1
|
Zhang Y, Yuan Q, Muzzammil HM, Gao G, Xu Y. Image-guided prostate biopsy robots: A review. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:15135-15166. [PMID: 37679175 DOI: 10.3934/mbe.2023678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
At present, the incidence of prostate cancer (PCa) in men is increasing year by year. So, the early diagnosis of PCa is of great significance. Transrectal ultrasonography (TRUS)-guided biopsy is a common method for diagnosing PCa. The biopsy process is performed manually by urologists but the diagnostic rate is only 20%-30% and its reliability and accuracy can no longer meet clinical needs. The image-guided prostate biopsy robot has the advantages of a high degree of automation, does not rely on the skills and experience of operators, reduces the work intensity and operation time of urologists and so on. Capable of delivering biopsy needles to pre-defined biopsy locations with minimal needle placement errors, it makes up for the shortcomings of traditional free-hand biopsy and improves the reliability and accuracy of biopsy. The integration of medical imaging technology and the robotic system is an important means for accurate tumor location, biopsy puncture path planning and visualization. This paper mainly reviews image-guided prostate biopsy robots. According to the existing literature, guidance modalities are divided into magnetic resonance imaging (MRI), ultrasound (US) and fusion image. First, the robot structure research by different guided methods is the main line and the actuators and material research of these guided modalities is the auxiliary line to introduce and compare. Second, the robot image-guided localization technology is discussed. Finally, the image-guided prostate biopsy robot is summarized and suggestions for future development are provided.
Collapse
Affiliation(s)
- Yongde Zhang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
- Foshan Baikang Robot Technology Co., Ltd, Nanhai District, Foshan City, Guangdong Province 528225, China
| | - Qihang Yuan
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| | - Hafiz Muhammad Muzzammil
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| | - Guoqiang Gao
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| | - Yong Xu
- Department of Urology, the Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, China
| |
Collapse
|
2
|
Knull E, Park CKS, Bax J, Tessier D, Fenster A. Toward mechatronic MRI-guided focal laser ablation of the prostate: Robust registration for improved needle delivery. Med Phys 2023; 50:1259-1273. [PMID: 36583505 DOI: 10.1002/mp.16190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Multiparametric MRI (mpMRI) is an effective tool for detecting and staging prostate cancer (PCa), guiding interventional therapy, and monitoring PCa treatment outcomes. MRI-guided focal laser ablation (FLA) therapy is an alternative, minimally invasive treatment method to conventional therapies, which has been demonstrated to control low-grade, localized PCa while preserving patient quality of life. The therapeutic success of FLA depends on the accurate placement of needles for adequate delivery of ablative energy to the target lesion. We previously developed an MR-compatible mechatronic system for prostate FLA needle guidance and validated its performance in open-air and clinical 3T in-bore experiments using virtual targets. PURPOSE To develop a robust MRI-to-mechatronic system registration method and evaluate its in-bore MR-guided needle delivery accuracy in tissue-mimicking prostate phantoms. METHODS The improved registration multifiducial assembly houses thirty-six aqueous gadolinium-filled spheres distributed over a 7.3 × 7.3 × 5.2 cm volume. MRI-guided needle guidance accuracy was quantified in agar-based tissue-mimicking prostate phantoms on trajectories (N = 44) to virtual targets covering the mechatronic system's range of motion. 3T gradient-echo recalled (GRE) MRI images were acquired after needle insertions to each target, and the air-filled needle tracks were segmented. Needle guidance error was measured as the shortest Euclidean distance between the target point and the segmented needle trajectory, and angular error was measured as the angle between the targeted trajectory and the segmented needle trajectory. These measurements were made using both the previously designed four-sphere registration fiducial assembly on trajectories (N = 7) and compared with the improved multifiducial assembly using a Mann-Whitney U test. RESULTS The median needle guidance error of the system using the improved registration fiducial assembly at a depth of 10 cm was 1.02 mm with an interquartile range (IQR) of 0.42-2.94 mm. The upper limit of the one-sided 95% prediction interval of needle guidance error was 4.13 mm. The median (IQR) angular error was 0.0097 rad (0.0057-0.015 rad) with a one-sided 95% prediction interval upper limit of 0.022 rad. The median (IQR) positioning error using the previous four-sphere registration fiducial assembly was 1.87 mm (1.77-2.14 mm). This was found to be significantly different (p = 0.0012) from the median (IQR) positioning error of 0.28 mm (0.14-0.95 mm) using the new registration fiducial assembly on the same trajectories. No significant difference was detected between the medians of the angular errors (p = 0.26). CONCLUSION This is the first study presenting an improved registration method and validation in tissue-mimicking phantoms of our remotely actuated MR-compatible mechatronic system for delivery of prostate FLA needles. Accounting for the effects of needle deflection, the system was demonstrated to be capable of needle delivery with an error of 4.13 mm or less in 95% of cases under ideal conditions, which is a statistically significant improvement over the previous method. The system will next be validated in a clinical setting.
Collapse
Affiliation(s)
- Eric Knull
- Faculty of Engineering, School of Biomedical Engineering, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Claire Keun Sun Park
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jeffrey Bax
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - David Tessier
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Aaron Fenster
- Faculty of Engineering, School of Biomedical Engineering, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Robot-Assisted Magnetic Resonance Imaging-Targeted versus Systematic Prostate Biopsy; Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:cancers15041181. [PMID: 36831524 PMCID: PMC9954527 DOI: 10.3390/cancers15041181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
INTRODUCTION Robot-assisted devices have been recently developed for use in prostate biopsy. However, it is possible advantages over standard biopsy remain unclear. We aimed to assess the diagnostic performance and safety of robot-assisted targeted (RA-TB) and systematic prostate biopsies (RA-SB). METHODS A systematic literature search was performed in MEDLINE and Scopus databases. The detailed search strategy is available at Prospero (CRD42021269290). The primary outcome was the clinically significant prostate cancer (PCa) detection rate. The secondary outcomes included the overall detection rate of PCa, cancer detection rate per core, and complications. RESULTS The clinically significant cancer detection rate, overall cancer detection rate, and "per patient" did not significantly differ between RA-TB and RA-SB [OR = 1.02 (95% CI 0.83; 1.26), p = 0.05, I2 = 62% and OR = 0.95 (95% CI 0.78; 1.17), p = 0.17, I2 = 40%, respectively]. There were no differences in the clinically insignificant cancer detection rate "per patient" between RA-TB and RA-SB [OR = 0.81 (95% CI 0.54; 1.21), p = 0.31, I2 = 0%]. RA-TB had a significantly higher cancer detection rate "per core" [OR = 3.01 (95% CI 2.77; 3.27), p < 0.0001, I2 = 96%]. CONCLUSION RA-TB and RA-SB are both technically feasible and have comparable clinical significance and overall PCa detection rates.
Collapse
|
4
|
MR Imaging in Real Time Guiding of Therapies in Prostate Cancer. Life (Basel) 2022; 12:life12020302. [PMID: 35207589 PMCID: PMC8878909 DOI: 10.3390/life12020302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 11/22/2022] Open
Abstract
Magnetic resonance imaging (MRI)-guided therapy for prostate cancer (PCa) aims to reduce the treatment-associated comorbidity of existing radical treatment, including radical prostatectomy and radiotherapy. Although active surveillance has been used as a conservative method to reduce overtreatment, there is a growing demand for less morbidity and personalized (focal) treatment. The development of multiparametric MRI was of real importance in improving the detection, localization and staging of PCa. Moreover, MRI has been useful for lesion targeting within the prostate, as it is used in the guidance of prostate biopsies, by means of cognitive registration, MRI-ultrasound fusion guidance or direct in-bore MRI-guidance. With regard to PCa therapies, MRI is used for precise probe placement into the lesion and to accurately monitor the treatment in real-time. Moreover, advances in MR-compatible thermal ablation allow for noninvasive real-time temperature mapping during treatment. In this review, we present an overview of the current status of MRI-guided therapies in PCa, focusing on cryoablation, focal laser ablation, high intensity focused ultrasound and transurethral ultrasound ablation. We explain the important role of MRI in the evaluation of the completeness of the ablation and during follow-up. Finally, we will discuss the challenges and future development inherent to these new technologies.
Collapse
|
5
|
Bauer DF, Adlung A, Brumer I, Golla AK, Russ T, Oelschlegel E, Tollens F, Clausen S, Aumüller P, Schad LR, Nörenberg D, Zöllner FG. An anthropomorphic pelvis phantom for MR-guided prostate interventions. Magn Reson Med 2021; 87:1605-1612. [PMID: 34652819 DOI: 10.1002/mrm.29043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE To design and manufacture a pelvis phantom for magnetic resonance (MR)-guided prostate interventions, such as MRGB (MR-guided biopsy) or brachytherapy seed placement. METHODS The phantom was designed to mimic the human pelvis incorporating bones, bladder, prostate with four lesions, urethra, arteries, veins, and six lymph nodes embedded in ballistic gelatin. A hollow rectum enables transrectal access to the prostate. To demonstrate the feasibility of the phantom for minimal invasive MRI-guided interventions, a targeted inbore MRGB was performed. The needle probe was rectally inserted and guided using an MRI-compatible remote controlled manipulator (RCM). RESULTS The presented pelvis phantom has realistic imaging properties for MR imaging (MRI), computed tomography (CT) and ultrasound (US). In the targeted inbore MRGB, a prostate lesion was successfully hit with an accuracy of 3.5 mm. The experiment demonstrates that the limited size of the rectum represents a realistic impairment for needle placements. CONCLUSION The phantom provides a valuable platform for evaluating the performance of MRGB systems. Interventionalists can use the phantom to learn how to deal with challenging situations, without risking harm to patients.
Collapse
Affiliation(s)
- Dominik F Bauer
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Anne Adlung
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Irène Brumer
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Alena-Kathrin Golla
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Tom Russ
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Eva Oelschlegel
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Fabian Tollens
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Sven Clausen
- Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp Aumüller
- Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Dominik Nörenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Knull E, Bax JS, Park CKS, Tessier D, Fenster A. Design and validation of an MRI-compatible mechatronic system for needle delivery to localized prostate cancer. Med Phys 2021; 48:5283-5299. [PMID: 34131933 DOI: 10.1002/mp.15050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Prostate cancer is the most common non-cutaneous cancer among men in the United States and is the second leading cause of cancer death in American men. (Siegel et al. [2019] CA: A Cancer J Clin.69(1):7-34.) Focal laser ablation (FLA) has the potential to control small tumors while preserving urinary and erectile function by leaving the neurovascular bundles and urethral sphincters intact. Accurate needle guidance is critical to the success of FLA. Multiparametric magnetic resonance images (mpMRI) can be used to identify targets, guide needles, and assess treatment outcomes. The purpose of this work was to design and evaluate the accuracy of an MR-compatible mechatronic system for in-bore transperineal guidance of FLA ablation needles to localized lesions in the prostate. METHODS The mechatronic system was constructed entirely of non-ferromagnetic materials, with actuation controlled by piezoelectric motors and optical encoders. The needle guide hangs between independent front and rear two-link arms, which allows for horizontal and vertical translation as well as pitch and yaw rotation of the guide with a 6.0 cm range of motion in each direction. Needles are inserted manually through a chosen hole in the guide, which has been aligned with the target in the prostate. Open-air positioning error was evaluated using an optical tracking system (0.25 mm RMS accuracy) to measure 125 trajectories in free space. Correction of systematic bias in the system was performed using 85 of the trajectories, and the remaining 40 were used to estimate the residual error. The error was calculated as the horizontal and vertical displacement between the axis of the desired and measured trajectories at a typical needle insertion depth of 10 cm. MR-compatibility was evaluated using a grid phantom to assess image degradation due to the presence of the system, and induced force, heating, and electrical interference in the system were assessed qualitatively. In-bore positioning error was evaluated on 25 trajectories. RESULTS Open-air mean positioning error at the needle tip was 0.80 ± 0.36 mm with a one-sided 95% confidence interval of 1.40 mm. The mean deviation of needle trajectories from the planned direction was 0.14 ± 0.06∘ . In the MR bore, the mean positioning error at the needle tip was 2.11 ± 1.05 mm with a one-sided 95% prediction interval of 3.84 mm. The mean angular error was 0.49 ± 0.26∘ . The system was found to be compatible with the MR environment under the specified gradient-echo sequence parameters used in this study. CONCLUSION A complete system for delivering needles to localized prostate tumors was developed and described in this work, and its compatibility with the MR environment was demonstrated. In-bore MRI positioning error was sufficiently small for targeting small localized prostate tumors.
Collapse
Affiliation(s)
- Eric Knull
- School of Biomedical Engineering, Faculty of Engineering, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Jeffrey Scott Bax
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Claire Keun Sun Park
- Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David Tessier
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Aaron Fenster
- School of Biomedical Engineering, Faculty of Engineering, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Švaco M, Stiperski I, Dlaka D, Šuligoj F, Jerbić B, Chudy D, Raguž M. Stereotactic Neuro-Navigation Phantom Designs: A Systematic Review. Front Neurorobot 2020; 14:549603. [PMID: 33192433 PMCID: PMC7644893 DOI: 10.3389/fnbot.2020.549603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/16/2020] [Indexed: 11/28/2022] Open
Abstract
Diverse stereotactic neuro-navigation systems are used daily in neurosurgery and novel systems are continuously being developed. Prior to clinical implementation of new surgical tools, methods or instruments, in vitro experiments on phantoms should be conducted. A stereotactic neuro-navigation phantom denotes a rigid or deformable structure resembling the cranium with the intracranial area. The use of phantoms is essential for the testing of complete procedures and their workflows, as well as for the final validation of the application accuracy. The aim of this study is to provide a systematic review of stereotactic neuro-navigation phantom designs, to identify their most relevant features, and to identify methodologies for measuring the target point error, the entry point error, and the angular error (α). The literature on phantom designs used for evaluating the accuracy of stereotactic neuro-navigation systems, i.e., robotic navigation systems, stereotactic frames, frameless navigation systems, and aiming devices, was searched. Eligible articles among the articles written in English in the period 2000-2020 were identified through the electronic databases PubMed, IEEE, Web of Science, and Scopus. The majority of phantom designs presented in those articles provide a suitable methodology for measuring the target point error, while there is a lack of objective measurements of the entry point error and angular error. We identified the need for a universal phantom design, which would be compatible with most common imaging techniques (e.g., computed tomography and magnetic resonance imaging) and suitable for simultaneous measurement of the target point, entry point, and angular errors.
Collapse
Affiliation(s)
- Marko Švaco
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
| | - Ivan Stiperski
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
| | - Domagoj Dlaka
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
| | - Filip Šuligoj
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
| | - Bojan Jerbić
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
| | - Darko Chudy
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Marina Raguž
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
- Department of Anatomy and Clinical Anatomy, School of Medicine University of Zagreb, Zagreb, Croatia
| |
Collapse
|
8
|
Reichert A, Bock M, Vogele M, Joachim Krafft A. GantryMate: A Modular MR-Compatible Assistance System for MR-Guided Needle Interventions. ACTA ACUST UNITED AC 2020; 5:266-273. [PMID: 31245548 PMCID: PMC6588201 DOI: 10.18383/j.tom.2019.00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Percutaneous minimally invasive interventions are difficult to perform in closed-bore high-field magnetic resonance systems owing to the limited space between magnet and patient. To enable magnetic resonance–guided needle interventions, we combine a small, patient-mounted assistance system with a real-time instrument tracking sequence based on a phase-only cross-correlation algorithm for marker detection. The assistance system uses 2 movable plates to align an external passive marker with the anatomical target structure. The targeting accuracy is measured in phantom experiments, yielding a precision of 1.7 ± 1.0 mm for target depths up to 38 ± 13 mm. In in vivo experiments, the possibility to track and target static and moving structures is demonstrated.
Collapse
Affiliation(s)
- Andreas Reichert
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany and
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany and
| | | | - Axel Joachim Krafft
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany and
| |
Collapse
|
9
|
Robot-assisted flexible needle insertion using universal distributional deep reinforcement learning. Int J Comput Assist Radiol Surg 2019; 15:341-349. [PMID: 31768886 DOI: 10.1007/s11548-019-02098-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/17/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Flexible needle insertion is an important minimally invasive surgery approach for biopsy and radio-frequency ablation. This approach can minimize intraoperative trauma and improve postoperative recovery. We propose a new path planning framework using multi-goal deep reinforcement learning to overcome the difficulties in uncertain needle-tissue interactions and enhance the robustness of robot-assisted insertion process. METHODS This framework utilizes a new algorithm called universal distributional Q-learning (UDQL) to learn a stable steering policy and perform risk management by visualizing the learned Q-value distribution. To further improve the robustness, universal value function approximation is leveraged in the training process of UDQL to maximize generalization and connect to diagnosis by adapting fast re-planning and transfer learning. RESULTS Computer simulation and phantom experimental results show our proposed framework can securely steer flexible needles with high insertion accuracy and robustness. The framework also improves robustness by providing distribution information to clinicians for diagnosis and decision making during surgery. CONCLUSIONS Compared with previous methods, the proposed framework can perform multi-target needle insertion through single insertion point qunder continuous state space model with higher accuracy and robustness.
Collapse
|
10
|
In-Bore Transrectal MRI–Guided Biopsy With Robotic Assistance in the Diagnosis of Prostate Cancer: An Analysis of 57 Patients. AJR Am J Roentgenol 2019; 213:W171-W179. [DOI: 10.2214/ajr.19.21145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Kulkarni P, Sikander S, Biswas P, Frawley S, Song SE. Review of Robotic Needle Guide Systems for Percutaneous Intervention. Ann Biomed Eng 2019; 47:2489-2513. [PMID: 31372856 DOI: 10.1007/s10439-019-02319-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/02/2019] [Indexed: 01/24/2023]
Abstract
Numerous research groups in the past have designed and developed robotic needle guide systems that improve the targeting accuracy and precision by either providing a physical guidance for manual insertion or enabling a complete automated intervention. Here we review systems that have been reported in the last 11 years and limited to straight line needle interventions. Most systems fall under the category of image guided systems as they either use magnetic resonance image, computed tomography, ultrasound or a combination of these modalities for real time image feedback of the intervention path being followed. Actuation and control technology along with materials used for construction are the main aspects that differentiate these systems from each other and have been reviewed here. Image compatibility test details and results are also reviewed as they are used to ensure proper functioning of these systems under the respective imaging environments. We have also reviewed needle guide systems which either don't use any image feedback or have not reported any but provide physical guidance. Throughout this paper, we provide a comprehensive review of the technological aspects and trends in the field of robotic, straight line, needle guide intervention systems.
Collapse
Affiliation(s)
- Pankaj Kulkarni
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 12760 Pegasus Dr., ENGR 1, Room 307, Orlando, FL, 32816-2450, USA
| | - Sakura Sikander
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 12760 Pegasus Dr., ENGR 1, Room 307, Orlando, FL, 32816-2450, USA
| | - Pradipta Biswas
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 12760 Pegasus Dr., ENGR 1, Room 307, Orlando, FL, 32816-2450, USA
| | - Shawn Frawley
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 12760 Pegasus Dr., ENGR 1, Room 307, Orlando, FL, 32816-2450, USA
| | - Sang-Eun Song
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 12760 Pegasus Dr., ENGR 1, Room 307, Orlando, FL, 32816-2450, USA.
| |
Collapse
|
12
|
Patel NA, Li G, Shang W, Wartenberg M, Heffter T, Burdette EC, Iordachita I, Tokuda J, Hata N, Tempany CM, Fischer GS. System Integration and Preliminary Clinical Evaluation of a Robotic System for MRI-Guided Transperineal Prostate Biopsy. JOURNAL OF MEDICAL ROBOTICS RESEARCH 2019; 4:1950001. [PMID: 31485544 PMCID: PMC6726403 DOI: 10.1142/s2424905x19500016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper presents the development, preclinical evaluation, and preliminary clinical study of a robotic system for targeted transperineal prostate biopsy under direct interventional magnetic resonance imaging (MRI) guidance. The clinically integrated robotic system is developed based on a modular design approach, comprised of surgical navigation application, robot control software, MRI robot controller hardware, and robotic needle placement manipulator. The system provides enabling technologies for MRI-guided procedures. It can be easily transported and setup for supporting the clinical workflow of interventional procedures, and the system is readily extensible and reconfigurable to other clinical applications. Preclinical evaluation of the system is performed with phantom studies in a 3 Tesla MRI scanner, rehearsing the proposed clinical workflow, and demonstrating an in-plane targeting error of 1.5mm. The robotic system has been approved by the institutional review board (IRB) for clinical trials. A preliminary clinical study is conducted with the patient consent, demonstrating the targeting errors at two biopsy target sites to be 4.0mm and 3.7mm, which is sufficient to target a clinically significant tumor foci. First-in-human trials to evaluate the system's effectiveness and accuracy for MR image-guide prostate biopsy are underway.
Collapse
Affiliation(s)
- Niravkumar A Patel
- Automation and Interventional Medicine Laboratory, Worcester Polytechnic Institute, Worcester, MA 01609, USA [napatel, gfischerj]@wpi.edu
- indicates shared first authorship
| | - Gang Li
- Automation and Interventional Medicine Laboratory, Worcester Polytechnic Institute, Worcester, MA 01609, USA [napatel, gfischerj]@wpi.edu
- indicates shared first authorship
| | - Weijian Shang
- Automation and Interventional Medicine Laboratory, Worcester Polytechnic Institute, Worcester, MA 01609, USA [napatel, gfischerj]@wpi.edu
| | - Marek Wartenberg
- Automation and Interventional Medicine Laboratory, Worcester Polytechnic Institute, Worcester, MA 01609, USA [napatel, gfischerj]@wpi.edu
| | - Tamas Heffter
- Automation and Interventional Medicine Laboratory, Worcester Polytechnic Institute, Worcester, MA 01609, USA [napatel, gfischerj]@wpi.edu
| | - Everette C Burdette
- Automation and Interventional Medicine Laboratory, Worcester Polytechnic Institute, Worcester, MA 01609, USA [napatel, gfischerj]@wpi.edu
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA
| | - Junichi Tokuda
- Department of Radiology, Surgical Navigation and Robotics Laboratory, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA
| | - Nobuhiko Hata
- Department of Radiology, Surgical Navigation and Robotics Laboratory, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA
| | - Clare M Tempany
- Department of Radiology, Surgical Navigation and Robotics Laboratory, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory S Fischer
- Automation and Interventional Medicine Laboratory, Worcester Polytechnic Institute, Worcester, MA 01609, USA [napatel, gfischerj]@wpi.edu
| |
Collapse
|
13
|
Cornud F, Bomers J, Futterer J, Ghai S, Reijnen J, Tempany C. MR imaging-guided prostate interventional imaging: Ready for a clinical use? Diagn Interv Imaging 2018; 99:743-753. [DOI: 10.1016/j.diii.2018.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/08/2018] [Indexed: 01/22/2023]
|
14
|
Simultaneous slice excitation for accelerated passive marker tracking via phase-only cross correlation (POCC) in MR-guided needle interventions. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:781-788. [DOI: 10.1007/s10334-018-0701-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 12/24/2022]
|
15
|
Cleary K, Lim S, Jun C, Monfaredi R, Sharma K, Fricke ST, Vargas L, Petrisor D, Stoianovici D. Robotically Assisted Long Bone Biopsy Under MRI Imaging: Workflow and Preclinical Study. Acad Radiol 2018; 25:74-81. [PMID: 29074334 PMCID: PMC5723222 DOI: 10.1016/j.acra.2017.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 11/29/2022]
Abstract
RATIONALE AND OBJECTIVES Our research team has developed a magnetic resonance imaging (MRI)-compatible robot for long bone biopsy. The robot is intended to enable a new workflow for bone biopsy in pediatrics under MRI imaging. Our long-term objectives are to minimize trauma and eliminate radiation exposure when diagnosing children with bone cancers and bone infections. This article presents our robotic systems, phantom accuracy studies, and workflow analysis. MATERIALS AND METHODS This section describes several aspects of our work including the envisioned clinical workflow, the MRI-compatible robot, and the experimental setup. The workflow consists of five steps and is intended to enable the entire procedure to be completed in the MRI suite. The MRI-compatible robot is MR Safe, has 3 degrees of freedom, and a remote center of motion mechanism for orienting a needle guide. The accuracy study was done in a Siemens Aera 1.5T scanner with a long bone phantom. Four targeting holes were drilled in the phantom. RESULTS Each target was approached twice at slightly oblique angles using the robot needle guide for a total of eight attempts. A workflow analysis showed the average time for each targeting attempt was 32 minutes, including robot setup time. The average 3D targeting error was 1.39 mm with a standard deviation of 0.40 mm. All of the targets were successfully reached. CONCLUSION The results showed the ability of the robotic system in assisting the radiologist to precisely target a bone phantom in the MRI environment. The robot system has several potential advantages for clinical application, including the ability to work at the MRI isocenter and serve as a steady and precise guide.
Collapse
Affiliation(s)
- Kevin Cleary
- Children's National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, 111 Michigan Avenue, Washington, DC 20010.
| | - Sunghwan Lim
- Johns Hopkins University, Brady Urological Institute, Urobotics Laboratory, Baltimore, Maryland
| | - Changhan Jun
- Johns Hopkins University, Brady Urological Institute, Urobotics Laboratory, Baltimore, Maryland
| | - Reza Monfaredi
- Children's National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, 111 Michigan Avenue, Washington, DC 20010
| | - Karun Sharma
- Children's National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, 111 Michigan Avenue, Washington, DC 20010
| | - Stanley Thomas Fricke
- Children's National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, 111 Michigan Avenue, Washington, DC 20010
| | - Luis Vargas
- Children's National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, 111 Michigan Avenue, Washington, DC 20010
| | - Doru Petrisor
- Johns Hopkins University, Brady Urological Institute, Urobotics Laboratory, Baltimore, Maryland
| | - Dan Stoianovici
- Johns Hopkins University, Brady Urological Institute, Urobotics Laboratory, Baltimore, Maryland
| |
Collapse
|
16
|
Stoianovici D, Jun C, Lim S, Li P, Petrisor D, Fricke S, Sharma K, Cleary K. Multi-Imager Compatible, MR Safe, Remote Center of Motion Needle-Guide Robot. IEEE Trans Biomed Eng 2017; 65:165-177. [PMID: 28459678 DOI: 10.1109/tbme.2017.2697766] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report the development of a new robotic system for direct image-guided interventions (DIGI; images acquired at the time of the intervention). The manipulator uses our previously reported pneumatic step motors and is entirely made of electrically nonconductive, nonmetallic, and nonmagnetic materials. It orients a needle-guide with two degrees of freedom (DoF) about a fulcrum point located below the guide using an innovative remote center of motion parallelogram type mechanism. The depth of manual needle insertion is preset with a third DoF, located remotely of the manipulator. Special consideration was given to the kinematic accuracy and the structural stiffness. The manipulator includes registration markers for image-to-robot registration. Based on the images, it may guide needles, drills, or other slender instruments to a target (OD < 10 mm). Comprehensive preclinical tests were performed. The manipulator is MR safe (ASTM F2503-13). Electromagnetic compatibility (EMC) testing (IEC 60601-1-2) of the system shows that it does not conduct or radiate EM emissions. The change in the signal to noise ratio of the MRI due to the presence and motion of the robot in the scanner is below 1%. The structural stiffness at the needle-guide is 33 N/mm. The angular accuracy and precision of the manipulator itself are 0.177° and 0.077°. MRI-guided targeting accuracy and precision in vitro were 1.71 mm and 0.51 mm, at an average target depth of ∼38 mm, with no adjustments. The system may be suitable for DIGI where [mm] accuracy lateral to the needle (2D) or [mm] in 3D is acceptable. The system is also multi-imager compatible and could be used with other imaging modalities.
Collapse
|
17
|
Stoianovici D, Kim C, Petrisor D, Jun C, Lim S, Ball MW, Ross A, Macura KJ, Allaf M. MR Safe Robot, FDA Clearance, Safety and Feasibility Prostate Biopsy Clinical Trial. IEEE/ASME TRANSACTIONS ON MECHATRONICS : A JOINT PUBLICATION OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY AND THE ASME DYNAMIC SYSTEMS AND CONTROL DIVISION 2017; 22:115-126. [PMID: 28867930 PMCID: PMC5578622 DOI: 10.1109/tmech.2016.2618362] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Compatibility of mechatronic devices with the MR environment has been a very challenging engineering task. After over a decade of developments, we report the successful translation to clinical trials of our MR Safe robot technology. MrBot is a 6-degree-of-freedom, pneumatically actuated robot for transperineal prostate percutaneous access, built exclusively of electrically nonconductive and nonmagnetic materials. Its extensive pre-clinical tests have been previously reported. Here, we present the latest technology developments, an overview of the regulatory protocols, and technically related results of the clinical trial. The FDA has approved the MrBot for the biopsy trial, which was successfully performed in 5 patients. With no trajectory corrections, and no unsuccessful attempts to target a site, the robot achieved an MRI based needle targeting accuracy of 2.55 mm. To the best of our knowledge, this is the first robot approved by the FDA for the MR environment. The results confirm that it is possible to perform safe and accurate robotic manipulation in the MRI scanner, and the development of MR Safe robots is no longer a daunting technical challenge.
Collapse
Affiliation(s)
| | - Chunwoo Kim
- Urology Department, Johns Hopkins University Baltimore, MD
| | - Doru Petrisor
- Urology Department, Johns Hopkins University Baltimore, MD
| | - Changhan Jun
- Urology Department, Johns Hopkins University Baltimore, MD
| | - Sunghwan Lim
- Urology Department, Johns Hopkins University Baltimore, MD
| | - Mark W. Ball
- Urology Department, Johns Hopkins University Baltimore, MD
| | - Ashley Ross
- Urology Department, Johns Hopkins University Baltimore, MD
| | | | - Mohamad Allaf
- Urology Department, Johns Hopkins University Baltimore, MD
| |
Collapse
|
18
|
Fütterer JJ, Moche M, Busse H, Yakar D. In-Bore MR-Guided Biopsy Systems and Utility of PI-RADS. Top Magn Reson Imaging 2016; 25:119-123. [PMID: 27187168 DOI: 10.1097/rmr.0000000000000090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A diagnostic dilemma exists in cases wherein a patient with clinical suspicion for prostate cancer has a negative transrectal ultrasound-guided biopsy session. Although transrectal ultrasound-guided biopsy is the standard of care, a paradigm shift is being observed. In biopsy-naive patients and patients with at least 1 negative biopsy session, multiparametric magnetic resonance imaging (MRI) is being utilized for tumor detection and subsequent targeting. Several commercial devices are now available for targeted prostate biopsy ranging from transrectal ultrasound-MR fusion biopsy to in bore MR-guided biopsy. In this review, we will give an update on the current status of in-bore MRI-guided biopsy systems and discuss value of prostate imaging-reporting and data system (PIRADS).
Collapse
Affiliation(s)
- Jurgen J Fütterer
- *Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen †MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands ‡Department of Diagnostic and Interventional Radiology, University Hospital, Leipzig, Germany
| | | | | | | |
Collapse
|
19
|
Abayazid M, Pacchierotti C, Moreira P, Alterovitz R, Prattichizzo D, Misra S. Experimental evaluation of co-manipulated ultrasound-guided flexible needle steering. Int J Med Robot 2015; 12:219-30. [PMID: 26173754 DOI: 10.1002/rcs.1680] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 11/12/2022]
Abstract
BACKGROUND A teleoperation system for bevel-tipped flexible needle steering has been evaluated. Robotic systems have been exploited as the main tool to achieve high accuracy and reliability. However, for reasons of safety and acceptance by the surgical community, keeping the physician tightly in the loop is preferable. METHODS The system uses ultrasound imaging, path planning, and control to compute the desired needle orientation during the insertion and intuitively passes this information to the operator, who teleoperates the motion of the needle's tip. Navigation cues about the computed orientation are provided through haptic and visual feedback to the operator to steer the needle. RESULTS The targeting accuracy of several co-manipulation strategies were studied in four sets of experiments involving human subjects with clinical backgrounds. CONCLUSIONS Experimental results show that receiving feedback regarding the desired needle orientation improves the targeting accuracy by a factor of 9 with respect to manual insertions. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Momen Abayazid
- MIRA-Institute for Biomedical Technology and Technical Medicine, Department of Biomechanical Engineering, Surgical Robotics Laboratory, University of Twente, Enschede, The Netherlands
| | - Claudio Pacchierotti
- Department of Information Engineering and Mathematics, University of Siena, and with the Department of Advanced Robotics, Istituto Italiano di Tecnologia, Italy
| | - Pedro Moreira
- MIRA-Institute for Biomedical Technology and Technical Medicine, Department of Biomechanical Engineering, Surgical Robotics Laboratory, University of Twente, Enschede, The Netherlands
| | - Ron Alterovitz
- Department of Computer Science, University of North Carolina at Chapel Hill, USA
| | - Domenico Prattichizzo
- Department of Information Engineering and Mathematics, University of Siena, and with the Department of Advanced Robotics, Istituto Italiano di Tecnologia, Italy
| | - Sarthak Misra
- MIRA-Institute for Biomedical Technology and Technical Medicine, Department of Biomechanical Engineering, Surgical Robotics Laboratory, University of Twente, Enschede, The Netherlands.,Department of Biomedical Engineering, University of Groningen and University Medical Centre, Groningen, The Netherlands
| |
Collapse
|
20
|
Yiallouras C, Damianou C. Review of MRI positioning devices for guiding focused ultrasound systems. Int J Med Robot 2015; 11:247-255. [PMID: 25045075 DOI: 10.1002/rcs.1601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND This article contains a review of positioning devices that are currently used in the area of magnetic resonance imaging (MRI) guided focused ultrasound surgery (MRgFUS). METHODS The paper includes an extensive review of literature published since the first prototype system was invented in 1991. RESULTS The technology has grown into a fast developing area with application to any organ accessible to ultrasound. The initial design operated using hydraulic principles, while the latest technology incorporates piezoelectric motors. Although, in the beginning there were fears regarding MRI safety, during recent years, the deployment of MR-safe positioning devices in FUS has become routine. Many of these positioning devices are now undergoing testing in clinical trials. CONCLUSION Existing MRgFUS systems have been utilized mostly in oncology (fibroids, brain, liver, kidney, bone, pancreas, eye, thyroid, and prostate). It is anticipated that, in the near future, there will be a positioning device for every organ that is accessible by focused ultrasound.
Collapse
Affiliation(s)
- C Yiallouras
- Department of Bioengineering, City University, London, UK
- R&D, MEDSONIC LTD, Limassol, Cyprus
| | - C Damianou
- Electrical Engineering Department, Cyprus University of Technology, Cyprus
- R&D, MEDSONIC LTD, Limassol, Cyprus
| |
Collapse
|
21
|
Tilak G, Tuncali K, Song SE, Tokuda J, Olubiyi O, Fennessy F, Fedorov A, Penzkofer T, Tempany C, Hata N. 3T MR-guided in-bore transperineal prostate biopsy: A comparison of robotic and manual needle-guidance templates. J Magn Reson Imaging 2014; 42:63-71. [PMID: 25263213 DOI: 10.1002/jmri.24770] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 09/11/2014] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To demonstrate the utility of a robotic needle-guidance template device as compared to a manual template for in-bore 3T transperineal magnetic resonance imaging (MRI)-guided prostate biopsy. MATERIALS AND METHODS This two-arm mixed retrospective-prospective study included 99 cases of targeted transperineal prostate biopsies. The biopsy needles were aimed at suspicious foci noted on multiparametric 3T MRI using manual template (historical control) as compared with a robotic template. The following data were obtained: the accuracy of average and closest needle placement to the focus, histologic yield, percentage of cancer volume in positive core samples, complication rate, and time to complete the procedure. RESULTS In all, 56 cases were performed using the manual template and 43 cases were performed using the robotic template. The mean accuracy of the best needle placement attempt was higher in the robotic group (2.39 mm) than the manual group (3.71 mm, P < 0.027). The mean core procedure time was shorter in the robotic (90.82 min) than the manual group (100.63 min, P < 0.030). Percentage of cancer volume in positive core samples was higher in the robotic group (P < 0.001). Cancer yields and complication rates were not statistically different between the two subgroups (P = 0.557 and P = 0.172, respectively). CONCLUSION The robotic needle-guidance template helps accurate placement of biopsy needles in MRI-guided core biopsy of prostate cancer.
Collapse
Affiliation(s)
- Gaurie Tilak
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kemal Tuncali
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sang-Eun Song
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Junichi Tokuda
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Olutayo Olubiyi
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Fiona Fennessy
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Andriy Fedorov
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tobias Penzkofer
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Clare Tempany
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nobuhiko Hata
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Cepek J, Chronik BA, Fenster A. The effects of magnetic field distortion on the accuracy of passive device localization frames in MR imaging. Med Phys 2014; 41:052301. [PMID: 24784394 DOI: 10.1118/1.4870961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE The interventional magnetic resonance (MR) imaging environment presents many challenges for the accurate localization of interventional devices. In particular, geometric distortion of the static magnetic field may be both appreciable and unpredictable. This paper aims to quantify the sensitivity of localization error of various passive device localization frames to static magnetic field distortion in MR. METHODS Three localization frames were considered based on having distinctly different methods of encoding position and orientation in MR images. For each frame, the effects of static field distortion were modeled, allowing rotational and translational errors to be computed as functions of the level of distortion, which was modeled using a first order approximation. Validation of the model was performed by imaging the localization frames in a 3T clinical MR scanner, and simulating the effects of static field distortion by varying the scanner's center frequency and gradient shim values. RESULTS Plots of the rotational and translational components of error in localization frame position and orientation estimates are provided for ranges of uniform static field distortions of 1-100 μT and static field distortion gradients of 0.01-1 mT/m in all three directions. The theoretical estimates are in good agreement with the results obtained by imaging. CONCLUSIONS The error in position and orientation estimation of passive localization frames in MR can be sensitive to static magnetic field distortions. The level of sensitivity, the type of error (i.e., rotational or translational), and the direction of error are dependent on the frame's design and the method used to image it. If 2D gradient echo imaging is employed, frames with position and orientation estimate sensitivity to slice-select error (such as the z-frame) should be avoided, since this source of error is not easily correctable. Accurate frame position and orientation estimates that are insensitive to static field distortion can be achieved using 2D gradient echo imaging if: (a) the method of determining position and orientation only uses in-plane measurements of marker positions, (b) the in-plane marker positions in images are not sensitive to slice-select error, and (c) methods of correcting in-plane error in the frequency-encoded direction are employed.
Collapse
Affiliation(s)
- Jeremy Cepek
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada and Biomedical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Blaine A Chronik
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada and Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Aaron Fenster
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada and Biomedical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
23
|
Diffusion-weighted magnetic resonance imaging in the prostate transition zone: histopathological validation using magnetic resonance-guided biopsy specimens. Invest Radiol 2014; 48:693-701. [PMID: 23614975 DOI: 10.1097/rli.0b013e31828eeaf9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The objective of this study was to evaluate the apparent diffusion coefficient (ADC) of diffusion-weighted magnetic resonance (MR) imaging for the differentiation of transition zone cancer from non-cancerous transition zone with and without prostatitis and for the differentiation of transition zone cancer Gleason grade (GG) using MR-guided biopsy specimens as a reference standard. MATERIALS AND METHODS From consecutive MR-guided prostate biopsies (2008-2012) in our referral center, we retrospectively included patients from whom diffusion-weighted MR imaging ADC values were acquired during MR-guided biopsy and whose biopsy cores had a (cancer) core length 10 mm or greater and originated from the transition zone. Two radiologists, who were blinded to the ADC data, annotated regions of interest on biopsy sampling locations of MR-guided biopsy confirmation scans in consensus. Median ADC (mADC) of the regions of interest was related to histopathology outcome in MR-guided biopsy core specimens. Mixed model analysis was used to evaluate mADC differences between 7 histopathology categories predefined as MR-guided biopsy core specimens with primary and secondary GG 4-5 (I), primary GG 4-5 secondary GG 2-3 (II), primary GG 2-3 secondary GG 4-5 (III) and primary and secondary GG 2-3 cancer (IV), and noncancerous tissue without (V) or with degree 1 (VI) or degree 2 prostatitis (VII). Diagnostic accuracy was evaluated using areas under the receiver operating characteristic (AUC) curve. RESULTS Fifty-two patients with 87 cancer-containing biopsy cores and 53 patients with 101 non-cancerous biopsy cores were included. Significant mean mADC differences were present between cancers (mean mADC, 0.77-0.86 × 10 mm/s) and noncancerous transition zone without (1.12 × 10 mm/s) and with degree 1 to 2 prostatitis (1.05-1.12 × 10 mm/s; P < 0.0001-0.05). Exceptions were mixed primary and secondary GG cancers versus a degree 2 of prostatitis (P = 0.06-0.09). No significant differences were found between subcategories of primary and secondary GG cancers (P = 0.17-0.91) and between a degree 1 and 2 prostatitis and non-cancerous transition zone without prostatitis (P = 0.48-0.94).The mADC had an AUC of 0.84 to differentiate cancer versus non-cancerous transition zone. AUCs of 0.84 and 0.56 were found for mADC to differentiate prostatitis from cancer and from non-cancerous transition zone. The mADC had an AUC of 0.62 to differentiate a primary GG 4 versus GG 3 cancer. CONCLUSIONS The mADC values can differentiate transition zone cancer from non-cancerous transition zone and from a degree 1, and from most cases of a degree 2 prostatitis. However, because of substantial overlap, mADC has a moderate accuracy to differentiate between different primary and secondary GG subcategories and cannot be used to differentiate non-cancerous transition zone from degrees 1 to 2 of prostatitis. Diffusion-weighted imaging ADC may therefore contribute in the detection of transition zone cancers; however, as a single functional MR imaging technique, diffusion-weighted imaging has a moderate diagnostic accuracy in separating higher from lower GG transition zone cancers and in differentiating prostatitis from non-cancerous transition zone.
Collapse
|
24
|
Srimathveeravalli G, Kim C, Petrisor D, Ezell P, Coleman J, Hricak H, Solomon SB, Stoianovici D. MRI-safe robot for targeted transrectal prostate biopsy: animal experiments. BJU Int 2013; 113:977-85. [PMID: 24118992 DOI: 10.1111/bju.12335] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To study the feasibility and safety of using a magnetic resonance imaging (MRI)-safe robot for assisting MRI-guided transrectal needle placement and biopsy in the prostate, using a canine model. To determine the accuracy and precision afforded by the use of the robot while targeting a desired location in the organ. MATERIALS AND METHODS In a study approved by the Institutional Animal Care and Use Committee, six healthy adult male beagles with prostates of at least 15 × 15 mm in size at the largest transverse section were chosen for the procedure. The probe portion of the robot was placed into the rectum of the dog, images were acquired and image-to-robot registration was performed. Images acquired after placement of the robot were reviewed and a radiologist selected targets for needle placement in the gland. Depending on the size of the prostate, up to a maximum of six needle placements were performed on each dog. After needle placement, robot-assisted core biopsies were performed on four dogs that had larger prostate volumes and extracted cores were analysed for potential diagnostic value. RESULTS Robot-assisted MRI-guided needle placements were performed to target a total of 30 locations in six dogs, achieving a targeting accuracy of 2.58 mm (mean) and precision of 1.31 mm (SD). All needle placements were successfully completed on the first attempt. The mean time required to select a desired target location in the prostate, align the needle guide to that point, insert the needle and perform the biopsy was ∼ 3 min. For this targeting accuracy study, the inserted needle was also imaged after its placement in the prostate, which took an additional 6-8 min. Signal-to-noise ratio analysis indicated that the presence of the robot within the scanner bore had minimal impact on the quality of the images acquired. Analysis of intact biopsy core samples indicated that the samples contained prostatic tissues, appropriate for making a potential diagnosis. Dogs used in the study did not experience device- or procedure-related complications. CONCLUSIONS Results from this preclinical pilot animal study suggest that MRI-targeted transrectal biopsies are feasible to perform and this procedure may be safely assisted by an MRI-safe robotic device.
Collapse
|
25
|
Krafft AJ, Zamecnik P, Maier F, de Oliveira A, Hallscheidt P, Schlemmer HP, Bock M. Passive marker tracking via phase-only cross correlation (POCC) for MR-guided needle interventions: Initial in vivo experience. Phys Med 2013; 29:607-14. [DOI: 10.1016/j.ejmp.2012.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/07/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022] Open
|
26
|
Stoianovici D, Kim C, Srimathveeravalli G, Sebrecht P, Petrisor D, Coleman J, Solomon SB, Hricak H. MRI-Safe Robot for Endorectal Prostate Biopsy. IEEE/ASME TRANSACTIONS ON MECHATRONICS : A JOINT PUBLICATION OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY AND THE ASME DYNAMIC SYSTEMS AND CONTROL DIVISION 2013; 19:1289-1299. [PMID: 25378897 PMCID: PMC4219418 DOI: 10.1109/tmech.2013.2279775] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This paper reports the development of an MRI-Safe robot for direct (interventional) MRI-guided endorectal prostate biopsy. The robot is constructed of nonmagnetic and electrically nonconductive materials, and is electricity free, using pneumatic actuation and optical sensors. Targeting biopsy lesions of MRI abnormality presents substantial clinical potential for the management of prostate cancer. The paper describes MRI-Safe requirements, presents the kinematic architecture, design and construction of the robot, and a comprehensive set of preclinical tests for MRI compatibility and needle targeting accuracy. The robot has a compact and simple 3 degree-of-freedom (DoF) structure, two for orienting a needle-guide and one to preset the depth of needle insertion. The actual insertion is performed manually through the guide and up to the preset depth. To reduce the complexity and size of the robot next to the patient, the depth setting DoF is remote. Experimental results show that the robot is safe to use in any MRI environment (MRI-Safe). Comprehensive MRI tests show that the presence and motion of the robot in the MRI scanner cause virtually no image deterioration or signal to noise ratio (SNR) change. Robot's accuracy in bench test, CT-guided in-vitro, MRI-guided in-vitro and animal tests are 0.37mm, 1.10mm, 2.09mm, and 2.58mm respectively. These values are acceptable for clinical use.
Collapse
Affiliation(s)
- Dan Stoianovici
- Johns Hopkins University, Urology Department, Robotics Laboratory ( http://urobotics.urology.jhu.edu/ ), Baltimore, MD
| | - Chunwoo Kim
- Johns Hopkins University, Urology Department, Robotics Laboratory ( http://urobotics.urology.jhu.edu/ ), Baltimore, MD
| | | | - Peter Sebrecht
- Johns Hopkins University, Urology Department, Robotics Laboratory ( http://urobotics.urology.jhu.edu/ ), Baltimore, MD
| | - Doru Petrisor
- Johns Hopkins University, Urology Department, Robotics Laboratory ( http://urobotics.urology.jhu.edu/ ), Baltimore, MD
| | - Jonathan Coleman
- Radiology Department, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stephen B Solomon
- Radiology Department, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hedvig Hricak
- Radiology Department, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
27
|
Abstract
We present a device that has been developed for delivering prostate focal thermal therapy under magnetic resonance imaging (MRI) guidance. Unlike most existing devices, ours is capable of delivering needles to targets in the prostate without removing the patient from the scanner. This feature greatly reduces procedure time and increases accuracy. The device consists of a mechanical linkage encoded with optical incremental encoders, and is manually actuated. A custom magnetic resonance (MR) compatible alignment interface allows the user to manually align the device to its target with high accuracy in-bore in very short time. The use of manual actuation over motors greatly reduces the complexity and bulk of the system, making it much more compact and portable. This is important when dealing with such tight space constraints. Needle targeting experiments in gel phantoms have demonstrated the device's ability to deliver needles with an accuracy of 2.1 +/- 1.3 mm.
Collapse
|
28
|
Cepek J, Chronik BA, Lindner U, Trachtenberg J, Davidson SRH, Bax J, Fenster A. A system for MRI-guided transperineal delivery of needles to the prostate for focal therapy. Med Phys 2013; 40:012304. [DOI: 10.1118/1.4773043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
29
|
Abstract
OBJECTIVE The purpose of this article is to evaluate MRI-guided therapies and to investigate their feasibility for focal therapy in prostate cancer patients. Relevant articles were retrieved using the PubMed online search engine. CONCLUSION Currently, MRI-guided laser ablation and MRI-guided focused ultrasound are the most promising options for focal treatment of the prostate in patients with prostate cancer. Other techniques-that is, cryosurgery, microwave ablation, and radiofrequency ablation-are, for several and different reasons, less suitable for MRI-guided focal therapy of the prostate.
Collapse
|
30
|
Tokuda J, Song SE, Fischer GS, Iordachita II, Seifabadi R, Cho NB, Tuncali K, Fichtinger G, Tempany CM, Hata N. Preclinical evaluation of an MRI-compatible pneumatic robot for angulated needle placement in transperineal prostate interventions. Int J Comput Assist Radiol Surg 2012; 7:949-57. [PMID: 22678723 DOI: 10.1007/s11548-012-0750-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/09/2012] [Indexed: 12/26/2022]
Abstract
PURPOSE To evaluate the targeting accuracy of a small profile MRI-compatible pneumatic robot for needle placement that can angulate a needle insertion path into a large accessible target volume. METHODS We extended our MRI-compatible pneumatic robot for needle placement to utilize its four degrees-of-freedom (4-DOF) mechanism with two parallel triangular structures and support transperineal prostate biopsies in a closed-bore magnetic resonance imaging (MRI) scanner. The robot is designed to guide a needle toward a lesion so that a radiologist can manually insert it in the bore. The robot is integrated with navigation software that allows an operator to plan angulated needle insertion by selecting a target and an entry point. The targeting error was evaluated while the angle between the needle insertion path and the static magnetic field was between -5.7° and 5.7° horizontally and between -5.7° and 4.3° vertically in the MRI scanner after sterilizing and draping the device. RESULTS The robot positioned the needle for angulated insertion as specified on the navigation software with overall targeting error of 0.8 ± 0.5mm along the horizontal axis and 0.8 ± 0.8mm along the vertical axis. The two-dimensional root-mean-square targeting error on the axial slices as containing the targets was 1.4mm. CONCLUSIONS Our preclinical evaluation demonstrated that the MRI-compatible pneumatic robot for needle placement with the capability to angulate the needle insertion path provides targeting accuracy feasible for clinical MRI-guided prostate interventions. The clinical feasibility has to be established in a clinical study.
Collapse
Affiliation(s)
- Junichi Tokuda
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Song SE, Cho NB, Iordachita II, Guion P, Fichtinger G, Kaushal A, Camphausen K, Whitcomb LL. Biopsy needle artifact localization in MRI-guided robotic transrectal prostate intervention. IEEE Trans Biomed Eng 2012; 59:1902-11. [PMID: 22481805 DOI: 10.1109/tbme.2012.2192118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recently a number of robotic intervention systems for magnetic resonance image (MRI)-guided needle placement in the prostate have been reported. In MRI-guided needle interventions, after a needle is inserted, the needle position is often confirmed with a volumetric MRI scan. Commonly used titanium needles are not directly visible in an MRI, but they generate a susceptibility artifact in the immediate neighborhood of the needle. This paper reports the results of a quantitative study of the relationship between the true position of titanium biopsy needle and the corresponding needle artifact position in MRI, thereby providing a better understanding of the influence of needle artifact on targeting errors. The titanium needle tip artifact extended 9 mm beyond the actual needle tip location with tendency to bend toward the scanner's B (0) magnetic field direction, and axially displaced 0.38 and 0.32 mm (mean) in scanner's frequency and phase encoding direction, respectively.
Collapse
|
32
|
Schouten MG, Bomers JGR, Yakar D, Huisman H, Rothgang E, Bosboom D, Scheenen TWJ, Misra S, Fütterer JJ. Evaluation of a robotic technique for transrectal MRI-guided prostate biopsies. Eur Radiol 2012; 22:476-83. [PMID: 21956697 PMCID: PMC3249030 DOI: 10.1007/s00330-011-2259-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 07/08/2011] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To evaluate the accuracy and speed of a novel robotic technique as an aid to perform magnetic resonance image (MRI)-guided prostate biopsies on patients with cancer suspicious regions. METHODS A pneumatic controlled MR-compatible manipulator with 5 degrees of freedom was developed in-house to guide biopsies under real-time imaging. From 13 consecutive biopsy procedures, the targeting error, biopsy error and target displacement were calculated to evaluate the accuracy. The time was recorded to evaluate manipulation and procedure time. RESULTS The robotic and manual techniques demonstrated comparable results regarding mean targeting error (5.7 vs 5.8 mm, respectively) and mean target displacement (6.6 vs 6.0 mm, respectively). The mean biopsy error was larger (6.5 vs 4.4 mm) when using the robotic technique, although not significant. Mean procedure and manipulation time were 76 min and 6 min, respectively using the robotic technique and 61 and 8 min with the manual technique. CONCLUSIONS Although comparable results regarding accuracy and speed were found, the extended technical effort of the robotic technique make the manual technique - currently - more suitable to perform MRI-guided biopsies. Furthermore, this study provided a better insight in displacement of the target during in vivo biopsy procedures.
Collapse
Affiliation(s)
- Martijn G Schouten
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yakar D, Debats OA, Bomers JG, Schouten MG, Vos PC, van Lin E, Fütterer JJ, Barentsz JO. Predictive value of MRI in the localization, staging, volume estimation, assessment of aggressiveness, and guidance of radiotherapy and biopsies in prostate cancer. J Magn Reson Imaging 2011; 35:20-31. [DOI: 10.1002/jmri.22790] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
34
|
[Magnetic resonance tomography-guided interventional procedure for diagnosis of prostate cancer]. Radiologe 2011; 51:962-8. [PMID: 22012569 DOI: 10.1007/s00117-011-2180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In recent years magnetic resonance imaging (MRI) has been increasingly established in the diagnosis of prostate cancer in addition to transrectal ultrasonography (TRUS). The use of T2-weighted imaging allows an exact delineation of the zonal anatomy of the prostate and its surrounding structures. Other MR imaging tools, such as dynamic contrast-enhanced T1-weighted imaging or diffusion-weighted imaging allow an inference of the biochemical characteristics (multiparametric MRI). Prostate cancer, which could only be diagnosed using MR imaging or lesions suspected as being prostate cancer, which are localized in the anterior aspect of the prostate and were missed with repetitive TRUS biopsy, need to undergo MR guided biopsy. Recent studies have shown a good correlation between MR imaging and histopathology of specimens collected by MR-guided biopsy. Improved lesion targeting is therefore possible with MR-guided biopsy. So far data suggest that MR-guided biopsy of the prostate is a promising alternative diagnostic tool to TRUS-guided biopsy.
Collapse
|
35
|
Song SE, Cho NB, Iordachita II, Guion P, Fichtinger G, Whitcomb LL. A Study of Needle Image Artifact Localization in Confirmation Imaging of MRI-guided Robotic Prostate Biopsy. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION : ICRA : [PROCEEDINGS]. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2011; 2011:4834-4839. [PMID: 22423338 DOI: 10.1109/icra.2011.5980309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recently several systems for magnetic resonance image (MRI) guided needle placement in the prostate have been reported. In comparison to conventional ultrasound-guided needle placement in the prostate, these MRI-guided systems promise improved targeting accuracy for prostate intervention procedures including biopsy, fiducial marker insertion, injection and focal therapy. In MRI-guided needle interventions, after a needle is inserted, the needle position is often confirmed with a volumetric MRI scan. Commonly used titanium needles are not directly visible in an MR image, but they generate a susceptibility artifact in the immediate neighborhood of the needle. This paper reports the results of a quantitative study of the relation between the true position of titanium biopsy needle and the corresponding needle artifact position in MR images. The titanium needle artifact was found to be displaced 0.38 mm and 0.32 mm shift in scanner's frequency and phase encoding direction, respectively. The artifact at the tip of the titanium needle was observed to bend toward the scanner's B(0) magnetic field direction.
Collapse
Affiliation(s)
- Sang-Eun Song
- Laboratory for Computational Sensing and Robotics (LCSR) and Department of Mechanical Engineering (ME), Johns Hopkins University (JHU), Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
36
|
Yakar D, Schouten MG, Bosboom DGH, Barentsz JO, Scheenen TWJ, Fütterer JJ. Feasibility of a pneumatically actuated MR-compatible robot for transrectal prostate biopsy guidance. Radiology 2011; 260:241-7. [PMID: 21406625 DOI: 10.1148/radiol.11101106] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE To assess the feasibility of using a remote-controlled, pneumatically actuated magnetic resonance (MR)-compatible robotic device to aid transrectal biopsy of the prostate performed with real-time 3-T MR imaging guidance. MATERIALS AND METHODS This prospective study was approved by the ethics review board, and written informed consent was obtained from all patients. Twelve consecutive men who were clinically suspected of having prostate cancer and had a history of at least one transrectal ultrasonography (US)-guided prostate biopsy with negative results underwent diagnostic multiparametric MR imaging of the prostate. Two radiologists in consensus identified cancer-suspicious regions (CSRs) in 10 patients. These regions were subsequently targeted with the robot for MR imaging-guided prostate biopsy. To direct the needle guide toward the CSRs, the MR-compatible robotic device was remote controlled at the MR console by means of a controller and a graphical user interface for real-time MR imaging guidance of the needle guide. The ability to reach the CSRs with the robot for biopsy was analyzed. RESULTS A total of 17 CSRs were detected in 10 patients at the diagnostic MR examinations. These regions were targeted for MR imaging-guided robot-assisted prostate biopsy. Thirteen (76%) of the 17 CSRs could be reached with the robot for biopsy. Biopsy of the remaining four CSRs was performed without use of the robot. CONCLUSION It is feasible to perform transrectal prostate biopsy with real-time 3-T MR imaging guidance with the aid of a remote-controlled, pneumatically actuated MR-compatible robotic device.
Collapse
Affiliation(s)
- Derya Yakar
- Department of Radiology, Radboud University Nijmegen Medical Centre, Geert Grooteplein 10, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|