1
|
Tajik M, Akhlaqi MM, Gholami S. Advances in anthropomorphic thorax phantoms for radiotherapy: a review. Biomed Phys Eng Express 2021; 8. [PMID: 34736235 DOI: 10.1088/2057-1976/ac369c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/04/2021] [Indexed: 11/12/2022]
Abstract
A phantom is a highly specialized device, which mimic human body, or a part of it. There are three categories of phantoms: physical phantoms, physiological phantoms, and computational phantoms. The phantoms have been utilized in medical imaging and radiotherapy for numerous applications. In radiotherapy, the phantoms may be used for various applications such as quality assurance (QA), dosimetry, end-to-end testing, etc. In thoracic radiotherapy, unique QA problems including tumor motion, thorax deformation, and heterogeneities in the beam path have complicated the delivery of dose to both tumor and organ at risks (OARs). Also, respiratory motion is a major challenge in radiotherapy of thoracic malignancies, which can be resulted in the discrepancies between the planned and delivered doses to cancerous tissue. Hence, the overall treatment procedure needs to be verified. Anthropomorphic thorax phantoms, which are made of human tissue-mimicking materials, can be utilized to obtain the ground truth to validate these processes. Accordingly, research into new anthropomorphic thorax phantoms has accelerated. Therefore, the review is intended to summarize the current status of the commercially available and in-house-built anthropomorphic physical/physiological thorax phantoms in radiotherapy. The main focus is on anthropomorphic, deformable thorax motion phantoms. This review also discusses the applications of three-dimensional (3D) printing technology for the fabrication of thorax phantoms.
Collapse
Affiliation(s)
- Mahdieh Tajik
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Iran Tehran district 6 poursina st Tehran University of Medical Sciences, Tehran, 1416753955, Iran (the Islamic Republic of)
| | - Mohammad Mohsen Akhlaqi
- Shahid Beheshti University of Medical Sciences, Iran,Tehran,Shahid Bahonar roundabout, Darabad Avenue,Masih Daneshvari Hospital, Tehran, 19839-63113, Iran (the Islamic Republic of)
| | - Somayeh Gholami
- Radiotherapy, Tehran University of Medical Sciences, Bolvarekeshavarz AVN, Tehran, Iran, Tehran, 1416753955, Iran (the Islamic Republic of)
| |
Collapse
|
2
|
Fu Y, Wu X, Thomas AM, Li HH, Yang D. Automatic large quantity landmark pairs detection in 4DCT lung images. Med Phys 2019; 46:4490-4501. [PMID: 31318989 PMCID: PMC8311742 DOI: 10.1002/mp.13726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/20/2019] [Accepted: 07/11/2019] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To automatically and precisely detect a large quantity of landmark pairs between two lung computed tomography (CT) images to support evaluation of deformable image registration (DIR). We expect that the generated landmark pairs will significantly augment the current lung CT benchmark datasets in both quantity and positional accuracy. METHODS A large number of landmark pairs were detected within the lung between the end-exhalation (EE) and end-inhalation (EI) phases of the lung four-dimensional computed tomography (4DCT) datasets. Thousands of landmarks were detected by applying the Harris-Stephens corner detection algorithm on the probability maps of the lung vasculature tree. A parametric image registration method (pTVreg) was used to establish initial landmark correspondence by registering the images at EE and EI phases. A multi-stream pseudo-siamese (MSPS) network was then developed to further improve the landmark pair positional accuracy by directly predicting three-dimensional (3D) shifts to optimally align the landmarks in EE to their counterparts in EI. Positional accuracies of the detected landmark pairs were evaluated using both digital phantoms and publicly available landmark pairs. RESULTS Dense sets of landmark pairs were detected for 10 4DCT lung datasets, with an average of 1886 landmark pairs per case. The mean and standard deviation of target registration error (TRE) were 0.47 ± 0.45 mm with 98% of landmark pairs having a TRE smaller than 2 mm for 10 digital phantom cases. Tests using 300 manually labeled landmark pairs in 10 lung 4DCT benchmark datasets (DIRLAB) produced TRE results of 0.73 ± 0.53 mm with 97% of landmark pairs having a TRE smaller than 2 mm. CONCLUSION A new method was developed to automatically and precisely detect a large quantity of landmark pairs between lung CT image pairs. The detected landmark pairs could be used as benchmark datasets for more accurate and informative quantitative evaluation of DIR algorithms.
Collapse
Affiliation(s)
- Yabo Fu
- Department of Radiation Oncology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Xue Wu
- Department of Radiation Oncology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Allan M. Thomas
- Department of Radiation Oncology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Harold H. Li
- Department of Radiation Oncology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Deshan Yang
- Department of Radiation Oncology, Washington University in Saint Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Matsumoto Y, Kabuki S, Sugawara A, Kitahara T, Akiba T, Fujita Y, Kawamata I, Yamada K, Amino K, Sasaki Y, Nishida M, Murakami K, Sugahara K, Saito N, Kunieda E. Basic evaluation of a novel 4D target and human body phantom. Phys Med Biol 2019; 64:145002. [PMID: 31146274 DOI: 10.1088/1361-6560/ab259c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stereotactic body radiation therapy (SBRT) is usually verified with a dynamic phantom or solid phantom, but there is a demand for phantoms that can accurately simulate tumor dynamics within an individual that would allow customized validation in every patient. We developed a new 4D dynamic target phantom (multi-cell 4D phantom) that allows simulation of tumor movement in patients. The basic quality and dynamic reproducibility of this new phantom was verified in this investigation. The newly developed multi-cell 4D phantom comprises four main components: soft tissue, bones, lungs, and tumor (target). The phantom structure was based on computed tomography (CT) data of a male. In this study, we investigated the basic performance of a multi-cell 4D phantom. All the CT numbers of the phantom were very close to those of human data. The geometric maximum amplitudes were 4.57 mm in the lateral direction, 4.59 mm in the ventrodorsal direction, and 3.68 mm in the cranio-caudal direction. Geometric errors were 0.84, 0.58, and 0.40 mm, respectively. Movements of the abdominal surface were stable for 60 s. Repeated measurements show no actual differences in target movements between multiple measurements and indicated high reproducibility (r > 0.97). End-to-end tests using Gafchromic film revealed a gamma pass rate of 98% or above (2 mm/3%). Although our phantom performed limited reproducibility in the movement of the patient tumor at present, a satisfactory level of precision was confirmed in general. This is a very promising device for use in the verification of radiation therapy for moving targets.
Collapse
Affiliation(s)
- Y Matsumoto
- Department of Radiation Oncology, Tokai University Hachioji Hospital, Hachioji, Tokyo, 192-0032, Japan. Author to whom correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ranjbar M, Sabouri P, Repetto C, Sawant A. A novel deformable lung phantom with programably variable external and internal correlation. Med Phys 2019; 46:1995-2005. [PMID: 30919974 DOI: 10.1002/mp.13507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Lung motion phantoms used to validate radiotherapy motion management strategies have fairly simplistic designs that do not adequately capture complex phenomena observed in human respiration such as external and internal deformation, variable hysteresis and variable correlation between different parts of the thoracic anatomy. These limitations make reliable evaluation of sophisticated motion management techniques quite challenging. In this work, we present the design and implementation of a programmable, externally and internally deformable lung motion phantom that allows for a reproducible change in external-internal and internal-internal correlation of embedded markers. METHODS An in-house-designed lung module, made from natural latex foam was inserted inside the outer shell of a commercially available lung phantom (RSD, Long Beach, CA, USA). Radiopaque markers were placed on the external surface and embedded into the lung module. Two independently programmable high-precision linear motion actuators were used to generate primarily anterior-posterior (AP) and primarily superior-inferior (SI) motion in a reproducible fashion in order to enable (a) variable correlation between the displacement of interior volume and the exterior surface, (b) independent changes in the amplitude of the AP and SI motions, and (c) variable hysteresis. The ability of the phantom to produce complex and variable motion accurately and reproducibly was evaluated by programming the two actuators with mathematical and patient-recorded lung tumor motion traces, and recording the trajectories of various markers using kV fluoroscopy. As an example application, the phantom was used to evaluate the performance of lung motion models constructed from kV fluoroscopy and 4DCT images. RESULTS The phantom exhibited a high degree of reproducibility and marker motion ranges were reproducible to within 0.5 mm. Variable correlation was observed between the displacements of internal-internal and internal-external markers. The SI and AP components of motion of a specific marker had a correlation parameter that varied from -11 to 17. Monitoring a region of interest on the phantom's surface to estimate internal marker motion led to considerably lower uncertainties than when a single point was monitored. CONCLUSIONS We successfully designed and implemented a programmable, externally and internally deformable lung motion phantom that allows for a reproducible change in external-internal and internal-internal correlation of embedded markers.
Collapse
Affiliation(s)
- Maida Ranjbar
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Pouya Sabouri
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Carlo Repetto
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
5
|
Niebuhr NI, Johnen W, Echner G, Runz A, Bach M, Stoll M, Giske K, Greilich S, Pfaffenberger A. The ADAM-pelvis phantom—an anthropomorphic, deformable and multimodal phantom for MRgRT. ACTA ACUST UNITED AC 2019; 64:04NT05. [DOI: 10.1088/1361-6560/aafd5f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Development of a deformable phantom for experimental verification of 4D Monte Carlo simulations in a deforming anatomy. Phys Med 2018; 51:81-90. [DOI: 10.1016/j.ejmp.2018.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/25/2022] Open
|
7
|
Palmer AL, Nash D, Kearton JR, Jafari SM, Muscat S. A multicentre ‘end to end’ dosimetry audit of motion management (4DCT-defined motion envelope) in radiotherapy. Radiother Oncol 2017; 125:453-458. [DOI: 10.1016/j.radonc.2017.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022]
|
8
|
Giordanengo S, Manganaro L, Vignati A. Review of technologies and procedures of clinical dosimetry for scanned ion beam radiotherapy. Phys Med 2017; 43:79-99. [DOI: 10.1016/j.ejmp.2017.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/23/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
|
9
|
Yang D, Zhang M, Chang X, Fu Y, Liu S, Li HH, Mutic S, Duan Y. A method to detect landmark pairs accurately between intra-patient volumetric medical images. Med Phys 2017; 44:5859-5872. [PMID: 28834555 DOI: 10.1002/mp.12526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/14/2017] [Accepted: 08/14/2017] [Indexed: 01/26/2023] Open
Abstract
PURPOSES An image processing procedure was developed in this study to detect large quantity of landmark pairs accurately in pairs of volumetric medical images. The detected landmark pairs can be used to evaluate of deformable image registration (DIR) methods quantitatively. METHODS Landmark detection and pair matching were implemented in a Gaussian pyramid multi-resolution scheme. A 3D scale-invariant feature transform (SIFT) feature detection method and a 3D Harris-Laplacian corner detection method were employed to detect feature points, i.e., landmarks. A novel feature matching algorithm, Multi-Resolution Inverse-Consistent Guided Matching or MRICGM, was developed to allow accurate feature pairs matching. MRICGM performs feature matching using guidance by the feature pairs detected at the lower resolution stage and the higher confidence feature pairs already detected at the same resolution stage, while enforces inverse consistency. RESULTS The proposed feature detection and feature pair matching algorithms were optimized to process 3D CT and MRI images. They were successfully applied between the inter-phase abdomen 4DCT images of three patients, between the original and the re-scanned radiation therapy simulation CT images of two head-neck patients, and between inter-fractional treatment MRIs of two patients. The proposed procedure was able to successfully detect and match over 6300 feature pairs on average. The automatically detected landmark pairs were manually verified and the mismatched pairs were rejected. The automatic feature matching accuracy before manual error rejection was 99.4%. Performance of MRICGM was also evaluated using seven digital phantom datasets with known ground truth of tissue deformation. On average, 11855 feature pairs were detected per digital phantom dataset with TRE = 0.77 ± 0.72 mm. CONCLUSION A procedure was developed in this study to detect large number of landmark pairs accurately between two volumetric medical images. It allows a semi-automatic way to generate the ground truth landmark datasets that allow quantitatively evaluation of DIR algorithms for radiation therapy applications.
Collapse
Affiliation(s)
- Deshan Yang
- Department of Radiation Oncology; Washington University in Saint Louis; Saint Louis MO USA
| | - Miao Zhang
- Department of Physics and Astronomy; University of Missouri; Columbia MO USA
| | - Xiao Chang
- Department of Radiation Oncology; Washington University in Saint Louis; Saint Louis MO USA
| | - Yabo Fu
- Department of Radiation Oncology; Washington University in Saint Louis; Saint Louis MO USA
| | - Shi Liu
- Department of Radiation Oncology; Washington University in Saint Louis; Saint Louis MO USA
| | - Harold H. Li
- Department of Radiation Oncology; Washington University in Saint Louis; Saint Louis MO USA
| | - Sasa Mutic
- Department of Radiation Oncology; Washington University in Saint Louis; Saint Louis MO USA
| | - Ye Duan
- Department of Computer Science & IT; University of Missouri; Columbia MO USA
| |
Collapse
|
10
|
Gholampourkashi S, Vujicic M, Belec J, Cygler JE, Heath E. Experimental verification of 4D Monte Carlo simulations of dose delivery to a moving anatomy. Med Phys 2017; 44:299-310. [DOI: 10.1002/mp.12023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sara Gholampourkashi
- Carleton Laboratory for Radiotherapy Physics; Carleton University; 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada
| | - Miro Vujicic
- Department of Medical Physics; The Ottawa Hospital Cancer Centre; 501 Smyth Road, Box 927 Ottawa ON K1H 8L6 Canada
| | - Jason Belec
- Department of Medical Physics; The Ottawa Hospital Cancer Centre; 501 Smyth Road, Box 927 Ottawa ON K1H 8L6 Canada
| | - Joanna E. Cygler
- Carleton Laboratory for Radiotherapy Physics; Carleton University; 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada
- Department of Medical Physics; The Ottawa Hospital Cancer Centre; 501 Smyth Road, Box 927 Ottawa ON K1H 8L6 Canada
| | - Emily Heath
- Carleton Laboratory for Radiotherapy Physics; Carleton University; 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada
| |
Collapse
|
11
|
Zhong H, Adams J, Glide-Hurst C, Zhang H, Li H, Chetty IJ. Development of a deformable dosimetric phantom to verify dose accumulation algorithms for adaptive radiotherapy. J Med Phys 2016; 41:106-14. [PMID: 27217622 PMCID: PMC4870999 DOI: 10.4103/0971-6203.181641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Adaptive radiotherapy may improve treatment outcomes for lung cancer patients. Because of the lack of an effective tool for quality assurance, this therapeutic modality is not yet accepted in clinic. The purpose of this study is to develop a deformable physical phantom for validation of dose accumulation algorithms in regions with heterogeneous mass. A three-dimensional (3D) deformable phantom was developed containing a tissue-equivalent tumor and heterogeneous sponge inserts. Thermoluminescent dosimeters (TLDs) were placed at multiple locations in the phantom each time before dose measurement. Doses were measured with the phantom in both the static and deformed cases. The deformation of the phantom was actuated by a motor driven piston. 4D computed tomography images were acquired to calculate 3D doses at each phase using Pinnacle and EGSnrc/DOSXYZnrc. These images were registered using two registration software packages: VelocityAI and Elastix. With the resultant displacement vector fields (DVFs), the calculated 3D doses were accumulated using a mass-and energy congruent mapping method and compared to those measured by the TLDs at four typical locations. In the static case, TLD measurements agreed with all the algorithms by 1.8% at the center of the tumor volume and by 4.0% in the penumbra. In the deformable case, the phantom's deformation was reproduced within 1.1 mm. For the 3D dose calculated by Pinnacle, the total dose accumulated with the Elastix DVF agreed well to the TLD measurements with their differences <2.5% at four measured locations. When the VelocityAI DVF was used, their difference increased up to 11.8%. For the 3D dose calculated by EGSnrc/DOSXYZnrc, the total doses accumulated with the two DVFs were within 5.7% of the TLD measurements which are slightly over the rate of 5% for clinical acceptance. The detector-embedded deformable phantom allows radiation dose to be measured in a dynamic environment, similar to deforming lung tissues, supporting the validation of dose mapping and accumulation operations in regions with heterogeneous mass, and dose distributions.
Collapse
Affiliation(s)
- Hualiang Zhong
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Jeffrey Adams
- Department of Radiation Oncology, Wayne State University, Detroit, MI, USA
| | - Carri Glide-Hurst
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Hualin Zhang
- Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Haisen Li
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
12
|
Kim J, Lee Y, Shin H, Ji S, Park S, Kim J, Jang H, Kang Y. Development of deformable moving lung phantom to simulate respiratory motion in radiotherapy. Med Dosim 2016; 41:113-7. [DOI: 10.1016/j.meddos.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/01/2015] [Accepted: 10/04/2015] [Indexed: 11/16/2022]
|
13
|
Veiga C, Lourenço AM, Mouinuddin S, van Herk M, Modat M, Ourselin S, Royle G, McClelland JR. Toward adaptive radiotherapy for head and neck patients: Uncertainties in dose warping due to the choice of deformable registration algorithm. Med Phys 2015; 42:760-9. [PMID: 25652490 DOI: 10.1118/1.4905050] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The aims of this work were to evaluate the performance of several deformable image registration (DIR) algorithms implemented in our in-house software (NiftyReg) and the uncertainties inherent to using different algorithms for dose warping. METHODS The authors describe a DIR based adaptive radiotherapy workflow, using CT and cone-beam CT (CBCT) imaging. The transformations that mapped the anatomy between the two time points were obtained using four different DIR approaches available in NiftyReg. These included a standard unidirectional algorithm and more sophisticated bidirectional ones that encourage or ensure inverse consistency. The forward (CT-to-CBCT) deformation vector fields (DVFs) were used to propagate the CT Hounsfield units and structures to the daily geometry for "dose of the day" calculations, while the backward (CBCT-to-CT) DVFs were used to remap the dose of the day onto the planning CT (pCT). Data from five head and neck patients were used to evaluate the performance of each implementation based on geometrical matching, physical properties of the DVFs, and similarity between warped dose distributions. Geometrical matching was verified in terms of dice similarity coefficient (DSC), distance transform, false positives, and false negatives. The physical properties of the DVFs were assessed calculating the harmonic energy, determinant of the Jacobian, and inverse consistency error of the transformations. Dose distributions were displayed on the pCT dose space and compared using dose difference (DD), distance to dose difference, and dose volume histograms. RESULTS All the DIR algorithms gave similar results in terms of geometrical matching, with an average DSC of 0.85 ± 0.08, but the underlying properties of the DVFs varied in terms of smoothness and inverse consistency. When comparing the doses warped by different algorithms, we found a root mean square DD of 1.9% ± 0.8% of the prescribed dose (pD) and that an average of 9% ± 4% of voxels within the treated volume failed a 2%pD DD-test (DD2%-pp). Larger DD2%-pp was found within the high dose gradient (21% ± 6%) and regions where the CBCT quality was poorer (28% ± 9%). The differences when estimating the mean and maximum dose delivered to organs-at-risk were up to 2.0%pD and 2.8%pD, respectively. CONCLUSIONS The authors evaluated several DIR algorithms for CT-to-CBCT registrations. In spite of all methods resulting in comparable geometrical matching, the choice of DIR implementation leads to uncertainties in dose warped, particularly in regions of high gradient and/or poor imaging quality.
Collapse
Affiliation(s)
- Catarina Veiga
- Radiation Physics Group, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Ana Mónica Lourenço
- Radiation Physics Group, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Acoustics and Ionizing Radiation Team, National Physical Laboratory, Teddington TW11 0LW, United Kingdom
| | - Syed Mouinuddin
- Department of Radiotherapy, University College London Hospital, London NW1 2BU, United Kingdom
| | - Marcel van Herk
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Marc Modat
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Sébastien Ourselin
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Gary Royle
- Radiation Physics Group, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Jamie R McClelland
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
14
|
Ploquin N, Kertzscher G, Vandervoort E, Cygler JE, Andersen CE, Francescon P. Use of novel fibre-coupled radioluminescence and RADPOS dosimetry systems for total scatter factor measurements in small fields. Phys Med Biol 2014; 60:1-14. [DOI: 10.1088/0031-9155/60/1/1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Yeo UJ, Supple JR, Taylor ML, Smith R, Kron T, Franich RD. Performance of 12 DIR algorithms in low-contrast regions for mass and density conserving deformation. Med Phys 2013; 40:101701. [PMID: 24089891 DOI: 10.1118/1.4819945] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- U J Yeo
- School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne 3000, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Tanderup K, Beddar S, Andersen CE, Kertzscher G, Cygler JE. In vivo
dosimetry in brachytherapy. Med Phys 2013; 40:070902. [DOI: 10.1118/1.4810943] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
Yeo UJ, Taylor ML, Supple JR, Smith RL, Dunn L, Kron T, Franich RD. Is it sensible to “deform” dose? 3D experimental validation of dose-warping. Med Phys 2012; 39:5065-72. [PMID: 22894432 DOI: 10.1118/1.4736534] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- U J Yeo
- School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Clinical use of a novel in vivo 4D monitoring system for simultaneous patient motion and dose measurements. Radiother Oncol 2012; 102:290-6. [DOI: 10.1016/j.radonc.2011.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 11/20/2022]
|
19
|
Ravkilde T, Keall PJ, Højbjerre K, Fledelius W, Worm E, Poulsen PR. Geometric accuracy of dynamic MLC tracking with an implantable wired electromagnetic transponder. Acta Oncol 2011; 50:944-51. [PMID: 21767195 DOI: 10.3109/0284186x.2011.590524] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Tumor motion during radiotherapy delivery can substantially deteriorate the target dose distribution. A promising method to overcome this problem is dynamic multi-leaf collimator (DMLC) tracking. The purpose of this phantom study was to integrate a wired electromagnetic (EM) transponder localization system with DMLC tracking and to investigate the geometric accuracy of the integrated system. MATERIAL AND METHODS DMLC tracking experiments were performed on a Trilogy accelerator with a prototype DMLC tracking system. A wired implantable EM transponder was mounted on a motion stage with a 3 mm tungsten sphere used for target visualization in continuous portal images. The three dimensional (3D) transponder position signal was used for DMLC aperture adaption. The motion stage was programmed to reproduce eight representative patient-measured trajectories for prostate and for lung tumors. The tracking system latency was determined and prediction was used for the lung tumor trajectories to account for the latency. For each trajectory, three conformal fields with a 10 cm circular MLC aperture and 72 s treatment duration were delivered: (1) a 358° arc field; (2) an anterior static field; and (3) a lateral static field. The tracking error was measured as the difference between the marker position and the MLC aperture in the portal images. RESULTS The tracking system latency was 140 ms. The mean root-mean-square (rms) of the 3D transponder localization error was 0.53/0.54 mm for prostate/lung tumor trajectories. The mean rms of the two dimensional (2D) tracking error was 0.69 mm (prostate) and 0.98 mm (lung tumors) with tracking and 3.4 mm (prostate) and 5.3 mm (lung tumors) without tracking. CONCLUSIONS DMLC tracking was integrated with a wired EM transponder localization system and investigated for arc and static field delivery. The system provides sub-mm geometrical errors for most trajectories.
Collapse
Affiliation(s)
- Thomas Ravkilde
- Department of Oncology, Aarhus University Hospital, Denmark.
| | | | | | | | | | | |
Collapse
|