1
|
Multiscale co-simulation of deep brain stimulation with brain networks in neurodegenerative disorders. BRAIN MULTIPHYSICS 2022. [DOI: 10.1016/j.brain.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
2
|
Liu Z, Mhlanga JC, Laforest R, Derenoncourt PR, Siegel BA, Jha AK. A Bayesian approach to tissue-fraction estimation for oncological PET segmentation. Phys Med Biol 2021; 66. [PMID: 34125078 PMCID: PMC8765116 DOI: 10.1088/1361-6560/ac01f4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/17/2021] [Indexed: 01/06/2023]
Abstract
Tumor segmentation in oncological PET is challenging, a major reason being the partial-volume effects (PVEs) that arise due to low system resolution and finite voxel size. The latter results in tissue-fraction effects (TFEs), i.e. voxels contain a mixture of tissue classes. Conventional segmentation methods are typically designed to assign each image voxel as belonging to a certain tissue class. Thus, these methods are inherently limited in modeling TFEs. To address the challenge of accounting for PVEs, and in particular, TFEs, we propose a Bayesian approach to tissue-fraction estimation for oncological PET segmentation. Specifically, this Bayesian approach estimates the posterior mean of the fractional volume that the tumor occupies within each image voxel. The proposed method, implemented using a deep-learning-based technique, was first evaluated using clinically realistic 2D simulation studies with known ground truth, in the context of segmenting the primary tumor in PET images of patients with lung cancer. The evaluation studies demonstrated that the method accurately estimated the tumor-fraction areas and significantly outperformed widely used conventional PET segmentation methods, including a U-net-based method, on the task of segmenting the tumor. In addition, the proposed method was relatively insensitive to PVEs and yielded reliable tumor segmentation for different clinical-scanner configurations. The method was then evaluated using clinical images of patients with stage IIB/III non-small cell lung cancer from ACRIN 6668/RTOG 0235 multi-center clinical trial. Here, the results showed that the proposed method significantly outperformed all other considered methods and yielded accurate tumor segmentation on patient images with Dice similarity coefficient (DSC) of 0.82 (95% CI: 0.78, 0.86). In particular, the method accurately segmented relatively small tumors, yielding a high DSC of 0.77 for the smallest segmented cross-section of 1.30 cm2. Overall, this study demonstrates the efficacy of the proposed method to accurately segment tumors in PET images.
Collapse
Affiliation(s)
- Ziping Liu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States of America
| | - Joyce C Mhlanga
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Paul-Robert Derenoncourt
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Barry A Siegel
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Abhinav K Jha
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States of America.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| |
Collapse
|
3
|
Li X, Yin G, Zhang Y, Dai D, Liu J, Chen P, Zhu L, Ma W, Xu W. Predictive Power of a Radiomic Signature Based on 18F-FDG PET/CT Images for EGFR Mutational Status in NSCLC. Front Oncol 2019; 9:1062. [PMID: 31681597 PMCID: PMC6803612 DOI: 10.3389/fonc.2019.01062] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Radiomics has become an area of interest for tumor characterization in 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) imaging. The aim of the present study was to demonstrate how imaging phenotypes was connected to somatic mutations through an integrated analysis of 115 non-small cell lung cancer (NSCLC) patients with somatic mutation testings and engineered computed PET/CT image analytics. A total of 38 radiomic features quantifying tumor morphological, grayscale statistic, and texture features were extracted from the segmented entire-tumor region of interest (ROI) of the primary PET/CT images. The ensembles for boosting machine learning scheme were employed for classification, and the least absolute shrink age and selection operator (LASSO) method was used to select the most predictive radiomic features for the classifiers. A radiomic signature based on both PET and CT radiomic features outperformed individual radiomic features, the PET or CT radiomic signature, and the conventional PET parameters including the maximum standardized uptake value (SUVmax), SUVmean, SUVpeak, metabolic tumor volume (MTV), and total lesion glycolysis (TLG), in discriminating between mutant-type of epidermal growth factor receptor (EGFR) and wild-type of EGFR- cases with an AUC of 0.805, an accuracy of 80.798%, a sensitivity of 0.826 and a specificity of 0.783. Consistently, a combined radiomic signature with clinical factors exhibited a further improved performance in EGFR mutation differentiation in NSCLC. In conclusion, tumor imaging phenotypes that are driven by somatic mutations may be predicted by radiomics based on PET/CT images.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Guotao Yin
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yufan Zhang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jianjing Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Peihe Chen
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenjuan Ma
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
4
|
Hatt M, Le Rest CC, Tixier F, Badic B, Schick U, Visvikis D. Radiomics: Data Are Also Images. J Nucl Med 2019; 60:38S-44S. [DOI: 10.2967/jnumed.118.220582] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
|
5
|
Sundar LK, Muzik O, Rischka L, Hahn A, Rausch I, Lanzenberger R, Hienert M, Klebermass EM, Füchsel FG, Hacker M, Pilz M, Pataraia E, Traub-Weidinger T, Beyer T. Towards quantitative [18F]FDG-PET/MRI of the brain: Automated MR-driven calculation of an image-derived input function for the non-invasive determination of cerebral glucose metabolic rates. J Cereb Blood Flow Metab 2019; 39:1516-1530. [PMID: 29790820 PMCID: PMC6681439 DOI: 10.1177/0271678x18776820] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Absolute quantification of PET brain imaging requires the measurement of an arterial input function (AIF), typically obtained invasively via an arterial cannulation. We present an approach to automatically calculate an image-derived input function (IDIF) and cerebral metabolic rates of glucose (CMRGlc) from the [18F]FDG PET data using an integrated PET/MRI system. Ten healthy controls underwent test-retest dynamic [18F]FDG-PET/MRI examinations. The imaging protocol consisted of a 60-min PET list-mode acquisition together with a time-of-flight MR angiography scan for segmenting the carotid arteries and intermittent MR navigators to monitor subject movement. AIFs were collected as the reference standard. Attenuation correction was performed using a separate low-dose CT scan. Assessment of the percentage difference between area-under-the-curve of IDIF and AIF yielded values within ±5%. Similar test-retest variability was seen between AIFs (9 ± 8) % and the IDIFs (9 ± 7) %. Absolute percentage difference between CMRGlc values obtained from AIF and IDIF across all examinations and selected brain regions was 3.2% (interquartile range: (2.4-4.3) %, maximum < 10%). High test-retest intravariability was observed between CMRGlc values obtained from AIF (14%) and IDIF (17%). The proposed approach provides an IDIF, which can be effectively used in lieu of AIF.
Collapse
Affiliation(s)
- Lalith Ks Sundar
- 1 QIMP Group, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Otto Muzik
- 2 Department of Radiology, Wayne State University School of Medicine, The Detroit Medical Center, Children's Hospital of Michigan, Detroit, MI, USA
| | - Lucas Rischka
- 3 Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- 3 Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- 1 QIMP Group, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- 3 Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marius Hienert
- 3 Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Eva-Maria Klebermass
- 4 Division of Nuclear Medicine, Department of Biomedical imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Frank-Günther Füchsel
- 5 Institute for Radiology and Nuclear Medicine, Stadtspital Waid Zurich, Zurich, Switzerland
| | - Marcus Hacker
- 4 Division of Nuclear Medicine, Department of Biomedical imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Magdalena Pilz
- 4 Division of Nuclear Medicine, Department of Biomedical imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ekaterina Pataraia
- 6 Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- 4 Division of Nuclear Medicine, Department of Biomedical imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Beyer
- 1 QIMP Group, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Zhu Y, Zhu X. MRI-Driven PET Image Optimization for Neurological Applications. Front Neurosci 2019; 13:782. [PMID: 31417346 PMCID: PMC6684790 DOI: 10.3389/fnins.2019.00782] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are established imaging modalities for the study of neurological disorders, such as epilepsy, dementia, psychiatric disorders and so on. Since these two available modalities vary in imaging principle and physical performance, each technique has its own advantages and disadvantages over the other. To acquire the mutual complementary information and reinforce each other, there is a need for the fusion of PET and MRI. This combined dual-modality (either sequential or simultaneous) could generate preferable soft tissue contrast of brain tissue, flexible acquisition parameters, and minimized exposure to radiation. The most unique superiority of PET/MRI is mainly manifested in MRI-based improvement for the inherent limitations of PET, such as motion artifacts, partial volume effect (PVE) and invasive procedure in quantitative analysis. Head motion during scanning significantly deteriorates the effective resolution of PET image, especially for the dynamic scan with lengthy time. Hybrid PET/MRI device can offer motion correction (MC) for PET data through MRI information acquired simultaneously. Regarding the PVE associated with limited spatial resolution, the process and reconstruction of PET data can be further optimized by using acquired MRI either sequentially or simultaneously. The quantitative analysis of dynamic PET data mainly relies upon an invasive arterial blood sampling procedure to acquire arterial input function (AIF). An image-derived input function (IDIF) method without the need of arterial cannulization, can serve as a potential alternative estimation of AIF. Compared with using PET data only, combining anatomical or functional information from MRI for improving the accuracy in IDIF approach has been demonstrated. Yet, due to the interference and inherent disparity between the two modalities, these methods for optimizing PET image based on MRI still have many technical challenges. This review discussed upon the most recent progress, current challenges and future directions of MRI-driven PET data optimization for neurological applications, with either sequential or simultaneous acquisition approach.
Collapse
Affiliation(s)
- Yuankai Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Visvikis D, Cheze Le Rest C, Jaouen V, Hatt M. Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications. Eur J Nucl Med Mol Imaging 2019; 46:2630-2637. [DOI: 10.1007/s00259-019-04373-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
|
8
|
Jomaa H, Mabrouk R, Khlifa N. Post-reconstruction-based partial volume correction methods: A comprehensive review. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2018.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Abstract
Simultaneous PET-MR imaging improves deficiencies in PET images. The primary areas in which magnetic resonance (MR) has been applied to guide PET results are in correction for patient motion and in improving the effects of PET resolution and partial volume averaging. MR-guided motion correction of PET has been applied to respiratory, cardiac, and gross body movements and shown to improve lesion detectability and contrast. Partial volume correction or resolution improvement of PET governed by MR imaging anatomic information improves visualization of structures and quantitative accuracy. Evaluation in clinical applications is needed to determine their true impacts.
Collapse
Affiliation(s)
- David S Lalush
- Joint Department of Biomedical Engineering, The University of North Carolina, Campus Box 7575, 152 MacNider Hall, Chapel Hill, NC 27599-7575, USA; Joint Department of Biomedical Engineering, North Carolina State University, Campus Box 7115, 911 Oval Drive, Raleigh, NC 27695-7115, USA.
| |
Collapse
|
10
|
Hanzouli-Ben Salah H, Lapuyade-Lahorgue J, Bert J, Benoit D, Lambin P, Van Baardwijk A, Monfrini E, Pieczynski W, Visvikis D, Hatt M. A framework based on hidden Markov trees for multimodal PET/CT image co-segmentation. Med Phys 2017; 44:5835-5848. [PMID: 28837224 DOI: 10.1002/mp.12531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 07/05/2017] [Accepted: 08/08/2017] [Indexed: 01/03/2023] Open
Abstract
PURPOSE The purpose of this study was to investigate the use of a probabilistic quad-tree graph (hidden Markov tree, HMT) to provide fast computation, robustness and an interpretational framework for multimodality image processing and to evaluate this framework for single gross tumor target (GTV) delineation from both positron emission tomography (PET) and computed tomography (CT) images. METHODS We exploited joint statistical dependencies between hidden states to handle the data stack using multi-observation, multi-resolution of HMT and Bayesian inference. This framework was applied to segmentation of lung tumors in PET/CT datasets taking into consideration simultaneously the CT and the PET image information. PET and CT images were considered using either the original voxels intensities, or after wavelet/contourlet enhancement. The Dice similarity coefficient (DSC), sensitivity (SE), positive predictive value (PPV) were used to assess the performance of the proposed approach on one simulated and 15 clinical PET/CT datasets of non-small cell lung cancer (NSCLC) cases. The surrogate of truth was a statistical consensus (obtained with the Simultaneous Truth and Performance Level Estimation algorithm) of three manual delineations performed by experts on fused PET/CT images. The proposed framework was applied to PET-only, CT-only and PET/CT datasets, and were compared to standard and improved fuzzy c-means (FCM) multimodal implementations. RESULTS A high agreement with the consensus of manual delineations was observed when using both PET and CT images. Contourlet-based HMT led to the best results with a DSC of 0.92 ± 0.11 compared to 0.89 ± 0.13 and 0.90 ± 0.12 for Intensity-based HMT and Wavelet-based HMT, respectively. Considering PET or CT only in the HMT led to much lower accuracy. Standard and improved FCM led to comparatively lower accuracy than HMT, even when considering multimodal implementations. CONCLUSIONS We evaluated the accuracy of the proposed HMT-based framework for PET/CT image segmentation. The proposed method reached good accuracy, especially with pre-processing in the contourlet domain.
Collapse
Affiliation(s)
| | | | - Julien Bert
- INSERM, UMR 1101, LaTIM, IBSAM, UBO, UBL, Brest, France
| | - Didier Benoit
- INSERM, UMR 1101, LaTIM, IBSAM, UBO, UBL, Brest, France
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Angela Van Baardwijk
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Emmanuel Monfrini
- SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay, 9 rue Charles Fourier, 91000, Evry, France
| | - Wojciech Pieczynski
- SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay, 9 rue Charles Fourier, 91000, Evry, France
| | | | - Mathieu Hatt
- INSERM, UMR 1101, LaTIM, IBSAM, UBO, UBL, Brest, France
| |
Collapse
|
11
|
Richard MA, Fouquet JP, Lebel R, Lepage M. MRI-Guided Derivation of the Input Function for PET Kinetic Modeling. PET Clin 2016; 11:193-202. [DOI: 10.1016/j.cpet.2015.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Abstract
Multimodal imaging has led to a more detailed exploration of different physiologic processes with integrated PET/MR imaging being the most recent entry. Although the clinical need is still questioned, it is well recognized that it represents one of the most active and promising fields of medical imaging research in terms of software and hardware. The hardware developments have moved from small detector components to high-performance PET inserts and new concepts in full systems. Conversely, the software focuses on the efficient performance of necessary corrections without the use of CT data. The most recent developments in both directions are reviewed.
Collapse
Affiliation(s)
- Charalampos Tsoumpas
- Division of Biomedical Imaging, Faculty of Medicine and Health, University of Leeds, 8.001a, Worsley Building, Clarendon Way, Leeds LS2 9JT, UK
| | - Dimitris Visvikis
- LaTIM UMR 1101, INSERM, University of Brest, Bat 1, 1er etage, 5 avenue Foch, Brest 29609, France
| | - George Loudos
- Department of Biomedical Engineering, Technological Educational Institute of Athens, Ag. Spiridonos 28, Egaleo, Athens 12210, Greece.
| |
Collapse
|
13
|
Reilhac A, Charil A, Wimberley C, Angelis G, Hamze H, Callaghan P, Garcia MP, Boisson F, Ryder W, Meikle SR, Gregoire MC. 4D PET iterative deconvolution with spatiotemporal regularization for quantitative dynamic PET imaging. Neuroimage 2015; 118:484-93. [PMID: 26080302 DOI: 10.1016/j.neuroimage.2015.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/25/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022] Open
Abstract
Quantitative measurements in dynamic PET imaging are usually limited by the poor counting statistics particularly in short dynamic frames and by the low spatial resolution of the detection system, resulting in partial volume effects (PVEs). In this work, we present a fast and easy to implement method for the restoration of dynamic PET images that have suffered from both PVE and noise degradation. It is based on a weighted least squares iterative deconvolution approach of the dynamic PET image with spatial and temporal regularization. Using simulated dynamic [(11)C] Raclopride PET data with controlled biological variations in the striata between scans, we showed that the restoration method provides images which exhibit less noise and better contrast between emitting structures than the original images. In addition, the method is able to recover the true time activity curve in the striata region with an error below 3% while it was underestimated by more than 20% without correction. As a result, the method improves the accuracy and reduces the variability of the kinetic parameter estimates calculated from the corrected images. More importantly it increases the accuracy (from less than 66% to more than 95%) of measured biological variations as well as their statistical detectivity.
Collapse
Affiliation(s)
- Anthonin Reilhac
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia; Brain & Mind Research Institute, University of Sydney, Sydney, NSW, Australia.
| | - Arnaud Charil
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia; Brain & Mind Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Catriona Wimberley
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia; Brain & Mind Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Georgios Angelis
- Brain & Mind Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Hasar Hamze
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia; Brain & Mind Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Paul Callaghan
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia; Brain & Mind Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Marie-Paule Garcia
- UMR 1037 INSERM/UPS, CRCT, 31062 Toulouse, France; Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Frederic Boisson
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia; Brain & Mind Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Will Ryder
- Brain & Mind Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Steven R Meikle
- Brain & Mind Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Marie-Claude Gregoire
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia; Brain & Mind Research Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Tang J, Rahmim A. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy. Phys Med Biol 2014; 60:31-48. [PMID: 25479422 DOI: 10.1088/0031-9155/60/1/31] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE-MAP algorithm resulted in comparable regional mean values to those from the maximum likelihood algorithm while reducing noise. Achieving robust performance in various noise-level simulation and patient studies, the WJE-MAP algorithm demonstrates its potential in clinical quantitative PET imaging.
Collapse
Affiliation(s)
- Jing Tang
- Department of Electrical and Computer Engineering, Oakland University, 2200 N Squirrel Rd, Rochester, MI 48309, USA
| | | |
Collapse
|
15
|
Su Y, Blazey TM, Snyder AZ, Raichle ME, Marcus DS, Ances BM, Bateman RJ, Cairns NJ, Aldea P, Cash L, Christensen JJ, Friedrichsen K, Hornbeck RC, Farrar AM, Owen CJ, Mayeux R, Brickman AM, Klunk W, Price JC, Thompson PM, Ghetti B, Saykin AJ, Sperling RA, Johnson KA, Schofield PR, Buckles V, Morris JC, Benzinger TLS. Partial volume correction in quantitative amyloid imaging. Neuroimage 2014; 107:55-64. [PMID: 25485714 DOI: 10.1016/j.neuroimage.2014.11.058] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/26/2014] [Accepted: 11/30/2014] [Indexed: 12/16/2022] Open
Abstract
Amyloid imaging is a valuable tool for research and diagnosis in dementing disorders. As positron emission tomography (PET) scanners have limited spatial resolution, measured signals are distorted by partial volume effects. Various techniques have been proposed for correcting partial volume effects, but there is no consensus as to whether these techniques are necessary in amyloid imaging, and, if so, how they should be implemented. We evaluated a two-component partial volume correction technique and a regional spread function technique using both simulated and human Pittsburgh compound B (PiB) PET imaging data. Both correction techniques compensated for partial volume effects and yielded improved detection of subtle changes in PiB retention. However, the regional spread function technique was more accurate in application to simulated data. Because PiB retention estimates depend on the correction technique, standardization is necessary to compare results across groups. Partial volume correction has sometimes been avoided because it increases the sensitivity to inaccuracy in image registration and segmentation. However, our results indicate that appropriate PVC may enhance our ability to detect changes in amyloid deposition.
Collapse
Affiliation(s)
- Yi Su
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Tyler M Blazey
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Abraham Z Snyder
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Marcus E Raichle
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Beau M Ances
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nigel J Cairns
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Patricia Aldea
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lisa Cash
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jon J Christensen
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Karl Friedrichsen
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Russ C Hornbeck
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Angela M Farrar
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Christopher J Owen
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Adam M Brickman
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - William Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Julie C Price
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA 90032, USA; Department of Neurology, University of Southern California, Los Angeles, CA 90032, USA; Department of Psychiatry, University of Southern California, Los Angeles, CA 90032, USA; Department of Engineering, University of Southern California, Los Angeles, CA 90032, USA; Department of Radiology, University of Southern California, Los Angeles, CA 90032, USA; Department of Pediatrics, University of Southern California, Los Angeles, CA 90032, USA; Department of Ophthalmology, University of Southern California, Los Angeles, CA 90032, USA
| | - Bernadino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Keith A Johnson
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW 2031, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Virginia Buckles
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | |
Collapse
|
16
|
Bone SPECT image reconstruction using deconvolution and wavelet transformation: Development, performance assessment and comparison in phantom and patient study with standard OSEM and resolution recovery algorithm. Phys Med 2014; 30:858-64. [DOI: 10.1016/j.ejmp.2014.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 11/21/2022] Open
|
17
|
Rong Y, Vernaleken I, Winz OH, Goedicke A, Mottaghy FM, Kops ER. Simulation-based partial volume correction for dopaminergic PET imaging: Impact of segmentation accuracy. Z Med Phys 2014; 25:230-42. [PMID: 25172832 DOI: 10.1016/j.zemedi.2014.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 11/16/2022]
Abstract
AIM Partial volume correction (PVC) is an essential step for quantitative positron emission tomography (PET). In the present study, PVELab, a freely available software, is evaluated for PVC in (18)F-FDOPA brain-PET, with a special focus on the accuracy degradation introduced by various MR-based segmentation approaches. METHODS Four PVC algorithms (M-PVC; MG-PVC; mMG-PVC; and R-PVC) were analyzed on simulated (18)F-FDOPA brain-PET images. MR image segmentation was carried out using FSL (FMRIB Software Library) and SPM (Statistical Parametric Mapping) packages, including additional adaptation for subcortical regions (SPML). Different PVC and segmentation combinations were compared with respect to deviations in regional activity values and time-activity curves (TACs) of the occipital cortex (OCC), caudate nucleus (CN), and putamen (PUT). Additionally, the PVC impact on the determination of the influx constant (Ki) was assessed. RESULTS Main differences between tissue-maps returned by three segmentation algorithms were found in the subcortical region, especially at PUT. Average misclassification errors in combination with volume reduction was found to be lowest for SPML (PUT < 30%) and highest for FSL (PUT > 70%). Accurate recovery of activity data at OCC is achieved by M-PVC (apparent recovery coefficient varies between 0.99 and 1.10). The other three evaluated PVC algorithms have demonstrated to be more suitable for subcortical regions with MG-PVC and mMG-PVC being less prone to the largest tissue misclassification error simulated in this study. Except for M-PVC, quantification accuracy of Ki for CN and PUT was clearly improved by PVC. CONCLUSIONS The regional activity value of PUT was appreciably overcorrected by most of the PVC approaches employing FSL or SPM segmentation, revealing the importance of accurate MR image segmentation for the presented PVC framework. The selection of a PVC approach should be adapted to the anatomical structure of interest. Caution is recommended in subsequent interpretation of Ki values. The possible different change of activity concentrations due to PVC in both target and reference regions tends to alter the corresponding TACs, introducing bias to Ki determination. The accuracy of quantitative analysis was improved by PVC but at the expense of precision reduction, indicating the potential impropriety of applying the presented framework for group comparison studies.
Collapse
Affiliation(s)
- Ye Rong
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Ingo Vernaleken
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital Aachen, Aachen, Germany
| | - Oliver H Winz
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Andreas Goedicke
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany; Philips Research Laboratories, High Tech Campus, Eindhoven, The Netherlands
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany; Department of Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Elena Rota Kops
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
18
|
Funck T, Paquette C, Evans A, Thiel A. Surface-based partial-volume correction for high-resolution PET. Neuroimage 2014; 102 Pt 2:674-87. [PMID: 25175542 DOI: 10.1016/j.neuroimage.2014.08.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/09/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022] Open
Abstract
Tissue radioactivity concentrations, measured with positron emission tomography (PET) are subject to partial volume effects (PVE) due to the limited spatial resolution of the scanner. Last generation high-resolution PET cameras with a full width at half maximum (FWHM) of 2-4mm are less prone to PVEs than previous generations. Corrections for PVEs are still necessary, especially when studying small brain stem nuclei or small variations in cortical neuroreceptor concentrations which may be related to cytoarchitectonic differences. Although several partial-volume correction (PVC) algorithms exist, these are frequently based on a priori assumptions about tracer distribution or only yield corrected values of regional activity concentrations without providing PVE corrected images. We developed a new iterative deconvolution algorithm (idSURF) for PVC of PET images that aims to overcome these limitations by using two innovative techniques: 1) the incorporation of anatomic information from a cortical gray matter surface representation, extracted from magnetic resonance imaging (MRI) and 2) the use of anatomically constrained filtering to attenuate noise. PVE corrected images were generated with idSURF implemented into a non-interactive processing pipeline. idSURF was validated using simulated and clinical PET data sets and compared to a frequently used standard PVC method (Geometric Transfer Matrix: GTM). The results on simulated data sets show that idSURF consistently recovers accurate radiotracer concentrations within 1-5% of true values. Both radiotracer concentrations and non-displaceable binding potential (BPnd) values derived from clinical PET data sets with idSURF were highly correlated with those obtained with the standard PVC method (R(2) = 0.99, error = 0%-3.2%). These results suggest that idSURF is a valid and potentially clinically useful PVC method for automatic processing of large numbers of PET data sets.
Collapse
Affiliation(s)
- Thomas Funck
- Montreal Neurological Institute, McGill University, Montreal, Canada; Jewish General Hospital, Montreal Canada
| | - Caroline Paquette
- Jewish General Hospital, Montreal Canada; Department of Neurology and Neurosurgery, Montreal, Canada
| | - Alan Evans
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alexander Thiel
- Jewish General Hospital, Montreal Canada; Department of Neurology and Neurosurgery, Montreal, Canada.
| |
Collapse
|
19
|
|
20
|
Wang Y, Xu R, Luo G, Wu J. Three-dimensional reconstruction of light microscopy image sections: present and future. Front Med 2014; 9:30-45. [DOI: 10.1007/s11684-014-0337-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/27/2014] [Indexed: 12/31/2022]
|
21
|
Le Pogam A, Hanzouli H, Hatt M, Cheze Le Rest C, Visvikis D. Denoising of PET images by combining wavelets and curvelets for improved preservation of resolution and quantitation. Med Image Anal 2013; 17:877-91. [DOI: 10.1016/j.media.2013.05.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 04/25/2013] [Accepted: 05/08/2013] [Indexed: 11/28/2022]
|
22
|
Esquia Medina GN, Borel S, Nguyen Y, Ambert-Dahan E, Ferrary E, Sterkers O, Grayeli AB. Is electrode-modiolus distance a prognostic factor for hearing performances after cochlear implant surgery? Audiol Neurootol 2013; 18:406-13. [PMID: 24157488 DOI: 10.1159/000354115] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 06/28/2013] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to evaluate electrode array position in relation to cochlear anatomy and its influence on hearing performance in cochlear implantees. Twenty-two patients (25 ears) with Med-El cochlear implants were included in this retrospective study. A negative correlation was observed between electrode-modiolus distance (EMD) at the cochlear base and monosyllabic word discrimination 6 months after implantation. We found no correlation between EMD and hearing outcome at 12 months. The insertion depth/cochlear perimeter ratio appeared to negatively influence the EMD at the base. Indeed, deep insertions in small cochleae appeared to yield smaller EMD and better hearing performance. This observation supports the idea of preplanning the surgery by adapting the electrode array to the length of the available scala tympani.
Collapse
|
23
|
Rahmim A, Tang J. Noise propagation in resolution modeled PET imaging and its impact on detectability. Phys Med Biol 2013; 58:6945-68. [PMID: 24029682 DOI: 10.1088/0031-9155/58/19/6945] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Positron emission tomography imaging is affected by a number of resolution degrading phenomena, including positron range, photon non-collinearity and inter-crystal blurring. An approach to this issue is to model some or all of these effects within the image reconstruction task, referred to as resolution modeling (RM). This approach is commonly observed to yield images of higher resolution and subsequently contrast, and can be thought of as improving the modulation transfer function. Nonetheless, RM can substantially alter the noise distribution. In this work, we utilize noise propagation models in order to accurately characterize the noise texture of reconstructed images in the presence of RM. Furthermore we consider the task of lesion or defect detection, which is highly determined by the noise distribution as quantified using the noise power spectrum. Ultimately, we use this framework to demonstrate why conventional trade-off analyses (e.g. contrast versus noise, using simplistic noise metrics) do not provide a complete picture of the impact of RM and that improved performance of RM according to such analyses does not necessarily translate to the superiority of RM in detection task performance.
Collapse
Affiliation(s)
- Arman Rahmim
- Department of Radiology, Johns Hopkins University, Baltimore, MD 21287, USA. Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | | |
Collapse
|
24
|
Rahmim A, Qi J, Sossi V. Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys 2013; 40:064301. [PMID: 23718620 PMCID: PMC3663852 DOI: 10.1118/1.4800806] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/22/2013] [Accepted: 03/26/2013] [Indexed: 01/11/2023] Open
Abstract
In this paper, the authors review the field of resolution modeling in positron emission tomography (PET) image reconstruction, also referred to as point-spread-function modeling. The review includes theoretical analysis of the resolution modeling framework as well as an overview of various approaches in the literature. It also discusses potential advantages gained via this approach, as discussed with reference to various metrics and tasks, including lesion detection observer studies. Furthermore, attention is paid to issues arising from this approach including the pervasive problem of edge artifacts, as well as explanation and potential remedies for this phenomenon. Furthermore, the authors emphasize limitations encountered in the context of quantitative PET imaging, wherein increased intervoxel correlations due to resolution modeling can lead to significant loss of precision (reproducibility) for small regions of interest, which can be a considerable pitfall depending on the task of interest.
Collapse
Affiliation(s)
- Arman Rahmim
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21287, USA.
| | | | | |
Collapse
|
25
|
Introduction to the analysis of PET data in oncology. J Pharmacokinet Pharmacodyn 2013; 40:419-36. [PMID: 23443280 DOI: 10.1007/s10928-013-9307-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/13/2013] [Indexed: 12/22/2022]
Abstract
Several reviews on specific topics related to positron emission tomography (PET) ranging in complexity from introductory to highly technical have already been published. This introduction to the analysis of PET data was written as a simple guide of the different phases of analysis of a given PET dataset, from acquisition to preprocessing, to the final data analysis. Although sometimes issues specific to PET in neuroimaging will be mentioned for comparison, most of the examples and applications provided will refer to oncology. Due to the limitations of space we couldn't address each issue comprehensively but, rather, we provided a general overview of each topic together with the references that the interested reader should consult. We will assume a familiarity with the basic principles of PET imaging.
Collapse
|
26
|
Tziortzi AC, Haber SN, Searle GE, Tsoumpas C, Long CJ, Shotbolt P, Douaud G, Jbabdi S, Behrens TEJ, Rabiner EA, Jenkinson M, Gunn RN. Connectivity-based functional analysis of dopamine release in the striatum using diffusion-weighted MRI and positron emission tomography. ACTA ACUST UNITED AC 2013; 24:1165-77. [PMID: 23283687 DOI: 10.1093/cercor/bhs397] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The striatum acts in conjunction with the cortex to control and execute functions that are impaired by abnormal dopamine neurotransmission in disorders such as Parkinson's and schizophrenia. To date, in vivo quantification of striatal dopamine has been restricted to structure-based striatal subdivisions. Here, we present a multimodal imaging approach that quantifies the endogenous dopamine release following the administration of d-amphetamine in the functional subdivisions of the striatum of healthy humans with [(11)C]PHNO and [(11)C]Raclopride positron emission tomography ligands. Using connectivity-based (CB) parcellation, we subdivided the striatum into functional subregions based on striato-cortical anatomical connectivity information derived from diffusion magnetic resonance imaging (MRI) and probabilistic tractography. Our parcellation showed that the functional organization of the striatum was spatially coherent across individuals, congruent with primate data and previous diffusion MRI studies, with distinctive and overlapping networks. d-amphetamine induced the highest dopamine release in the limbic followed by the sensory, motor, and executive areas. The data suggest that the relative regional proportions of D2-like receptors are unlikely to be responsible for this regional dopamine release pattern. Notably, the homogeneity of dopamine release was significantly higher within the CB functional subdivisions in comparison with the structural subdivisions. These results support an association between local levels of dopamine release and cortical connectivity fingerprints.
Collapse
|
27
|
Abstract
Brain tumors are a collection of heterogeneous intracranial neoplasms. Molecular PET and anatomic MR imaging together can provide reliable quantitative information on tumor characterization, and help in treatment planning and monitoring therapeutic evaluation, noninvasively. Coregistration of MRI and PET images have been successfully used to improve diagnostic accuracy and in evaluating treatment response. Whole-body PET-MR scanners capable of assessing morphologic, metabolic, and functional information simultaneously are now commercially available. Early clinical studies speculate that PET-MR will be useful in several clinical specialties. In this report, we highlight the advances and applications of hybrid PET-MR in quantitative brain tumor imaging.
Collapse
|
28
|
Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol 2012; 57:R119-59. [DOI: 10.1088/0031-9155/57/21/r119] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Anatomically guided voxel-based partial volume effect correction in brain PET: impact of MRI segmentation. Comput Med Imaging Graph 2012; 36:610-9. [PMID: 23046730 DOI: 10.1016/j.compmedimag.2012.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/07/2012] [Accepted: 09/07/2012] [Indexed: 11/23/2022]
Abstract
Partial volume effect is still considered one of the main limitations in brain PET imaging given the limited spatial resolution of current generation PET scanners. The accuracy of anatomically guided partial volume effect correction (PVC) algorithms in brain PET is largely dependent on the performance of MRI segmentation algorithms partitioning the brain into its main classes, namely gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). A comparative evaluation of four brain MRI segmentation algorithms bundled in the successive releases of Statistical Parametric Mapping (SPM) package (SPM99, SPM2, SPM5, SPM8) using clinical neurological examinations was performed. Subsequently, their impact on PVC in (18)F-FDG brain PET imaging was assessed. The principle of the different variants of the image segmentation algorithm is to spatially normalize the subject's MR images to a corresponding template. PET images were corrected for partial volume effect using GM volume segmented from coregistered MR images. The PVC approach aims to compensate for signal dilution in non-active tissues such as CSF, which becomes an important issue in the case of tissue atrophy to prevent a misinterpretation of decrease of metabolism owing to PVE. The study population consisted of 19 patients suffering from neurodegenerative dementia. Image segmentation performed using SPM5 was used as reference. The comparison showed that previous releases of SPM (SPM99 and SPM2) result in larger gray matter regions (~20%) and smaller white matter regions (between -17% and -6%), thus introducing non-negligible bias in PVC PET activity estimates (between 30% and 90%). In contrary, the more recent release (SPM8) results in similar results (<1%). It was concluded that the choice of the segmentation algorithm for MRI-guided PVC in PET plays a crucial role for the accurate estimation of PET activity concentration. The segmentation algorithm embedded within the latest release of SPM satisfies the requirement of robust and accurate segmentation for MRI-guided PVC in brain PET imaging.
Collapse
|