1
|
Yabe T, Yamaguchi M, Liu CC, Toshito T, Kawachi N, Yamamoto S. Deep learning-based in vivo dose verification from proton-induced secondary-electron-bremsstrahlung images with various count level. Phys Med 2022; 99:130-139. [PMID: 35689979 DOI: 10.1016/j.ejmp.2022.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Proton-induced secondary-electron-bremsstrahlung (SEB) imaging is a promising method for estimating the ranges of particle beam. However, SEB images do not directly represent dose distributions of particle beams. In addition, the ranges estimated from measured images were deviated because of limited spatial resolutions of the developed x-ray camera as well as statistical noise in the images. To solve these problems, we proposed a method for predicting high-resolution dose images from SEB images with various count level using a deep learning (DL) approach for range and width verification. METHODS In this study, we adopted the double U-Net model, which is a previously proposed deep convolutional network model. The first U-Net model in the double U-Net model was used to denoise the SEB images with various count level. The first U-Net model for denoising was trained on 8000 pairs of SEB images with various count level and noise-free images which were created by a sophisticated in-house developed model function. The second U-Net model for dose prediction was trained using 8000 pairs of denoised SEB images from the first U-Net model and high-resolution dose images generated by Monte Carlo simulation. RESULTS For both simulation and measurement data, the trained DL model could successfully predict high-resolution dose images which showed a clear Bragg peak and no statistical noise. The difference of the range and width was less than 2.1 mm, even from the SEB images measured with a decrease in the number of irradiated protons to less than 11% of 3.2 × 1011 protons. CONCLUSIONS High-resolution dose images from measured and simulated SEB images were successfully predicted by using the trained DL model for protons. Our proposed DL model was feasible to predict dose images accurately even with smaller number of irradiated protons.
Collapse
Affiliation(s)
- Takuya Yabe
- Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Aichi, Japan; Department of Medical Technology, Nagoya University Hospital, Aichi, Japan.
| | - Mitsutaka Yamaguchi
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology (QST), Gunma, Japan
| | - Chih-Chieh Liu
- Department of Biomedical Engineering, University of California, Davis, USA
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Aichi, Japan
| | - Naoki Kawachi
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology (QST), Gunma, Japan
| | - Seiichi Yamamoto
- Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Aichi, Japan; Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
2
|
Pennazio F, Ferrero V, D'Onghia G, Garbolino S, Fiorina E, Marti Villarreal OA, Mas Milian F, Monaco V, Monti V, Patera A, Werner J, Wheadon R, Rafecas M. Proton therapy monitoring: spatiotemporal emission reconstruction with prompt gamma timing and implementation with PET detectors. Phys Med Biol 2022; 67. [PMID: 35193131 DOI: 10.1088/1361-6560/ac5765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
Objective. In this study we introduce spatiotemporal emission reconstruction prompt gamma timing (SER-PGT), a new method to directly reconstruct the prompt photon emission in the space and time domains inside the patient in proton therapy.Approach. SER-PGT is based on the numerical optimisation of a multidimensional likelihood function, followed by a post-processing of the results. The current approach relies on a specific implementation of the maximum-likelihood expectation maximisation algorithm. The robustness of the method is guaranteed by the complete absence of any information about the target composition in the algorithm.Main results. Accurate Monte Carlo simulations indicate a range resolution of about 0.5 cm (standard deviation) when considering 107primary protons impinging on an homogeneous phantom. Preliminary results on an anthropomorphic phantom are also reported.Significance. By showing the feasibility for the reconstruction of the primary particle range using PET detectors, this study provides significant basis for the development of an hybrid in-beam PET and prompt photon device.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Felix Mas Milian
- INFN, Torino, Italy.,Universitá degli Studi di Torino, Torino, Italy.,Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | - Vincenzo Monaco
- INFN, Torino, Italy.,Universitá degli Studi di Torino, Torino, Italy
| | | | | | | | | | | |
Collapse
|
3
|
Yamamoto S, Yamaguchi M, Akagi T, Kitano M, Kawachi N. Sensitivity improvement of YAP(Ce) cameras for imaging of secondary electron bremsstrahlung x-rays emitted during carbon-ion irradiation: problem and solution. Phys Med Biol 2020; 65:105008. [PMID: 32101809 DOI: 10.1088/1361-6560/ab7a6e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Low-energy x-ray imaging of secondary electron bremsstrahlung x-rays emitted during carbon-ion irradiation is a promising method for range estimation and could be used for imaging with almost clinical dose levels of carbon ion. However, the number of counts in images with clinical dose levels is relatively small, making it difficult to obtain precise range estimations. Since improving the sensitivity of the x-ray camera may solve this issue, we developed two new types of x-ray cameras. One uses a 1 mm thick, 40 mm × 40 mm cerium-doped yttrium aluminum perovskite (YA1O3: YAP(Ce)) scintillator plate combined with a 2 inch square flat panel photomultiplier tube (FP-PMT) contained in a 2 cm thick tungsten shield with a pinhole collimator positioned 50 mm from the scintillator; the other uses a 0.5 mm thick, 20 mm × 20 mm YAP(Ce) scintillator plate combined with a 1 inch square position sensitive photomultiplier tube (PSPMT) contained in the same tungsten shield with a pinhole collimator, but with the scintillator positioned closer (30 mm) to the pinhole collimator to obtain a similar field of view. For both cameras, we used a wider angle (∼55°) pinhole collimator to measure the phantom closer to improve sensitivity. Although the 40 mm × 40 mm YAP(Ce) camera had high system spatial resolution, the background count fractions were high and produced a high count area at the center of the images due to the pulse pileup of the signals. With the 20 mm × 20 mm YAP(Ce) camera, we obtained x-ray images with low background counts without a high count area at the image center. By smoothing the measured images, we were able to estimate the ranges even for clinical dose levels. We therefore confirmed that one of our newly developed YAP(Ce) cameras had high sensitivity and is promising for the imaging of secondary electron bremsstrahlung x-rays during irradiation of carbon ions in clinical conditions.
Collapse
Affiliation(s)
- Seiichi Yamamoto
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673, Japan
| | | | | | | | | |
Collapse
|
4
|
A deep learning approach for converting prompt gamma images to proton dose distributions: A Monte Carlo simulation study. Phys Med 2020; 69:110-119. [DOI: 10.1016/j.ejmp.2019.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/11/2019] [Accepted: 12/05/2019] [Indexed: 11/20/2022] Open
|
5
|
Parodi K, Polf JC. In vivo range verification in particle therapy. Med Phys 2018; 45:e1036-e1050. [PMID: 30421803 PMCID: PMC6262833 DOI: 10.1002/mp.12960] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/11/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022] Open
Abstract
Exploitation of the full potential offered by ion beams in clinical practice is still hampered by several sources of treatment uncertainties, particularly related to the limitations of our ability to locate the position of the Bragg peak in the tumor. To this end, several efforts are ongoing to improve the characterization of patient position, anatomy, and tissue stopping power properties prior to treatment as well as to enable in vivo verification of the actual dose delivery, or at least beam range, during or shortly after treatment. This contribution critically reviews methods under development or clinical testing for verification of ion therapy, based on pretreatment range and tissue probing as well as the detection of secondary emissions or physiological changes during and after treatment, trying to disentangle approaches of general applicability from those more specific to certain anatomical locations. Moreover, it discusses future directions, which could benefit from an integration of multiple modalities or address novel exploitation of the measurable signals for biologically adapted therapy.
Collapse
Affiliation(s)
- Katia Parodi
- Department of Medical PhysicsLudwig‐Maximilians‐Universität MünchenAm Coulombwall 1Garching b. Munich85748Germany
| | - Jerimy C. Polf
- Deparment of Radiation OncologyMaryland Proton Treatment CenterUniversity of Maryland School of Medicine22 South Greene St.BaltimoreMD21201USA
| |
Collapse
|
6
|
Draeger E, Mackin D, Peterson S, Chen H, Avery S, Beddar S, Polf JC. 3D prompt gamma imaging for proton beam range verification. Phys Med Biol 2018; 63:035019. [PMID: 29380750 DOI: 10.1088/1361-6560/aaa203] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We tested the ability of a single Compton camera (CC) to produce 3-dimensional (3D) images of prompt gammas (PGs) emitted during the irradiation of a tissue-equivalent plastic phantom with proton pencil beams for clinical doses delivered at clinical dose rates. PG measurements were made with a small prototype CC placed at three different locations along the proton beam path. We evaluated the ability of the CC to produce images at each location for two clinical scenarios: (1) the delivery of a single 2 Gy pencil beam from a hypo-fractionated treatment (~9 × 108 protons), and (2) a single pencil beam from a standard treatment (~1 × 108 protons). Additionally, the data measured at each location were combined to simulate measurements with a larger scale, clinical CC and its ability to image shifts in the Bragg peak (BP) range for both clinical scenarios. With our prototype CC, the location of the distal end of the BP could be seen with the CC placed up to 4 cm proximal or distal to the BP distal falloff. Using the data from the simulated full scale clinical CC, 3D images of the PG emission were produced with the delivery of as few as 1 × 108 protons, and shifts in the proton beam range as small as 2 mm could be detected for delivery of a 2 Gy spot. From these results we conclude that 3D PG imaging for proton range verification under clinical beam delivery conditions is possible with a single CC.
Collapse
Affiliation(s)
- E Draeger
- Department of Radiation Oncology, University of Maryland School of Medicine, 22 South Greene St., Baltimore, MD 21201, United States of America
| | | | | | | | | | | | | |
Collapse
|
7
|
Dendooven P, Buitenhuis HJT, Diblen F, Heeres PN, Biegun AK, Fiedler F, van Goethem MJ, van der Graaf ER, Brandenburg S. Short-lived positron emitters in beam-on PET imaging during proton therapy. Phys Med Biol 2015; 60:8923-47. [PMID: 26539812 DOI: 10.1088/0031-9155/60/23/8923] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The only method for in vivo dose delivery verification in proton beam radiotherapy in clinical use today is positron emission tomography (PET) of the positron emitters produced in the patient during irradiation. PET imaging while the beam is on (so called beam-on PET) is an attractive option, providing the largest number of counts, the least biological washout and the fastest feedback. In this implementation, all nuclides, independent of their half-life, will contribute. As a first step towards assessing the relevance of short-lived nuclides (half-life shorter than that of (10)C, T1/2 = 19 s) for in vivo dose delivery verification using beam-on PET, we measured their production in the stopping of 55 MeV protons in water, carbon, phosphorus and calcium The most copiously produced short-lived nuclides and their production rates relative to the relevant long-lived nuclides are: (12)N (T1/2 = 11 ms) on carbon (9% of (11)C), (29)P (T1/2 = 4.1 s) on phosphorus (20% of (30)P) and (38m)K (T1/2 = 0.92 s) on calcium (113% of (38g)K). No short-lived nuclides are produced on oxygen. The number of decays integrated from the start of an irradiation as a function of time during the irradiation of PMMA and 4 tissue materials has been determined. For (carbon-rich) adipose tissue, (12)N dominates up to 70 s. On bone tissue, (12)N dominates over (15)O during the first 8-15 s (depending on carbon-to-oxygen ratio). The short-lived nuclides created on phosphorus and calcium provide 2.5 times more beam-on PET counts than the long-lived ones produced on these elements during a 70 s irradiation. From the estimated number of (12)N PET counts, we conclude that, for any tissue, (12)N PET imaging potentially provides equal to superior proton range information compared to prompt gamma imaging with an optimized knife-edge slit camera. The practical implementation of (12)N PET imaging is discussed.
Collapse
Affiliation(s)
- P Dendooven
- KVI-Center for Advanced Radiation Technology, University of Groningen, Zernikelaan 25, 9747AA Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Polf JC, Avery S, Mackin DS, Beddar S. Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification. Phys Med Biol 2015; 60:7085-99. [DOI: 10.1088/0031-9155/60/18/7085] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Abstract
Protons are an interesting modality for radiotherapy because of their well defined range and favourable depth dose characteristics. On the other hand, these same characteristics lead to added uncertainties in their delivery. This is particularly the case at the distal end of proton dose distributions, where the dose gradient can be extremely steep. In practice however, this gradient is rarely used to spare critical normal tissues due to such worries about its exact position in the patient. Reasons for this uncertainty are inaccuracies and non-uniqueness of the calibration from CT Hounsfield units to proton stopping powers, imaging artefacts (e.g. due to metal implants) and anatomical changes of the patient during treatment. In order to improve the precision of proton therapy therefore, it would be extremely desirable to verify proton range in vivo, either prior to, during, or after therapy. In this review, we describe and compare state-of-the art in vivo proton range verification methods currently being proposed, developed or clinically implemented.
Collapse
|
10
|
Robert C, Dedes G, Battistoni G, Böhlen TT, Buvat I, Cerutti F, Chin MPW, Ferrari A, Gueth P, Kurz C, Lestand L, Mairani A, Montarou G, Nicolini R, Ortega PG, Parodi K, Prezado Y, Sala PR, Sarrut D, Testa E. Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes. Phys Med Biol 2013; 58:2879-99. [DOI: 10.1088/0031-9155/58/9/2879] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Kim CH, Park JH, Seo H, Lee HR. Erratum: “Gamma electron vertex imaging and application to beam range verification in proton therapy”. Med Phys 2012; 39:6523-6524. [DOI: 10.1118/1.4749930] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 11/07/2022] Open
|
12
|
Han S, Auger C, Castonguay Z, Appanna VP, Thomas SC, Appanna VD. The unravelling of metabolic dysfunctions linked to metal-associated diseases by blue native polyacrylamide gel electrophoresis. Anal Bioanal Chem 2012; 405:1821-31. [PMID: 23001308 DOI: 10.1007/s00216-012-6413-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/01/2012] [Accepted: 09/05/2012] [Indexed: 01/18/2023]
Abstract
Gel electrophoresis is routinely used to separate and analyse macromolecules in biological systems. Although many of these electrophoretic techniques necessitate the denaturing of the analytes prior to their analysis, blue native polyacrylamide gel electrophoresis (BN-PAGE) permits the investigation of proteins/enzymes and their supramolecular structures such as the metabolon in native form. This attribute renders this analytical tool conducive to deciphering the metabolic perturbations invoked by metal toxicity. In this review, we elaborate on how BN-PAGE has led to the discovery of the dysfunctional metabolic pathways associated with disorders such as Alzheimer's disease, Parkinson's disease, and obesity that have been observed as a consequence of exposure to various metal toxicants.
Collapse
Affiliation(s)
- Sungwon Han
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | | | | | | | | | | |
Collapse
|