1
|
Rojas SS, Tridandapani S, Lindsey BD. A Thin Transducer With Integrated Acoustic Metamaterial for Cardiac CT Imaging and Gating. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1064-1076. [PMID: 34971531 DOI: 10.1109/tuffc.2021.3140034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coronary artery disease (CAD) is a leading cause of death globally. Computed tomography coronary angiography (CTCA) is a noninvasive imaging procedure for diagnosis of CAD. However, CTCA requires cardiac gating to ensure that diagnostic-quality images are acquired in all patients. Gating reliability could be improved by utilizing ultrasound (US) to provide a direct measurement of cardiac motion; however, commercially available US transducers are not computed tomography (CT) compatible. To address this challenge, a CT-compatible 2.5-MHz cardiac phased array transducer is developed via modeling, and then, an initial prototype is fabricated and evaluated for acoustic and radiographic performance. This 92-element piezoelectric array transducer is designed with a thin acoustic backing (6.5 mm) to reduce the volume of the radiopaque acoustic backing that typically causes arrays to be incompatible with CT imaging. This thin acoustic backing contains two rows of air-filled, triangular prism-shaped voids that operate as an acoustic diode. The developed transducer has a bandwidth of 50% and a single-element SNR of 9.9 dB compared to 46% and 14.7 dB for a reference array without an acoustic diode. In addition, the acoustic diode reduces the time-averaged reflected acoustic intensity from the back wall of the acoustic backing by 69% compared to an acoustic backing of the same composition and thickness without the acoustic diode. The feasibility of real-time echocardiography using this array is demonstrated in vivo, including the ability to image the position of the interventricular septum, which has been demonstrated to effectively predict cardiac motion for prospective, low radiation CTCA gating.
Collapse
|
2
|
Santini F, Gui L, Lorton O, Guillemin PC, Manasseh G, Roth M, Bieri O, Vallée JP, Salomir R, Crowe LA. Ultrasound-driven cardiac MRI. Phys Med 2020; 70:161-168. [DOI: 10.1016/j.ejmp.2020.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/21/2019] [Accepted: 01/09/2020] [Indexed: 12/31/2022] Open
|
3
|
Zitzelsberger T, Krumm P, Hornung A, Kramer U, Nikolaou K, Schäfer JF, Schick F, Sieverding L, Martirosian P. Multi-phase coronary magnetic resonance angiography improves delineation of coronary arteries. Acta Radiol 2019; 60:1422-1429. [PMID: 30799635 DOI: 10.1177/0284185119830289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Tanja Zitzelsberger
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Germany
| | - Patrick Krumm
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Germany
| | - Andreas Hornung
- Department of Pediatric Cardiology, University of Tuebingen, Germany
| | - Ulrich Kramer
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Germany
| | - Jürgen F Schäfer
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Germany
| | - Fritz Schick
- Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, University of Tuebingen, Germany
| | - Ludger Sieverding
- Department of Pediatric Cardiology, University of Tuebingen, Germany
| | - Petros Martirosian
- Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, University of Tuebingen, Germany
| |
Collapse
|
4
|
Yao J, Tridandapani S, Bhatti PT. Near Real-Time Implementation of An Adaptive Seismocardiography – ECG Multimodal Framework for Cardiac Gating. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2019; 7:1900404. [PMID: 32309054 PMCID: PMC6906082 DOI: 10.1109/jtehm.2019.2923353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/07/2019] [Accepted: 06/03/2019] [Indexed: 11/06/2022]
Abstract
Objective: Accurate gating for data acquisition of computed tomography (CT) is crucial to obtaining high quality images for diagnosing cardiovascular diseases. To illustrate the feasibility of an optimized cardiac gating strategy, we present a near real-time implementation based on fusing seismocardiography (SCG) and ECG. Methods: The implementation was achieved via integrating commercial hardware and software platforms. Testing was performed on five healthy subjects (age: 24–27; m/f: 4/1) and three cardiac patients (age: 41–71; m/f: 2/1), and compared with baseline quiescence derived from echocardiography. Results: The average latency introduced by computerized processing was 5.1 ms, well within a 100 ms tolerance bounded by data accumulation time for quiescence prediction. The average prediction error associated with conventional ECG-only versus SCG-ECG-based method over all subjects were 59.58 ms and 27.24 ms, respectively. Discussion: The results demonstrate that the multimodal framework can achieve improved quiescence prediction accuracy over the ECG-only-based method in near real-time.
Collapse
Affiliation(s)
- J Yao
- 1School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGA30332-0250USA
| | - S Tridandapani
- 2Department of RadiologyUniversity of Alabama at BirminghamBirminghamAL35294USA
| | - P T Bhatti
- 1School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGA30332-0250USA
| |
Collapse
|
5
|
Yao J, Tridandapani S, Auffermann WF, Wick CA, Bhatti PT. An Adaptive Seismocardiography (SCG)-ECG Multimodal Framework for Cardiac Gating Using Artificial Neural Networks. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2018; 6:1900611. [PMID: 30405976 PMCID: PMC6204924 DOI: 10.1109/jtehm.2018.2869141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/29/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022]
Abstract
To more accurately trigger data acquisition and reduce radiation exposure of coronary computed tomography angiography (CCTA), a multimodal framework utilizing both electrocardiography (ECG) and seismocardiography (SCG) for CCTA prospective gating is presented. Relying upon a three-layer artificial neural network that adaptively fuses individual ECG- and SCG-based quiescence predictions on a beat-by-beat basis, this framework yields a personalized quiescence prediction for each cardiac cycle. This framework was tested on seven healthy subjects (age: 22-48; m/f: 4/3) and eleven cardiac patients (age: 31-78; m/f: 6/5). Seventeen out of 18 benefited from the fusion-based prediction as compared to the ECG-only-based prediction, the traditional prospective gating method. Only one patient whose SCG was compromised by noise was more suitable for ECG-only-based prediction. On average, our fused ECG-SCG-based method improves cardiac quiescence prediction by 47% over ECG-only-based method; with both compared against the gold standard, B-mode echocardiography. Fusion-based prediction is also more resistant to heart rate variability than ECG-only- or SCG-only-based prediction. To assess the clinical value, the diagnostic quality of the CCTA reconstructed volumes from the quiescence derived from ECG-, SCG- and fusion-based predictions were graded by a board-certified radiologist using a Likert response format. Grading results indicated the fusion-based prediction improved diagnostic quality. ECG may be a sub-optimal modality for quiescence prediction and can be enhanced by the multimodal framework. The combination of ECG and SCG signals for quiescence prediction bears promise for a more personalized and reliable approach than ECG-only-based method to predict cardiac quiescence for prospective CCTA gating.
Collapse
Affiliation(s)
- J. Yao
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - S. Tridandapani
- Department of RadiologyThe University of Alabama at BirminghamBirminghamAL35294USA
| | - W. F. Auffermann
- Department of Radiology and Imaging SciencesSchool of MedicineThe University of UtahSalt LakeUT84132USA
| | - C. A. Wick
- Camerad TechnologiesGlobal Center for Medical InnovationAtlantaGA30318USA
| | - P. T. Bhatti
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
6
|
Crowe LA, Manasseh G, Chmielewski A, Hachulla AL, Speicher D, Greiser A, Muller H, de Perrot T, Vallee JP, Salomir R. Spatially Resolved MR-Compatible Doppler Ultrasound: Proof of Concept for Triggering of Diagnostic Quality Cardiovascular MRI for Function and Flow Quantification at 3T. IEEE Trans Biomed Eng 2017; 65:294-306. [PMID: 29053451 DOI: 10.1109/tbme.2017.2764111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. METHODS A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. RESULTS Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. CONCLUSION We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. SIGNIFICANCE The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.
Collapse
|
7
|
Yao J, Tridandapani S, Wick CA, Bhatti PT. Seismocardiography-Based Cardiac Computed Tomography Gating Using Patient-Specific Template Identification and Detection. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2017; 5:1900314. [PMID: 28845370 PMCID: PMC5568038 DOI: 10.1109/jtehm.2017.2708100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/22/2017] [Accepted: 05/07/2017] [Indexed: 01/03/2023]
Abstract
To more accurately trigger cardiac computed tomography angiography (CTA) than electrocardiography (ECG) alone, a sub-system is proposed as an intermediate step toward fusing ECG with seismocardiography (SCG). Accurate prediction of quiescent phases is crucial to prospectively gating CTA, which is susceptible to cardiac motion and, thus, can affect the diagnostic quality of images. The key innovation of this sub-system is that it identifies the SCG waveform corresponding to heart sounds and determines their phases within the cardiac cycles. Furthermore, this relationship is modeled as a linear function with respect to heart rate. For this paper, B-mode echocardiography is used as the gold standard for identifying the quiescent phases. We analyzed synchronous ECG, SCG, and echocardiography data acquired from seven healthy subjects (mean age: 31; age range: 22–48; males: 4) and 11 cardiac patients (mean age: 56; age range: 31–78; males: 6). On average, the proposed algorithm was able to successfully identify 79% of the SCG waveforms in systole and 68% in diastole. The simulated results show that SCG-based prediction produced less average phase error than that of ECG. It was found that the accuracy of ECG-based gating is more susceptible to increases in heart rate variability, while SCG-based gating is susceptible to high cycle to cycle variability in morphology. This pilot work of prediction using SCG waveforms enriches the framework of a comprehensive system with multiple modalities that could potentially, in real time, improve the image quality of CTA.
Collapse
Affiliation(s)
- Jingting Yao
- School of Electrical and Computer EngineeringGeorgia Institute of Technology
| | | | - Carson A Wick
- Department of Radiology and Imaging SciencesEmory University
| | - Pamela T Bhatti
- School of Electrical and Computer EngineeringGeorgia Institute of Technology
| |
Collapse
|
8
|
Wick CA, Auffermann WF, Shah AJ, Inan OT, Bhatti PT, Tridandapani S. Echocardiography as an indication of continuous-time cardiac quiescence. Phys Med Biol 2016; 61:5297-310. [PMID: 27362455 DOI: 10.1088/0031-9155/61/14/5297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cardiac computed tomography (CT) angiography using prospective gating requires that data be acquired during intervals of minimal cardiac motion to obtain diagnostic images of the coronary vessels free of motion artifacts. This work is intended to assess B-mode echocardiography as a continuous-time indication of these quiescent periods to determine if echocardiography can be used as a cost-efficient, non-ionizing modality to develop new prospective gating techniques for cardiac CT. These new prospective gating approaches will not be based on echocardiography itself but on CT-compatible modalities derived from the mechanics of the heart (e.g. seismocardiography and impedance cardiography), unlike the current standard electrocardiogram. To this end, echocardiography and retrospectively-gated CT data were obtained from ten patients with varied cardiac conditions. CT reconstructions were made throughout the cardiac cycle. Motion of the interventricular septum (IVS) was calculated from both echocardiography and CT reconstructions using correlation-based, deviation techniques. The IVS was chosen because it (1) is visible in echocardiography images, whereas the coronary vessels generally are not, and (2) has been shown to be a suitable indicator of cardiac quiescence. Quiescent phases were calculated as the minima of IVS motion and CT volumes were reconstructed for these phases. The diagnostic quality of the CT reconstructions from phases calculated from echocardiography and CT data was graded on a four-point Likert scale by a board-certified radiologist fellowship-trained in cardiothoracic radiology. Using a Wilcoxon signed-rank test, no significant difference in the diagnostic quality of the coronary vessels was found between CT volumes reconstructed from echocardiography- and CT-selected phases. Additionally, there was a correlation of 0.956 between the echocardiography- and CT-selected phases. This initial work suggests that B-mode echocardiography can be used as a tool to develop CT-compatible gating techniques based on modalities derived from cardiac mechanics rather than relying on the ECG alone.
Collapse
Affiliation(s)
- C A Wick
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Wick CA, Inan OT, Bhatti P, Tridandapani S. Relationship between cardiac quiescent periods derived from seismocardiography and echocardiography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:687-90. [PMID: 26736355 DOI: 10.1109/embc.2015.7318455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The seismocardiogram (SCG) is a measure of chest wall acceleration due to cardiac motion that could potentially supplement the electrocardiogram (ECG) to more reliably predict cardiac quiescence. Accurate prediction is critical for modalities requiring minimal motion during imaging data acquisition, such as cardiac computed tomography (CT) and magnetic resonance imaging (MRI). For seven healthy subjects, SCG and B-mode echocardiography were used to identify quiescent periods on a beat-by-beat basis. Quiescent periods were detected as time intervals when the magnitude of the velocity signals calculated from SCG and echocardiography were less than a specified threshold. The quiescent periods detected from SCG were compared to those detected from B-mode echocardiography. The quiescent periods of the SCG were found to occur before those detected by echocardiography. A linear relationship between the delay from SCG- to echocardiography-detected phases with respect to heart rate was found. This delay could potentially be used to predict cardiac quiescence from SCG-observed quiescence for use with cardiac imaging modalities such as CT and MRI.
Collapse
|
11
|
Wick CA, McClellan JH, Arepalli CD, Auffermann WF, Henry TS, Khosa F, Coy AM, Tridandapani S. Characterization of cardiac quiescence from retrospective cardiac computed tomography using a correlation-based phase-to-phase deviation measure. Med Phys 2015; 42:983-93. [PMID: 25652511 DOI: 10.1118/1.4906246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Accurate knowledge of cardiac quiescence is crucial to the performance of many cardiac imaging modalities, including computed tomography coronary angiography (CTCA). To accurately quantify quiescence, a method for detecting the quiescent periods of the heart from retrospective cardiac computed tomography (CT) using a correlation-based, phase-to-phase deviation measure was developed. METHODS Retrospective cardiac CT data were obtained from 20 patients (11 male, 9 female, 33-74 yr) and the left main, left anterior descending, left circumflex, right coronary artery (RCA), and interventricular septum (IVS) were segmented for each phase using a semiautomated technique. Cardiac motion of individual coronary vessels as well as the IVS was calculated using phase-to-phase deviation. As an easily identifiable feature, the IVS was analyzed to assess how well it predicts vessel quiescence. Finally, the diagnostic quality of the reconstructed volumes from the quiescent phases determined using the deviation measure from the vessels in aggregate and the IVS was compared to that from quiescent phases calculated by the CT scanner. Three board-certified radiologists, fellowship-trained in cardiothoracic imaging, graded the diagnostic quality of the reconstructions using a Likert response format: 1 = excellent, 2 = good, 3 = adequate, 4 = nondiagnostic. RESULTS Systolic and diastolic quiescent periods were identified for each subject from the vessel motion calculated using the phase-to-phase deviation measure. The motion of the IVS was found to be similar to the aggregate vessel (AGG) motion. The diagnostic quality of the coronary vessels for the quiescent phases calculated from the aggregate vessel (PAGG) and IVS (PIV S) deviation signal using the proposed methods was comparable to the quiescent phases calculated by the CT scanner (PCT). The one exception was the RCA, which improved for PAGG for 18 of the 20 subjects when compared to PCT (PCT = 2.48; PAGG = 2.07, p = 0.001). CONCLUSIONS A method for quantifying the motion of specific coronary vessels using a correlation-based, phase-to-phase deviation measure was developed and tested on 20 patients receiving cardiac CT exams. The IVS was found to be a suitable predictor of vessel quiescence. The diagnostic quality of the quiescent phases detected by the proposed methods was comparable to those calculated by the CT scanner. The ability to quantify coronary vessel quiescence from the motion of the IVS can be used to develop new CTCA gating techniques and quantify the resulting potential improvement in CTCA image quality.
Collapse
Affiliation(s)
- Carson A Wick
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive Northwest, Atlanta, Georgia 30332
| | - James H McClellan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive Northwest, Atlanta, Georgia 30332
| | - Chesnal D Arepalli
- Department of Radiology, University of British Columbia, 3350-950 West 10th Avenue, Vancouver, British Columbia V5Z 4E3, Canada
| | - William F Auffermann
- Department of Radiology and Imaging Sciences, Emory University, Division of Cardiothoracic Imaging, 1364 Clifton Road Northeast, Suite 309, Atlanta, Georgia 30322
| | - Travis S Henry
- Department of Radiology and Imaging Sciences, Emory University, Division of Cardiothoracic Imaging, 1364 Clifton Road Northeast, Suite 309, Atlanta, Georgia 30322
| | - Faisal Khosa
- Department of Radiology and Imaging Sciences, Emory University, Division of Emergency Radiology, 550 Peachtree Street Northeast, Atlanta, Georgia 30308
| | - Adam M Coy
- School of Medicine, Emory University, 100 Woodruff Circle, Atlanta, Georgia 30322
| | - Srini Tridandapani
- Department of Radiology and Imaging Sciences, Emory University, Winship Cancer Institute, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 and School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive Northwest, Atlanta, Georgia 30332
| |
Collapse
|
12
|
Ravichandran L, Wick CA, McClellan JH, Liu T, Tridandapani S. Detection of quiescent cardiac phases in echocardiography data using nonlinear filtering and boundary detection techniques. J Digit Imaging 2015; 27:625-32. [PMID: 24859726 DOI: 10.1007/s10278-014-9702-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We describe an algorithm to detect cardiac quiescence within a heartbeat using nonlinear filtering and boundary detection techniques in echocardiography images. The motivation for detection of these quiescent phases is to provide improved cardiac gating to obtain motion-artifact-free images of the heart at cardiac computed tomography (CT). Currently, cardiac gating is provided through electrocardiography (ECG), which does not provide information about the instantaneous mechanical state of the heart. Our goal is to test if information about the actual mechanical motion of the heart obtained from B-mode echocardiographic data could potentially be used for gating purposes. The nonlinear filtering algorithm presented involves anisotropic diffusion to smoothen the homogeneous regions of the B-mode images while preserving image edges that represent myocardial boundaries. Following this, we detect the boundary of a particular region of interest (ROI) using a thresholding step. The positional changes of this ROI are then observed for quiescent phases over multiple cardiac cycles using the ECG's R-R interval. In a pilot study, seven subjects were imaged in the apical, four-chamber view, and quiescence of the interventricular septum was primarily observed in the diastolic region of the ECG signal. However, the position and length of quiescence vary across multiple heartbeats for the same individual and for different individuals as well. The center of quiescence for the seven patients ranged from 51 to 84 % and did not show a trend with heart rates, which ranged from 54 to 83 beats per minute. The gating intervals based on such analysis of echocardiographic signals could potentially optimize cardiac CT gating.
Collapse
|
13
|
Whole heart coronary imaging with flexible acquisition window and trigger delay. PLoS One 2015; 10:e0112020. [PMID: 25719750 PMCID: PMC4342264 DOI: 10.1371/journal.pone.0112020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/27/2014] [Indexed: 11/18/2022] Open
Abstract
Coronary magnetic resonance imaging (MRI) requires a correctly timed trigger delay derived from a scout cine scan to synchronize k-space acquisition with the quiescent period of the cardiac cycle. However, heart rate changes between breath-held cine and free-breathing coronary imaging may result in inaccurate timing errors. Additionally, the determined trigger delay may not reflect the period of minimal motion for both left and right coronary arteries or different segments. In this work, we present a whole-heart coronary imaging approach that allows flexible selection of the trigger delay timings by performing k-space sampling over an enlarged acquisition window. Our approach addresses coronary motion in an interactive manner by allowing the operator to determine the temporal window with minimal cardiac motion for each artery region. An electrocardiogram-gated, k-space segmented 3D radial stack-of-stars sequence that employs a custom rotation angle is developed. An interactive reconstruction and visualization platform is then employed to determine the subset of the enlarged acquisition window for minimal coronary motion. Coronary MRI was acquired on eight healthy subjects (5 male, mean age = 37 ± 18 years), where an enlarged acquisition window of 166–220 ms was set 50 ms prior to the scout-derived trigger delay. Coronary visualization and sharpness scores were compared between the standard 120 ms window set at the trigger delay, and those reconstructed using a manually adjusted window. The proposed method using manual adjustment was able to recover delineation of five mid and distal right coronary artery regions that were otherwise not visible from the standard window, and the sharpness scores improved in all coronary regions using the proposed method. This paper demonstrates the feasibility of a whole-heart coronary imaging approach that allows interactive selection of any subset of the enlarged acquisition window for a tailored reconstruction for each branch region.
Collapse
|
14
|
Kording F, Schoennagel B, Lund G, Ueberle F, Jung C, Adam G, Yamamura J. Doppler ultrasound compared with electrocardiogram and pulse oximetry cardiac triggering: A pilot study. Magn Reson Med 2014; 74:1257-65. [DOI: 10.1002/mrm.25502] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Fabian Kording
- University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology; Germany
| | - Bjoern Schoennagel
- University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology; Germany
| | - Gunnar Lund
- University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology; Germany
| | | | - Caroline Jung
- University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology; Germany
| | - Gerhard Adam
- University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology; Germany
| | - Jin Yamamura
- University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology; Germany
| |
Collapse
|
15
|
Liu G, Wright GA. Cardiac gating calibration by the Septal Scout for magnetic resonance coronary angiography. J Cardiovasc Magn Reson 2014; 16:12. [PMID: 24460958 PMCID: PMC3931665 DOI: 10.1186/1532-429x-16-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 01/14/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Electrocardiogram (ECG) gating is commonly used to synchronize imaging windows to diastasis periods over multiple heartbeats in magnetic resonance (MR) coronary angiography. Calibration of the ECG gating parameters is typically based on a cine cardiovascular MR (CMR) video of the beating heart. Insufficient temporal resolution in the cine-CMR method, however, may produce gating errors and motion artifacts.It was previously shown that tissue Doppler echocardiography (TDE) can identify accurate diastasis window timings by observing the movement of the interventricular septum (IVS). We present a new CMR technique, the Septal Scout, for measuring IVS motion. We demonstrate that cardiac gating windows determined by the Septal Scout produce sharper coronary MR angiography images than windows determined by cine-CMR. METHODS 9 healthy volunteers were scanned on a GE Optima 450w 1.5T MR system. Cine-CMR was acquired and used to identify the start and end times of the diastasis window (Wcine). The Septal Scout employs a one-dimensional steady-state free precession (SSFP) readout along the ventricular septum prescribed from the 4-chamber view. The Septal Scout data is processed to produce a septal velocity function, from which the diastasis window was determined (Wsep). Non-contrast-enhanced MR angiography was performed twice for each volunteer: once gated to Wcine, once to Wsep. Vessel sharpness was assessed subjectively by two experienced observers, and quantitatively by full width half maximum (FWHM) measurements of cross-sectional vessel profiles. In addition, TDE was performed on a subcohort of 6 volunteers where diastasis windows (WTDE) were determined from the IVS velocity measured in the 4-chamber view. Wsep and WTDE were compared using Pearson's correlation. RESULTS MRA acquisitions were successful in all volunteers. Vessel segments produced smaller FWHM measurements and were deemed sharper when imaged during the Septal Scout gating windows (p < 0.05). Subjective assessment of sharpness also improved for the Septal Scout-gated scans (p < 0.01 for both observers). Lastly, Wsep and WTDE were highly correlated (R > 0.98, p < 0.001). CONCLUSIONS The MR Septal Scout technique was introduced and demonstrated to be more accurate at determining cardiac gating windows than cine-CMR, yielding sharper coronary MR angiography images.
Collapse
Affiliation(s)
- Garry Liu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
16
|
Wick CA, McClellan JH, Ravichandran L, Tridandapani S. Detection of Cardiac Quiescence from B-Mode Echocardiography Using a Correlation-Based Frame-to-Frame Deviation Measure. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2013; 1. [PMID: 26609501 PMCID: PMC4655976 DOI: 10.1109/jtehm.2013.2291555] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two novel methods for detecting cardiac quiescent phases from B-mode echocardiography using a correlation-based frame-to-frame deviation measure were developed. Accurate knowledge of cardiac quiescence is crucial to the performance of many imaging modalities, including computed tomography coronary angiography (CTCA). Synchronous electrocardiography (ECG) and echocardiography data were obtained from 10 healthy human subjects (four male, six female, 23–45 years) and the interventricular septum (IVS) was observed using the apical four-chamber echocardiographic view. The velocity of the IVS was derived from active contour tracking and verified using tissue Doppler imaging echocardiography methods. In turn, the frame-to-frame deviation methods for identifying quiescence of the IVS were verified using active contour tracking. The timing of the diastolic quiescent phase was found to exhibit both inter- and intra-subject variability, suggesting that the current method of CTCA gating based on the ECG is suboptimal and that gating based on signals derived from cardiac motion are likely more accurate in predicting quiescence for cardiac imaging. Two robust and efficient methods for identifying cardiac quiescent phases from B-mode echocardiographic data were developed and verified. The methods presented in this paper will be used to develop new CTCA gating techniques and quantify the resulting potential improvement in CTCA image quality.
Collapse
Affiliation(s)
- Carson A Wick
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James H McClellan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lakshminarayan Ravichandran
- Department of Radiology and Imaging Sciences, Emory University, Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Srini Tridandapani
- Department of Radiology and Imaging Sciences, Emory University, Winship Cancer Institute, Atlanta, GA 30322, USA
| |
Collapse
|