (range -8.2% to 3.2%), respectively, p>0.05. Confidence intervals of discrepancies ranged between 0.9-10.2 HU (noise) and 1.9-13.4 HU (CT values), without significant differences (p>0.05). Subjective observer evaluation of image appearance showed no visually detectable difference. CONCLUSION Simulated low dose images showed excellent agreement with the originals concerning image noise, CT density values, and subjective assessment of the visual appearance of the simulated images. An authentic low-dose simulation opens up opportunity with regard to staff education, protocol optimization and introduction of new techniques.
Collapse
Affiliation(s)
- Daniela Muenzel
- Department of Radiology, Technische Universitaet Muenchen, Munich, Germany
- * E-mail:
| | - Thomas Koehler
- Philips Technologie GmbH, Innovative Technologies, Hamburg, Germany
| | - Kevin Brown
- Philips Healthcare, Cleveland, Ohio, United States of America
| | - Stanislav Žabić
- Philips Healthcare, Cleveland, Ohio, United States of America
| | | | - Simone Waldt
- Department of Radiology, Technische Universitaet Muenchen, Munich, Germany
| | - Edgar Bendik
- Department of Radiology, Technische Universitaet Muenchen, Munich, Germany
| | - Tina Zahel
- Department of Radiology, Technische Universitaet Muenchen, Munich, Germany
| | - Armin Schneider
- MITI - Minimal-invasive Interdisciplinary therapeutic intervention research group, Technische Universitaet Muenchen, Munich, Germany
| | - Martin Dobritz
- Department of Radiology, Technische Universitaet Muenchen, Munich, Germany
| | - Ernst J. Rummeny
- Department of Radiology, Technische Universitaet Muenchen, Munich, Germany
| | - Peter B. Noël
- Department of Radiology, Technische Universitaet Muenchen, Munich, Germany
| |
Collapse
|
17
|
Båth M, Söderman C, Svalkvist A. A simple method to retrospectively estimate patient dose-area product for chest tomosynthesis examinations performed using VolumeRAD. Med Phys 2014; 41:101905. [DOI: 10.1118/1.4895002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
18
|
Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis. Eur Radiol 2014; 24:1529-36. [DOI: 10.1007/s00330-014-3182-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 12/21/2022]
|
19
|
Gomi T, Nakajima M, Umeda T. Wavelet denoising for quantum noise removal in chest digital tomosynthesis. Int J Comput Assist Radiol Surg 2014; 10:75-86. [PMID: 24748209 DOI: 10.1007/s11548-014-1003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Quantum noise impairs image quality in chest digital tomosynthesis (DT). A wavelet denoising processing algorithm for selectively removing quantum noise was developed and tested. METHODS A wavelet denoising technique was implemented on a DT system and experimentally evaluated using chest phantom measurements including spatial resolution. Comparison was made with an existing post-reconstruction wavelet denoising processing algorithm reported by Badea et al. (Comput Med Imaging Graph 22:309-315, 1998). The potential DT quantum noise decrease was evaluated using different exposures with our technique (pre-reconstruction and post-reconstruction wavelet denoising processing via the balance sparsity-norm method) and the existing wavelet denoising processing algorithm. Wavelet denoising processing algorithms such as the contrast-to-noise ratio (CNR), root mean square error (RMSE) were compared with and without wavelet denoising processing. Modulation transfer functions (MTF) were evaluated for the in-focus plane. We performed a statistical analysis (multi-way analysis of variance) using the CNR and RMSE values. RESULTS Our wavelet denoising processing algorithm significantly decreased the quantum noise and improved the contrast resolution in the reconstructed images (CNR and RMSE: pre-balance sparsity-norm wavelet denoising processing versus existing wavelet denoising processing, P<0.05; post-balance sparsity-norm wavelet denoising processing versus existing wavelet denoising processing, P<0.05; CNR: with versus without wavelet denoising processing, P<0.05). The results showed that although MTF did not vary (thus preserving spatial resolution), the existing wavelet denoising processing algorithm caused MTF deterioration. CONCLUSIONS A balance sparsity-norm wavelet denoising processing algorithm for removing quantum noise in DT was demonstrated to be effective for certain classes of structures with high-frequency component features. This denoising approach may be useful for a variety of clinical applications for chest digital tomosynthesis when quantum noise is present.
Collapse
Affiliation(s)
- Tsutomu Gomi
- School of Allied Health Sciences, Kitasato University, Kitasato, 1-15-1 Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan,
| | | | | |
Collapse
|
20
|
Hwang HS, Chung MJ, Lee KS. Digital tomosynthesis of the chest: comparison of patient exposure dose and image quality between standard default setting and low dose setting. Korean J Radiol 2013; 14:525-31. [PMID: 23690724 PMCID: PMC3655311 DOI: 10.3348/kjr.2013.14.3.525] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/08/2012] [Indexed: 12/21/2022] Open
Abstract
Objective To determine the optimum low dose (LD) digital tomosynthesis (DT) setting, and to compared the image quality of the LD DT with that of the standard default (SD) DT. Materials and Methods Nine DT settings, by changing tube voltage, copper filter, and dose ratio, were performed for determining the LD setting. Among combinations of DT setting, a condition providing the lowest radiation dose was determined. Eighty artificial nodules less than 1 cm in diameter (subcentimeter nodules: 40, micronodules less than 4 mm: 40) were attached to a Styrofoam and a diaphragm of the phantom. Among these, 38 nodules were located at the periphery of the lung (thin area) and 42 nodules were located at the paravertebral or sub-diaphragmatic area (thick area). Four observers counted the number of nodules detected in the thick and thin areas. The detection sensitivity in SD and LD settings were calculated separately. Data were analyzed statistically. Results The lowest LD setting was a combination of 100 kVp, 0.3 mm additional copper filter, and a 1 : 5 dose ratio. The effective dose for the LD and SD settings were 62 µSv and 140 µSv, separately. A 56.7% dose reduction was achieved in the LD setting compared with the SD setting. Detection sensitivities were not different between the SD and the LD settings except between observers 1 and 2 for the detection of micronodules in the thick area. Conclusion LD DT can be effective in nodule detection bigger than 4 mm without a significant decrease in image quality compared with SD DT.
Collapse
Affiliation(s)
- Hye Sun Hwang
- Department of Radiology, Hallym University Sacred Heart Hospital, Anyang 431-070, Korea
| | | | | |
Collapse
|
21
|
Mackenzie A, Dance DR, Workman A, Yip M, Wells K, Young KC. Conversion of mammographic images to appear with the noise and sharpness characteristics of a different detector and x-ray system. Med Phys 2012; 39:2721-34. [DOI: 10.1118/1.4704525] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
22
|
Svalkvist A, Båth M. The benefit of accounting for DQE variations in simulated dose reduction of digital radiographic systems. RADIATION PROTECTION DOSIMETRY 2010; 139:57-61. [PMID: 20176729 DOI: 10.1093/rpd/ncq058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Adding noise to clinical radiographs to simulate dose reduction can be used to investigate the relationship between dose level and clinical image quality without exposing patients to additional radiation. The purpose of the present paper was to examine the benefits of using a method that accounts for detective quantum efficiency (DQE) variations that may occur in different dose ranges in the simulated dose reduction process. A method initially intended for simulated dose reduction in tomosynthesis was applied to extremely low-dose posterioanterior radiographs of an anthropomorphic chest phantom, selected from a group of projection images included in a tomosynthesis examination and compared with a previous method that do not account for DQE variations. A comparison of images simulated to be collected at a lower dose level (73 % of the original dose level) and images actually collected at this lower dose level revealed that the error in the integrated normalised noise power spectrum was smaller than 4 % for the method that accounts for DQE variations in the simulated dose reduction, whereas the error was larger than 20 % for the previous method. This indicates that an increased validity in dose reduction simulation of digital radiographic systems is obtained with a method accounting for DQE variations.
Collapse
Affiliation(s)
- Angelica Svalkvist
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden.
| | | |
Collapse
|
23
|
Båth M, Svalkvist A, von Wrangel A, Rismyhr-Olsson H, Cederblad A. Effective dose to patients from chest examinations with tomosynthesis. RADIATION PROTECTION DOSIMETRY 2010; 139:153-158. [PMID: 20233755 DOI: 10.1093/rpd/ncq092] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chest tomosynthesis, which refers to the principle of collecting low-dose projections of the chest at different angles and using these projections to reconstruct section images of the chest, is an imaging technique recently introduced to health care. The main purpose of the present work was to determine the average effective dose to patients from clinical use of chest tomosynthesis. Exposure data for two chest radiography laboratories with tomosynthesis option (Definium 8000 with VolumeRAD option, GE Healthcare, Chalfont St. Giles, UK) were registered for 20 patients with a weight between 60 and 80 kg (average weight of 70.2 kg). The recorded data were used in the Monte Carlo program PCXMC 2.0 (STUK-Radiation and Nuclear Safety Authority, Helsinki, Finland) to determine the average effective dose for each projection. The effective dose for the chest tomosynthesis examination, including a scout view and the tomosynthesis acquisition, was finally obtained by adding the effective doses from all projections. Using the weighting factors given in ICRP 103, the average effective dose for the examination was found to be 0.13 mSv, whereas the average effective dose for the conventional two-view chest radiography examination was 0.05 mSv. A conversion factor of 0.26 mSv Gy(-1) cm(-2) was found suitable for determining the effective dose from a VolumeRAD chest tomosynthesis examination from the total registered kerma-area product. In conclusion, the effective dose to a standard-sized patient (170 cm/70 kg) from a VolumeRAD chest tomosynthesis examination is ~2 % of an average chest CT and only two to three times the effective dose from the conventional two-view chest radiography examination.
Collapse
Affiliation(s)
- Magnus Båth
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Svalkvist A, Håkansson M, Ullman G, Båth M. Simulation of lung nodules in chest tomosynthesis. RADIATION PROTECTION DOSIMETRY 2010; 139:130-139. [PMID: 20093269 DOI: 10.1093/rpd/ncp308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aim of the present work was to develop an adequate method for simulating lung nodules in clinical chest tomosynthesis images. Based on the visual appearance of real nodules, artificial, three-dimensional nodules with irregular shape and surface structure were created using an approach of combining spheres of different sizes and central points. The nodules were virtually positioned at the desired locations inside the patient and by using the known geometry of the tomosynthesis acquisition, the radiation emitted from the focal spot, passing through the nodule and reaching the detector could be simulated. The created nodules were thereby projected into raw-data tomosynthesis projection images before reconstruction of the tomosynthesis section images. The focal spot size, signal spread in the detector, scattered radiation, patient motion and existing anatomy at the location of the nodule were taken into account in the simulations. It was found that the blurring caused by the modulation transfer function and the patient motion overshadows the effects of a finite focal spot and aliasing and also obscures the surface structure of the nodules, which provides an opportunity to simplify the simulations and decrease the simulation times. Also, the limited in-depth resolution of the reconstructed tomosynthesis section images reduces the necessity to take details of the anatomical structures at the location of the inserted nodule into account.
Collapse
Affiliation(s)
- Angelica Svalkvist
- Department of Radiation Physics, University of Gothenburg, SE-413 45 Gothenburg, Sweden.
| | | | | | | |
Collapse
|