1
|
Tseng HW, Fu Z, Vedantham S. Simultaneous reduction of radiation dose and scatter-to-primary ratio using a truncated detector and advanced algorithms for dedicated cone-beam breast CT. Biomed Phys Eng Express 2025; 11:025047. [PMID: 39983239 DOI: 10.1088/2057-1976/adb8f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/21/2025] [Indexed: 02/23/2025]
Abstract
Objective. To determine the minimum detector width along the fan-angle direction in offset-detector cone-beam breast CT for multiple advanced reconstruction algorithms and to investigate the effect on radiation dose, scatter, and image quality.Approach.Complete sinograms (m×n= 1024 × 768 pixels) of 30 clinical breast CT datasets previously acquired on a clinical-prototype cone-beam breast CT system were reconstructed using Feldkamp-Davis-Kress (FDK) algorithm and served as the reference. Complete sinograms were retrospectively truncated to varying widths to understand the limits of four image reconstruction algorithms-FDK with redundancy weighting (FDK-W), compressed-sensing based FRIST, fully-supervised MS-RDN, and self-supervised AFN. Upon determining the truncation limits, numerical phantoms generated by segmenting the reference reconstructions into skin, adipose, and fibroglandular tissues were used to determine the radiation dose and scatter-to-primary ratio (SPR) using Monte Carlo simulations.Main results.FDK-W, FRIST, and MS-RDN showed artifacts whenm< 596, whereas AFN reconstructed images without artifacts form> = 536. Reducing the detector width reduced signal-difference to noise ratio (SDNR) for FDK-W, whereas FRIST, MS-RDN and AFN maintained or improved SDNR. Reference reconstruction and AFN withm= 536 had similar quantitative measures of image quality.Significance.For the 30 cases, AFN withm= 536 reduced the radiation dose and SPR by 37.85% and 33.46%, respectively, compared to the reference. Qualitative and quantitative image quality indicate the feasibility of AFN for offset-detector cone-beam breast CT. Radiation dose and SPR were simultaneously reduced with a 536 × 768 detector and when used in conjunction with AFN algorithm had similar image quality as the reference reconstruction.
Collapse
Affiliation(s)
- Hsin Wu Tseng
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States of America
| | - Zhiyang Fu
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States of America
| | - Srinivasan Vedantham
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States of America
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
2
|
Loveland J, Mackenzie A. Comparison of AAPM TG282 and Dance breast dosimetry models: Impact on estimates of average MGD for the United Kingdom breast screening programmes. Phys Med 2025; 130:104908. [PMID: 39842322 DOI: 10.1016/j.ejmp.2025.104908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND The American Association of Physicists in Medicine (AAPM) Task group 282 (TG282) in collaboration with the European Federation for Organisations of Medical Physics (EFOMP) have developed a novel breast dosimetry model intended as a single international standard. PURPOSE To explore the impact of TG282 dosimetry on estimates of average Mean Glandular Dose (MGD) in the United Kingdom (UK) National Health Service (NHS) Breast Screening Programmes (BSP). METHODS MGDs were estimated, using the TG282 dosimetry model, for the most recent UK NHSBSP dose survey. This dataset included MGDs estimated using the Dance dosimetry model for 439,916 Full Field Digital Mammography (FFDM) exposures of 111,132 women and 10,831 Digital Breast Tomosynthesis (DBT) exposures of 5,113 women. Direct comparisons of the two models were made and differences explored using this large-scale real world dataset. RESULTS TG282 model MGDs were on average approximately 20 % and 15 % lower than Dance model values for FFDM and DBT respectively. For the UK National Diagnostic Reference Level (NDRL) breast thickness range of 50 mm to 60 mm inclusive differences were smaller at approximately 13 % and 10 % respectively. The difference between dosimetry models was shown to depend on the properties of the imaged population and X-ray equipment used. Average differences of up to 63.1 % were observed at higher CBT values for FFDM. CONCLUSION On average, the TG282 dosimetry model resulted in lower estimates for MGD in UK mammography. The differences were more pronounced for women with larger than average compressed breast thickness.
Collapse
Affiliation(s)
- John Loveland
- National Co-ordinating Centre for the Physics of Mammography (NCCPM), Medical Physics Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX UK.
| | - Alistair Mackenzie
- National Co-ordinating Centre for the Physics of Mammography (NCCPM), Medical Physics Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX UK
| |
Collapse
|
3
|
Massera RT, Tomal A, Thomson RM. Multiscale Monte Carlo simulations for dosimetry in x-ray breast imaging: Part I - Macroscopic scales. Med Phys 2024; 51:1105-1116. [PMID: 38156766 DOI: 10.1002/mp.16910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/07/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND X-ray breast imaging modalities are commonly employed for breast cancer detection, from screening programs to diagnosis. Thus, dosimetry studies are important for quality control and risk estimation since ionizing radiation is used. PURPOSE To perform multiscale dosimetry assessments for different breast imaging modalities and for a variety of breast sizes and compositions. The first part of our study is focused on macroscopic scales (down to millimeters). METHODS Nine anthropomorphic breast phantoms with a voxel resolution of 0.5 mm were computationally generated using the BreastPhantom software, representing three breast sizes with three distinct values of volume glandular fraction (VGF) for each size. Four breast imaging modalities were studied: digital mammography (DM), contrast-enhanced digital mammography (CEDM), digital breast tomosynthesis (DBT) and dedicated breast computed tomography (BCT). Additionally, the impact of tissue elemental compositions from two databases were compared. Monte Carlo (MC) simulations were performed with the MC-GPU code to obtain the 3D glandular dose distribution (GDD) for each case considered with the mean glandular dose (MGD) fixed at 4 mGy (to facilitate comparisons). RESULTS The GDD within the breast is more uniform for CEDM and BCT compared to DM and DBT. For large breasts and high VGF, the ratio between the minimum/maximum glandular dose to MGD is 0.12/4.02 for DM and 0.46/1.77 for BCT; the corresponding results for a small breast and low VGF are 0.35/1.98 (DM) and 0.63/1.42 (BCT). The elemental compositions of skin, adipose and glandular tissue have a considerable impact on the MGD, with variations up to 30% compared to the baseline. The inclusion of tissues other than glandular and adipose within the breast has a minor impact on MGD, with differences below 2%. Variations in the final compressed breast thickness alter the shape of the GDD, with a higher compression resulting in a more uniform GDD. CONCLUSIONS For a constant MGD, the GDD varies with imaging modality and breast compression. Elemental tissue compositions are an important factor for obtaining MGD values, being a source of systematic uncertainties in MC simulations and, consequently, in breast dosimetry.
Collapse
Affiliation(s)
- Rodrigo T Massera
- Universidade Estadual de Campinas (UNICAMP), Instituto de Física Gleb Wataghin, Campinas, São Paulo, Brazil
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario, Canada
| | - Alessandra Tomal
- Universidade Estadual de Campinas (UNICAMP), Instituto de Física Gleb Wataghin, Campinas, São Paulo, Brazil
| | - Rowan M Thomson
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Sechopoulos I, Dance DR, Boone JM, Bosmans HT, Caballo M, Diaz O, van Engen R, Fedon C, Glick SJ, Hernandez AM, Hill ML, Hulme KW, Longo R, Rabin C, Sanderink WBG, Seibert JA. Joint AAPM Task Group 282/EFOMP Working Group Report: Breast dosimetry for standard and contrast-enhanced mammography and breast tomosynthesis. Med Phys 2024; 51:712-739. [PMID: 38018710 DOI: 10.1002/mp.16842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
Currently, there are multiple breast dosimetry estimation methods for mammography and its variants in use throughout the world. This fact alone introduces uncertainty, since it is often impossible to distinguish which model is internally used by a specific imaging system. In addition, all current models are hampered by various limitations, in terms of overly simplified models of the breast and its composition, as well as simplistic models of the imaging system. Many of these simplifications were necessary, for the most part, due to the need to limit the computational cost of obtaining the required dose conversion coefficients decades ago, when these models were first implemented. With the advancements in computational power, and to address most of the known limitations of previous breast dosimetry methods, a new breast dosimetry method, based on new breast models, has been developed, implemented, and tested. This model, developed jointly by the American Association of Physicists in Medicine and the European Federation for Organizations of Medical Physics, is applicable to standard mammography, digital breast tomosynthesis, and their contrast-enhanced variants. In addition, it includes models of the breast in both the cranio-caudal and the medio-lateral oblique views. Special emphasis was placed on the breast and system models used being based on evidence, either by analysis of large sets of patient data or by performing measurements on imaging devices from a range of manufacturers. Due to the vast number of dose conversion coefficients resulting from the developed model, and the relative complexity of the calculations needed to apply it, a software program has been made available for download or online use, free of charge, to apply the developed breast dosimetry method. The program is available for download or it can be used directly online. A separate User's Guide is provided with the software.
Collapse
Affiliation(s)
- Ioannis Sechopoulos
- Radboud University Medical Center, Nijmegen, The Netherlands
- Dutch Expert Centre for Screening (LRCB), Nijmegen, The Netherlands
- University of Twente, Enschede, The Netherlands
| | - David R Dance
- National Co-ordinating Centre for the Physics of Mammography (NCCPM), Royal Surrey County Hospital, Guildford, UK
| | - John M Boone
- University of California, Davis, California, USA
| | | | - Marco Caballo
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Ruben van Engen
- Dutch Expert Centre for Screening (LRCB), Nijmegen, The Netherlands
| | - Christian Fedon
- Radboud University Medical Center (now at Nuclear Research and Consultancy Group, NRG), Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nakajima E, Sato H. Characterization of a new radiochromic film (LD-V1) using mammographic beam qualities. Z Med Phys 2023:S0939-3889(23)00072-7. [PMID: 37365089 DOI: 10.1016/j.zemedi.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE Radiochromic film (RCF) is a detector that can obtain a two-dimensional dose distribution with high resolution; it is widely used in medical and industrial fields. Several types of RCFs exist based on their application. The type of RCF mainly used for mammography dose assessment has been discontinued; however, a new type of RCF (LD-V1) has been distributed as a successor. Since the medical use of LD-V1 has rarely been studied, we investigated the response characteristics of LD-V1 in mammography. METHODS Measurements were performed using Mo/Mo and Rh/Ag on a Senographe Pristina mammography device (GE, Fairfield, CT, USA). The reference air kerma was measured using a parallel-plate ionization chamber (PPIC) (C-MA, Applied Engineering Inc, Tokyo, Japan). Pieces of LD-V1 film model were irradiated at the same position where the reference air kerma in air was measured by the PPIC. Irradiation was performed using the time scale method based on the load on the equipment. Two methods of irradiation were considered: placing the detector in air and on the phantom. The LD-V1 was scanned five times at 72 dpi in RGB (48 bit) mode using a flatbed scanner (ES-G11000, Seiko Epson Corp, Nagano, Japan) 24 h following irradiation. The response ratio of the reference air kerma and the air kerma obtained from the LD-V1 were compared and examined for each beam quality and air kerma range. RESULTS AND DISCUSSION When the beam quality was altered, the response ratio varied from 0.8 to 1.2 with respect to the measurement value of the PPIC; however, some outliers were observed. Response ratios were highly variable in the low-dose range; however, as the air kerma increased, the ratios approached 1. Thus, LD-V1 does not need calibration for each beam quality used in mammography. LD-V1 enables air kerma evaluation by creating air kerma response curves under certain X-ray conditions used in mammography. CONCLUSION We suggest that the dose range be limited to 12 mGy or more to keep the response variation with beam qualities below ±20%. If further measurement is required for reducing the response variation, the dose range should be shifted to a higher dose range.
Collapse
Affiliation(s)
- Erika Nakajima
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki Prefecture, Japan.
| | - Hitoshi Sato
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki Prefecture, Japan
| |
Collapse
|
6
|
Tseng HW, Karellas A, Vedantham S. Dedicated cone-beam breast CT: Data acquisition strategies based on projection angle-dependent normalized glandular dose coefficients. Med Phys 2023; 50:1406-1417. [PMID: 36427332 PMCID: PMC10207937 DOI: 10.1002/mp.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Dedicated cone-beam breast computed tomography (CBBCT) using short-scan acquisition is being actively investigated to potentially reduce the radiation dose to the breast. This would require determining the optimal x-ray source trajectory for such short-scan acquisition. PURPOSE To quantify the projection angle-dependent normalized glandular dose coefficient (D g N C T $Dg{N^{CT}}$ ) in CBBCT, referred to as angularD g N C T $Dg{N^{CT}}$ , so that the x-ray ray source trajectory that minimizes the radiation dose to the breast for short-scan acquisition can be determined. MATERIALS AND METHODS A cohort of 75 CBBCT clinical datasets was segmented and used to generate three breast models - (I) patient-specific breast with heterogeneous fibroglandular tissue distribution and real breast shape, (II) patient-specific breast shape with homogeneous tissue distribution and matched fibroglandular weight fraction, and (III) homogeneous semi-ellipsoidal breast with patient-specific breast dimensions and matched fibroglandular weight fraction, which corresponds to the breast model used in current radiation dosimetry protocols. For each clinical dataset, the angularD g N C T $Dg{N^{CT}}$ was obtained at 10 discrete angles, spaced 36° apart, for full-scan, circular, x-ray source trajectory from Monte Carlo simulations. Model III is used for validating the Monte Carlo simulation results. Models II and III are used to determine if breast shape contributes to the observed trends in angularD g N C T $Dg{N^{CT}}$ . A geometry-based theory in conjunction with center-of-mass (C O M $COM$ ) based distribution analysis is used to explain the projection angle-dependent variation in angularD g N C T $Dg{N^{CT}}$ . RESULTS The theoretical model predicted that the angularD g N C T $Dg{N^{CT}}$ will follow a sinusoidal pattern and the amplitude of the sinusoid increases when the center-of-mass of fibroglandular tissue (C O M f $CO{M_f}$ ) is farther from the center-of-mass of the breast (C O M b $CO{M_b}$ ). It also predicted that the angularD g N C T $Dg{N^{CT}}$ will be minimized at x-ray source positions complementary to theC O M f $CO{M_f}$ . TheC O M f $CO{M_f}$ was superior to theC O M b $CO{M_b}$ in 80% (60/75) of the breasts. From Monte Carlo simulations and for homogeneous breasts (models II and III), the deviation in breast shape from a semi-ellipsoid had minimal effect on angularD g N C T $Dg{N^{CT}}$ and showed less than 4% variation. From Monte Carlo simulations and for model I, as predicted by our theory, the angularD g N C T $Dg{N^{CT}}$ followed a sinusoidal pattern with maxima and minima at x-ray source positions superior and inferior to the breast, respectively. For model I, the projection angle-dependent variation in angularD g N C T $Dg{N^{CT}}$ was 16.4%. CONCLUSION The heterogeneous tissue distribution affected the angularD g N C T $Dg{N^{CT}}$ more than the breast shape. For model I, the angularD g N C T $Dg{N^{CT}}$ was lowest when the x-ray source was inferior to the breast. Hence, for short-scan CBBCT acquisition withC O M b $CO{M_b}$ aligned with axis-of-rotation, an x-ray source trajectory inferior to the breast is preferable and such an acquisition spanning 205° can potentially reduce the mean glandular dose by up to 52%.
Collapse
Affiliation(s)
- Hsin Wu Tseng
- Department of Medical Imaging, The University of Arizona, Tucson, AZ
| | - Andrew Karellas
- Department of Medical Imaging, The University of Arizona, Tucson, AZ
| | - Srinivasan Vedantham
- Department of Medical Imaging, The University of Arizona, Tucson, AZ
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ
| |
Collapse
|
7
|
ALMisned G, Elshami W, Kilic G, Rabaa E, Zakaly HMH, Ene A, Tekin HO. Utilization of three-layers heterogeneous mammographic phantom through MCNPX code for breast and chest radiation dose levels at different diagnostic X-ray energies: A Monte Carlo simulation study. Front Public Health 2023; 11:1136864. [PMID: 36935709 PMCID: PMC10022908 DOI: 10.3389/fpubh.2023.1136864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction We report the breast and chest radiation dose assessment for mammographic examinations using a three-layer heterogeneous breast phantom through the MCNPX Monte Carlo code. Methods A three-layer heterogeneous phantom along with compression plates and X-ray source are modeled. The validation of the simulation code is obtained using the data of AAPM TG-195 report. Deposited energy amount as a function of increasing source energy is calculated over a wide energy range. The behavioral changes in X-ray absorption as well as transmission are examined using the F6 Tally Mesh extension of MCNPX code. Moreover, deposited energy amount is calculated for modeled body phantom in the same energy range. Results and discussions The diverse distribution of glands has a significant impact on the quantity of energy received by the various breast layers. In layers with a low glandular ratio, low-energy primary X-ray penetrability is highest. In response to an increase in energy, the absorption in layers with a low glandular ratio decreased. This results in the X-rays releasing their energy in the bottom layers. Additionally, the increase in energy increases the quantity of energy absorbed by the tissues around the breast.
Collapse
Affiliation(s)
- Ghada ALMisned
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wiam Elshami
- Medical Diagnostic Imaging Department, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - G. Kilic
- Faculty of Science, Department of Physics, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Elaf Rabaa
- Medical Diagnostic Imaging Department, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hesham M. H. Zakaly
- Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russia
- Physics Department, Faculty of Science, Al-Azhar University, Asyut, Egypt
| | - Antoaneta Ene
- INPOLDE Research Center, Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, Galaţi, Romania
- Antoaneta Ene
| | - H. O. Tekin
- Medical Diagnostic Imaging Department, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Engineering and Natural Sciences, Computer Engineering Department, Istinye University, Istanbul, Türkiye
- *Correspondence: H. O. Tekin tekin765@gmailcom
| |
Collapse
|
8
|
Physical and digital phantoms for 2D and 3D x-ray breast imaging: Review on the state-of-the-art and future prospects. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Marshall NW, Bosmans H. Performance evaluation of digital breast tomosynthesis systems: physical methods and experimental data. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac9a35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Abstract
Digital breast tomosynthesis (DBT) has become a well-established breast imaging technique, whose performance has been investigated in many clinical studies, including a number of prospective clinical trials. Results from these studies generally point to non-inferiority in terms of microcalcification detection and superior mass-lesion detection for DBT imaging compared to digital mammography (DM). This modality has become an essential tool in the clinic for assessment and ad-hoc screening but is not yet implemented in most breast screening programmes at a state or national level. While evidence on the clinical utility of DBT has been accumulating, there has also been progress in the development of methods for technical performance assessment and quality control of these imaging systems. DBT is a relatively complicated ‘pseudo-3D’ modality whose technical assessment poses a number of difficulties. This paper reviews methods for the technical performance assessment of DBT devices, starting at the component level in part one and leading up to discussion of system evaluation with physical test objects in part two. We provide some historical and basic theoretical perspective, often starting from methods developed for DM imaging. Data from a multi-vendor comparison are also included, acquired under the medical physics quality control protocol developed by EUREF and currently being consolidated by a European Federation of Organisations for Medical Physics working group. These data and associated methods can serve as a reference for the development of reference data and provide some context for clinical studies.
Collapse
|
10
|
Caballo M, Rabin C, Fedon C, Rodríguez-Ruiz A, Diaz O, Boone JM, Dance DR, Sechopoulos I. Patient-derived heterogeneous breast phantoms for advanced dosimetry in mammography and tomosynthesis. Med Phys 2022; 49:5423-5438. [PMID: 35635844 PMCID: PMC9546119 DOI: 10.1002/mp.15785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background Understanding the magnitude and variability of the radiation dose absorbed by the breast fibroglandular tissue during mammography and digital breast tomosynthesis (DBT) is of paramount importance to assess risks versus benefits. Although homogeneous breast models have been proposed and used for decades for this purpose, they do not accurately reflect the actual heterogeneous distribution of the fibroglandular tissue in the breast, leading to biases in the estimation of dose from these modalities. Purpose To develop and validate a method to generate patient‐derived, heterogeneous digital breast phantoms for breast dosimetry in mammography and DBT. Methods The proposed phantoms were developed starting from patient‐based models of compressed breasts, generated for multiple thicknesses and representing the two standard views acquired in mammography and DBT, that is, cranio‐caudal (CC) and medio‐lateral‐oblique (MLO). Internally, the breast phantoms were defined as consisting of an adipose/fibroglandular tissue mixture, with a nonspatially uniform relative concentration. The parenchyma distributions were obtained from a previously described model based on patient breast computed tomography data that underwent simulated compression. Following these distributions, phantoms with any glandular fraction (1%–100%) and breast thickness (12–125 mm) can be generated, for both views. The phantoms were validated, in terms of their accuracy for average normalized glandular dose (DgN) estimation across samples of patient breasts, using 88 patient‐specific phantoms involving actual patient distribution of the fibroglandular tissue in the breast, and compared to that obtained using a homogeneous model similar to those currently used for breast dosimetry. Results The average DgN estimated for the proposed phantoms was concordant with that absorbed by the patient‐specific phantoms to within 5% (CC) and 4% (MLO). These DgN estimates were over 30% lower than those estimated with the homogeneous models, which overestimated the average DgN by 43% (CC), and 32% (MLO) compared to the patient‐specific phantoms. Conclusions The developed phantoms can be used for dosimetry simulations to improve the accuracy of dose estimates in mammography and DBT.
Collapse
Affiliation(s)
- Marco Caballo
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Carolina Rabin
- Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11600, Uruguay
| | - Christian Fedon
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Alejandro Rodríguez-Ruiz
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,epartment of Image Guided Therapy Systems, Philips Healthcare, Veenpluis 6, 5684 PC Best, the Netherlands
| | - Oliver Diaz
- Department of Mathematics and Computer Science, University of Barcelona, Spain
| | - John M Boone
- Department of Radiology and Biomedical Engineering, University of California Davis Health, 4860 "Y" Street, suite 3100 Ellison building, Sacramento, CA, 95817, USA
| | - David R Dance
- National Co-ordinating Centre for the Physics of Mammography (NCCPM), Royal Surrey County Hospital, Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,Dutch Expert Centre for Screening (LRCB), Wijchenseweg 101, 6538 SW, Nijmegen, The Netherlands.,Technical Medicine Centre, University of Twente, Hallenweg 5, 7522 NH, Enschede, The Netherlands
| |
Collapse
|
11
|
Sarno A, Mettivier G, Bliznakova K, Hernandez AM, Boone JM, Russo P. Comparisons of glandular breast dose between digital mammography, tomosynthesis and breast CT based on anthropomorphic patient-derived breast phantoms. Phys Med 2022; 97:50-58. [PMID: 35395535 DOI: 10.1016/j.ejmp.2022.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/17/2022] [Accepted: 03/26/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To evaluate the bias to the mean glandular dose (MGD) estimates introduced by the homogeneous breast models in digital breast tomosynthesis (DBT) and to have an insight into the glandular dose distributions in 2D (digital mammography, DM) and 3D (DBT and breast dedicated CT, BCT) x-ray breast imaging by employing breast models with realistic glandular tissue distribution and organ silhouette. METHODS A Monte Carlo software for DM, DBT and BCT simulations was adopted for the evaluation of glandular dose distribution in 60 computational anthropomorphic phantoms. These computational phantoms were derived from 3D breast images acquired via a clinical BCT scanner. RESULTS g·c·s·T conversion coefficients based on homogeneous breast model led to a MGD overestimate of 18% in DBT when compared to MGD estimated via anthropomorphic phantoms; this overestimate increased up to 21% for recently computed DgNDBT conversion coefficients. The standard deviation of the glandular dose distribution in BCT resulted 60% lower than in DM and 55% lower than in DBT. The glandular dose peak - evaluated as the average value over the 5% of the gland receiving the highest dose - is 2.8 times the MGD in DM, this factor reducing to 2.6 and 1.6 in DBT and BCT, respectively. CONCLUSIONS Conventional conversion coefficients for MGD estimates based on homogeneous breast models overestimate MGD by 18%, when compared to MGD estimated via anthropomorphic phantoms. The ratio between the peak glandular dose and the MGD is 2.8 in DM. This ratio is 8% and 75% higher than in DBT and BCT, respectively.
Collapse
Affiliation(s)
- Antonio Sarno
- University of Naples Federico II, Dept. of Physics "Ettore Pancini", Naples, Italy; INFN Division of Naples, Naples, Italy.
| | - Giovanni Mettivier
- University of Naples Federico II, Dept. of Physics "Ettore Pancini", Naples, Italy; INFN Division of Naples, Naples, Italy
| | | | | | - John M Boone
- University of California Davis Medical Center, Sacramento, CA, USA
| | - Paolo Russo
- University of Naples Federico II, Dept. of Physics "Ettore Pancini", Naples, Italy; INFN Division of Naples, Naples, Italy
| |
Collapse
|
12
|
Massera RT, Thomson RM, Tomal A. Technical note: MC-GPU breast dosimetry validations with other Monte Carlo codes and phase space file implementation. Med Phys 2021; 49:244-253. [PMID: 34778988 DOI: 10.1002/mp.15342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/12/2021] [Accepted: 10/25/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To validate the MC-GPU Monte Carlo (MC) code for dosimetric studies in X-ray breast imaging modalities: mammography, digital breast tomosynthesis, contrast enhanced digital mammography, and breast-CT. Moreover, to implement and validate a phase space file generation routine. METHODS The MC-GPU code (v. 1.5 DBT) was modified in order to generate phase space files and to be compatible with PENELOPE v. 2018 derived cross-section database. Simulations were performed with homogeneous and anthropomorphic breast phantoms for different breast imaging techniques. The glandular dose was computed for each case and compared with results from the PENELOPE (v. 2014) + penEasy (v. 2015) and egs _ brachy (EGSnrc) MC codes. Afterward, several phase space files were generated with MC-GPU and the scored photon spectra were compared between the codes. The phase space files generated in MC-GPU were used in PENELOPE and EGSnrc to calculate the glandular dose, and compared with the original dose scored in MC-GPU. RESULTS MC-GPU showed good agreement with the other codes when calculating the glandular dose distribution for mammography, mean glandular dose for digital breast tomosynthesis, and normalized glandular dose for breast-CT. The latter case showed average/maximum relative differences of 2.3%/27%, respectively, compared to other literature works, with the larger differences observed at low energies (around 10 keV). The recorded photon spectra entering a voxel were similar (within statistical uncertainties) between the three MC codes. Finally, the reconstructed glandular dose in a voxel from a phase space file differs by less than 0.65%, with an average of 0.18%-0.22% between the different MC codes, agreement within approximately 2 σ statistical uncertainties. In some scenarios, the simulations performed in MC-GPU were from 20 up to 40 times faster than those performed by PENELOPE. CONCLUSIONS The results indicate that MC-GPU code is suitable for breast dosimetric studies for different X-ray breast imaging modalities, with the advantage of a high performance derived from GPUs. The phase space file implementation was validated and is compatible with the IAEA standard, allowing multiscale MC simulations with a combination of CPU and GPU codes.
Collapse
Affiliation(s)
- Rodrigo T Massera
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario, Canada
| | - Rowan M Thomson
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario, Canada
| | - Alessandra Tomal
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Massera RT, Fernández-Varea JM, Tomal A. Impact of photoelectric cross section data on systematic uncertainties for Monte Carlo breast dosimetry in mammography. Phys Med Biol 2021; 66. [PMID: 33857930 DOI: 10.1088/1361-6560/abf859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/15/2021] [Indexed: 11/11/2022]
Abstract
Monte Carlo (MC) simulations are employed extensively in breast dosimetry studies. In the energy interval of interest in mammography energy deposition is predominantly caused by the photoelectric effect, and the corresponding cross sections used by the MC codes to model this interaction process have a direct influence on the simulation results. The present work compares two photoelectric cross section databases in order to estimate the systematic uncertainty, related to breast dosimetry, introduced by the choice of cross sections for photoabsorption. The databases with and without the so-called normalization screening correction are denoted as 'renormalized' or 'un-normalized', respectively. The simulations were performed with the PENELOPE/penEasy code system, for a geometry resembling a mammography examination. The mean glandular dose (MGD), incident air kerma (Kair), normalized glandular dose (DgN) and glandular depth-dose (GDD(z)) were scored, for homogeneous breast phantoms, using both databases. The AAPM Report TG-195 case 3 was replicated, and the results were included. Moreover, cases with heterogeneous and anthropomorphic breast phantoms were also addressed. The results simulated with the un-normalized cross sections are in better overall agreement with the TG-195 data than those from the renormalized cross sections; for MGD the largest discrepancies are 0.13(6)% and 0.74(5)%, respectively. The MGD,Kairand DgN values simulated with the two databases show differences that diminish from approximately 10%/3%/6.8% at 8.25 keV down to 1.5%/1.7%/0.4% at 48.75 keV, respectively. For polyenergetic spectra, deviations up to 2.5% were observed. The disagreement between the GDDs simulated with the analyzed databases increases with depth, ranging from -1% near the breast entrance to 4% near the bottom. Thus, the choice of photoelectric cross section database affects the MC simulation results of breast dosimetry and adds a non-negligible systematic uncertainty to the dosimetric quantities used in mammography.
Collapse
Affiliation(s)
- Rodrigo T Massera
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859, Campinas, Brazil
| | - José M Fernández-Varea
- Facultat de Física (FQA and ICC), Universitat de Barcelona, Diagonal 645, ES-08028 Barcelona, Catalonia, Spain
| | - Alessandra Tomal
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859, Campinas, Brazil
| |
Collapse
|
14
|
Massera RT, Tomal A. Breast glandularity and mean glandular dose assessment using a deep learning framework: Virtual patients study. Phys Med 2021; 83:264-277. [PMID: 33984580 DOI: 10.1016/j.ejmp.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Breast dosimetry in mammography is an important aspect of radioprotection since women are exposed periodically to ionizing radiation due to breast cancer screening programs. Mean glandular dose (MGD) is the standard quantity employed for the establishment of dose reference levels in retrospective population studies. However, MGD calculations requires breast glandularity estimation. This work proposes a deep learning framework for volume glandular fraction (VGF) estimations based on mammography images, which in turn are converted to glandularity values for MGD calculations. METHODS 208 virtual breast phantoms were generated and compressed computationally. The mammography images were obtained with Monte Carlo simulations (MC-GPU code) and a ray-tracing algorithm was employed for labeling the training data. The architectures of the neural networks are based on the XNet and multilayer perceptron, adapted for each task. The network predictions were compared with the ground truth using the coefficient of determination (r2). RESULTS The results have shown a good agreement for inner breast segmentation (r2 = 0.999), breast volume prediction (r2 = 0.982) and VGF prediction (r2 = 0.935). Moreover, the DgN coefficients using the predicted VGF for the virtual population differ on average 1.3% from the ground truth values. Afterwards with the obtained DgN coefficients, the MGD values were estimated from exposure factors extracted from the DICOM header of a clinical cohort, with median(75 percentile) values of 1.91(2.45) mGy. CONCLUSION We successfully implemented a deep learning framework for VGF and MGD calculations for virtual breast phantoms.
Collapse
Affiliation(s)
- Rodrigo T Massera
- Institute of Physics "Gleb Wataghin", University of Campinas, Campinas, Brazil
| | - Alessandra Tomal
- Institute of Physics "Gleb Wataghin", University of Campinas, Campinas, Brazil.
| |
Collapse
|
15
|
Teuwen J, Moriakov N, Fedon C, Caballo M, Reiser I, Bakic P, García E, Diaz O, Michielsen K, Sechopoulos I. Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation. Med Image Anal 2021; 71:102061. [PMID: 33910108 DOI: 10.1016/j.media.2021.102061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
The two-dimensional nature of mammography makes estimation of the overall breast density challenging, and estimation of the true patient-specific radiation dose impossible. Digital breast tomosynthesis (DBT), a pseudo-3D technique, is now commonly used in breast cancer screening and diagnostics. Still, the severely limited 3rd dimension information in DBT has not been used, until now, to estimate the true breast density or the patient-specific dose. This study proposes a reconstruction algorithm for DBT based on deep learning specifically optimized for these tasks. The algorithm, which we name DBToR, is based on unrolling a proximal-dual optimization method. The proximal operators are replaced with convolutional neural networks and prior knowledge is included in the model. This extends previous work on a deep learning-based reconstruction model by providing both the primal and the dual blocks with breast thickness information, which is available in DBT. Training and testing of the model were performed using virtual patient phantoms from two different sources. Reconstruction performance, and accuracy in estimation of breast density and radiation dose, were estimated, showing high accuracy (density <±3%; dose <±20%) without bias, significantly improving on the current state-of-the-art. This work also lays the groundwork for developing a deep learning-based reconstruction algorithm for the task of image interpretation by radiologists.
Collapse
Affiliation(s)
- Jonas Teuwen
- Department of Medical Imaging, Radboud University Medical Center, the Netherlands; Department of Radiation Oncology, Netherlands Cancer Institute, the Netherlands
| | - Nikita Moriakov
- Department of Medical Imaging, Radboud University Medical Center, the Netherlands; Department of Radiation Oncology, Netherlands Cancer Institute, the Netherlands
| | - Christian Fedon
- Department of Medical Imaging, Radboud University Medical Center, the Netherlands
| | - Marco Caballo
- Department of Medical Imaging, Radboud University Medical Center, the Netherlands
| | - Ingrid Reiser
- Department of Radiology, The University of Chicago, USA
| | - Pedrag Bakic
- Department of Radiology, University of Pennsylvania, USA; Department of Translational Medicine, Lund University, Sweden
| | - Eloy García
- Vall d'Hebron Institute of Oncology, VHIO, Spain
| | - Oliver Diaz
- Department of Mathematics and Computer Science, University of Barcelona, Spain
| | - Koen Michielsen
- Department of Medical Imaging, Radboud University Medical Center, the Netherlands
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, the Netherlands; Dutch Expert Centre for Screening (LRCB), the Netherlands.
| |
Collapse
|
16
|
Sarno A, Mettivier G, di Franco F, Varallo A, Bliznakova K, Hernandez AM, Boone JM, Russo P. Dataset of patient-derived digital breast phantoms for in silico studies in breast computed tomography, digital breast tomosynthesis, and digital mammography. Med Phys 2021; 48:2682-2693. [PMID: 33683711 DOI: 10.1002/mp.14826] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 01/10/2023] Open
Abstract
PURPOSE To present a dataset of computational digital breast phantoms derived from high-resolution three-dimensional (3D) clinical breast images for the use in virtual clinical trials in two-dimensional (2D) and 3D x-ray breast imaging. ACQUISITION AND VALIDATION METHODS Uncompressed computational breast phantoms for investigations in dedicated breast CT (BCT) were derived from 150 clinical 3D breast images acquired via a BCT scanner at UC Davis (California, USA). Each image voxel was classified in one out of the four main materials presented in the field of view: fibroglandular tissue, adipose tissue, skin tissue, and air. For the image classification, a semi-automatic software was developed. The semi-automatic classification was compared via manual glandular classification performed by two researchers. A total of 60 compressed computational phantoms for virtual clinical trials in digital mammography (DM) and digital breast tomosynthesis (DBT) were obtained from the corresponding uncompressed phantoms via a software algorithm simulating the compression and the elastic deformation of the breast, using the tissue's elastic coefficient. This process was evaluated in terms of glandular fraction modification introduced by the compression procedure. The generated cohort of 150 uncompressed computational breast phantoms presented a mean value of the glandular fraction by mass of 12.3%; the average diameter of the breast evaluated at the center of mass was 105 mm. Despite the slight differences between the two manual segmentations, the resulting glandular tissue segmentation did not consistently differ from that obtained via the semi-automatic classification. The difference between the glandular fraction by mass before and after the compression was 2.1% on average. The 60 compressed phantoms presented an average glandular fraction by mass of 12.1% and an average compressed thickness of 61 mm. DATA FORMAT AND ACCESS The generated digital breast phantoms are stored in DICOM files. Image voxels can present one out of four values representing the different classified materials: 0 for the air, 1 for the adipose tissue, 2 for the glandular tissue, and 3 for the skin tissue. The generated computational phantoms datasets were stored in the Zenodo public repository for research purposes (http://doi.org/10.5281/zenodo.4529852, http://doi.org/10.5281/zenodo.4515360). POTENTIAL APPLICATIONS The dataset developed within the INFN AGATA project will be used for developing a platform for virtual clinical trials in x-ray breast imaging and dosimetry. In addition, they will represent a valid support for introducing new breast models for dose estimates in 2D and 3D x-ray breast imaging and as models for manufacturing anthropomorphic physical phantoms.
Collapse
Affiliation(s)
| | - Giovanni Mettivier
- INFN Sezione di Napoli, Naples, Italy.,Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Naples, Italy
| | - Francesca di Franco
- INFN Sezione di Napoli, Naples, Italy.,Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Naples, Italy.,Léon Bérard Cancer Center, University of Lyon & CREATiS, University of Lyon, CNRS, Lyon, France
| | - Antonio Varallo
- Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Naples, Italy
| | - Kristina Bliznakova
- Department of Medical Equipment, Electronic and Information Technologies in Healthcare, Medical University of Varna, Varna, Bulgaria
| | - Andrew M Hernandez
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - John M Boone
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Paolo Russo
- INFN Sezione di Napoli, Naples, Italy.,Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
17
|
Sarno A, Tucciariello RM, Mettivier G, Del Sarto D, Fantacci ME, Russo P. Normalized glandular dose coefficients for digital breast tomosynthesis systems with a homogeneous breast model. Phys Med Biol 2021; 66:065024. [PMID: 33535193 DOI: 10.1088/1361-6560/abe2e9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This work aims at calculating and releasing tabulated values of dose conversion coefficients, DgNDBT, for mean glandular dose (MGD) estimates in digital breast tomosynthesis (DBT). The DgNDBT coefficients are proposed as unique conversion coefficients for MGD estimates, in place of dose conversion coefficients in mammography (DgNDM or c, g, s triad as proposed in worldwide quality assurance protocols) used together with the T correction factor. DgNDBT is the MGD per unit incident air kerma measured at the breast surface for a 0° projection and the entire tube load used for the scan. The dataset of polyenergetic DgNDBT coefficients was derived via a Monte Carlo software based on the Geant4 toolkit. Dose coefficients were calculated for a grid of values of breast characteristics (breast thickness in the range 20-90 mm and glandular fraction by mass of 1%, 25%, 50%, 75%, 100%) and the simulated geometries, scan protocols, irradiation geometries and typical spectral qualities replicated those of six commercial DBT systems (GE SenoClaire, Hologic Selenia Dimensions, GE Senographe Pristina, Fujifilm Amulet Innovality, Siemens Mammomat Inspiration and IMS Giotto Class). For given breast characteristics, target/filter combination, tube voltage and half value layer (HVL), two spectra with two HVL values have been simulated in order to permit MGD estimates from experimental HVL values via mathematical interpolation from tabulated values. The adopted breast model assumes homogenous composition of glandular and adipose tissues; it includes a 1.45 mm thick skin envelope in place of the 4-5 mm envelope commonly adopted in dosimetry protocols. The simulation code was validated versus AAPM Task group 195 Monte Carlo reference data sets (absolute differences not higher than 1.1%) and by comparison to relative dosimetry measurements with radiochromic film in a PMMA test object (differences within the maximum experimental uncertainty of 11%). The calculated coefficients show maximum relative deviations of -17.6% and +6.1% from those provided by the DBT dose coefficients adopted in the EUREF protocol and of 1.5%, on average, from data in the AAPM TG223 report. A spreadsheet is provided for interpolating the tabulated DgNDBT coefficients for arbitrary values of HVL, compressed breast thickness and glandular fraction, in the corresponding investigated ranges, for each DBT unit modeled in this work.
Collapse
Affiliation(s)
- Antonio Sarno
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Fedon C, Caballo M, García E, Diaz O, Boone JM, Dance DR, Sechopoulos I. Fibroglandular tissue distribution in the breast during mammography and tomosynthesis based on breast CT data: A patient-based characterization of the breast parenchyma. Med Phys 2021; 48:1436-1447. [PMID: 33452822 PMCID: PMC7986202 DOI: 10.1002/mp.14716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/30/2020] [Accepted: 01/07/2021] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To develop a patient-based breast density model by characterizing the fibroglandular tissue distribution in patient breasts during compression for mammography and digital breast tomosynthesis (DBT) imaging. METHODS In this prospective study, 88 breast images were acquired using a dedicated breast computed tomography (CT) system. The breasts in the images were classified into their three main tissue components and mechanically compressed to mimic the positioning for mammographic acquisition of the craniocaudal (CC) and mediolateral oblique (MLO) views. The resulting fibroglandular tissue distribution during these compressions was characterized by dividing the compressed breast volume into small regions, for which the median and the 25th and 75th percentile values of local fibroglandular density were obtained in the axial, coronal, and sagittal directions. The best fitting function, based on the likelihood method, for the median distribution was obtained in each direction. RESULTS The fibroglandular tissue tends to concentrate toward the caudal (about 15% below the midline of the breast) and anterior regions of the breast, in both the CC- and MLO-view compressions. A symmetrical distribution was found in the MLO direction in the case of the CC-view compression, while a shift of about 12% toward the lateral direction was found in the MLO-view case. CONCLUSIONS The location of the fibroglandular tissue in the breast under compression during mammography and DBT image acquisition is a major factor for determining the actual glandular dose imparted during these examinations. A more realistic model of the parenchyma in the compressed breast, based on patient image data, was developed. This improved model more accurately reflects the fibroglandular tissue spatial distribution that can be found in patient breasts, and therefore might aid in future studies involving radiation dose and/or cancer development risk estimation.
Collapse
Affiliation(s)
- Christian Fedon
- Department of Medical ImagingRadboud University Medical Center6500 HB Geert Grooteplein‐ZuidNijmegenThe Netherlands
| | - Marco Caballo
- Department of Medical ImagingRadboud University Medical Center6500 HB Geert Grooteplein‐ZuidNijmegenThe Netherlands
| | - Eloy García
- Vall d’ Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Oliver Diaz
- Department of Mathematics and Computer ScienceUniversity of BarcelonaBarcelonaSpain
- CIMDParc Taulí Hospital UniversitariInstitut d’Investigació i Innovació Parc TaulíSabadellSpain
| | - John M. Boone
- Department of Radiology and Biomedical EngineeringUniversity of California Davis Health4860 “Y” Street, suite 3100 Ellison buildingSacramentoCA95817USA
| | - David R. Dance
- National Co‐ordinating Centre for the Physics of MammographyNCCPMRoyal Surrey County HospitalGuildfordGU2 7XHUK
- Department of PhysicsUniversity of SurreyGuildfordGU2 7XHUK
| | - Ioannis Sechopoulos
- Department of Medical ImagingRadboud University Medical Center6500 HB Geert Grooteplein‐ZuidNijmegenThe Netherlands
- Dutch Expert Centre for Screening (LRCB)PO Box 6873Nijmegen6503 GJThe Netherlands
| |
Collapse
|
19
|
Tseng HW, Karellas A, Vedantham S. Radiation dosimetry of a clinical prototype dedicated cone-beam breast CT system with offset detector. Med Phys 2021; 48:1079-1088. [PMID: 33501686 DOI: 10.1002/mp.14688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE A clinical-prototype, dedicated, cone-beam breast computed tomography (CBBCT) system with offset detector is undergoing clinical evaluation at our institution. This study is to estimate the normalized glandular dose coefficients ( DgN CT ) that provide air kerma-to-mean glandular dose conversion factors using Monte Carlo simulations. MATERIALS AND METHODS The clinical prototype CBBCT system uses 49 kV x-ray spectrum with 1.39 mm 1st half-value layer thickness. Monte Carlo simulations (GATE, version 8) were performed with semi-ellipsoidal, homogeneous breasts of various fibroglandular weight fractions ( f g = 0.01 , 0.15 , 0.5 , 1 ) , chest wall diameters ( d = 8 , 10 , 14 , 18 , 20 cm), and chest wall to nipple length ( l = 0.75 d ), aligned with the axis of rotation (AOR) located at 65 cm from the focal spot to determine the DgN CT . Three geometries were considered - 40 × 30 -cm detector with no offset that served as reference and corresponds to a clinical CBBCT system, 30 × 30 -cm detector with 5 cm offset, and a 30 × 30 -cm detector with 10 cm offset. RESULTS For 5 cm lateral offset, the DgN CT ranged 0.177 - 0.574 mGy/mGy and reduction in DgN CT with respect to reference geometry was observed only for 18 cm ( 6.4 % ± 0.23 % ) and 20 cm ( 9.6 % ± 0.22 % ) diameter breasts. For the 10 cm lateral offset, the DgN CT ranged 0.221 - 0.581 mGy/mGy and reduction in DgN CT was observed for all breast diameters. The reduction in DgN CT was 1.4 % ± 0.48 % , 7.1 % ± 0.13 % , 17.5 % ± 0.19 % , 25.1 % ± 0.15 % , and 27.7 % ± 0.08 % for 8, 10, 14, 18, and 20 cm diameter breasts, respectively. For a given breast diameter, the reduction in DgN CT with offset-detector geometries was not dependent on f g . Numerical fits of DgN CT d , l , f g were generated for each geometry. CONCLUSION The DgN CT and the numerical fit, D g N CT d , l , f g would be of benefit for current CBBCT systems using the reference geometry and for future generations using offset-detector geometry. There exists a potential for radiation dose reduction with offset-detector geometry, provided the same technique factors as the reference geometry are used, and the image quality is clinically acceptable.
Collapse
Affiliation(s)
- Hsin Wu Tseng
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, USA
| | - Andrew Karellas
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, USA
| | - Srinivasan Vedantham
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, USA.,Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
20
|
Shinohara S, Araki F, Maeda M, Okamoto R, Nakamura M, Higashida Y. Indices for the evaluation of glandular dose heterogeneity in full-field digital mammography. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:1429-1443. [PMID: 33120368 DOI: 10.1088/1361-6498/abc604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
This study aims to evaluate the indices of glandular dose heterogeneity in full-field digital mammography. The distributions of GD in a breast phantom with a skin layer of 4 mm were determined using the Monte Carlo method with simulated x-ray fluence spectra. First, the GD to air kerma (GD/Kair) volume histogram was obtained from the GD distributions, which were indicated by the glandular volume (%) as a function of GD/Kair. The GD indices, namely, the maximum glandular dose (GD2%) and glandular volume percentage (%) receiving at least the mean glandular dose (MGD) (VMGD) were calculated from the GD/Kairvolume histogram. Next, the scatter plots of GD2%/MGD andVMGDwere drawn as functions of the normalised mean glandular dose (DgN). Finally, (GD2%)iand (VMGD)iwere obtained from the relationship between the GD indices and DgN for 596 clinical irradiation cases based on individual irradiation conditions. The values of GD2%/MGD were more affected by breast thickness than glandularity and tube voltage, and they decreased according to the power law of DgN for all the target/filter combinations. The values ofVMGDwere proportional to DgN and decreased with increase in the compressed breast thickness. The values of (MGD)iand (GD2%)ifor 596 clinical irradiation cases were estimated to range from 0.6-3.0 mGy to 1.1-7.0 mGy, respectively, and (VMGD)iwas in the range 32%-48%. (GD2%)iand (VMGD)iare mainly affected by breast thickness. These indices are useful for the evaluation of glandular dose heterogeneity in mammography.
Collapse
Affiliation(s)
- Sae Shinohara
- Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
- Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara-shi, Tochigi 324-8550, Japan
| | - Fujio Araki
- Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Megumi Maeda
- Department of Radiology, Sasebo City General Hospital, 9-3 Hirase, Sasebo, Nagasaki 857-8511, Japan
| | - Rumi Okamoto
- Department of Radiology, Social Medical Corporation Hakuaikai Sagara Hospital, 3-31, Matsubara, Kagoshima 892-0833, Japan
| | - Mai Nakamura
- Department of Radiological Technology, Faculty of Fukuoka Medical Technology, Teikyo University, 6-22 Misaki, Ohmuta, Fukuoka 836-8505, Japan
| | - Yoshiharu Higashida
- Department of Radiological Technology, Faculty of Fukuoka Medical Technology, Teikyo University, 6-22 Misaki, Ohmuta, Fukuoka 836-8505, Japan
| |
Collapse
|
21
|
Mammography dose estimates do not reflect any specific patient's breast dose. Eur J Radiol 2020; 131:109216. [DOI: 10.1016/j.ejrad.2020.109216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 11/18/2022]
|
22
|
di Franco F, Sarno A, Mettivier G, Hernandez A, Bliznakova K, Boone J, Russo P. GEANT4 Monte Carlo simulations for virtual clinical trials in breast X-ray imaging: Proof of concept. Phys Med 2020; 74:133-142. [DOI: 10.1016/j.ejmp.2020.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
|
23
|
Trevisan Massera R, Tomal A. Estimation of glandular dose in mammography based on artificial neural networks. ACTA ACUST UNITED AC 2020; 65:095009. [DOI: 10.1088/1361-6560/ab7a6d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Hernandez AM, Abbey CK, Ghazi P, Burkett G, Boone JM. Effects of kV, filtration, dose, and object size on soft tissue and iodine contrast in dedicated breast CT. Med Phys 2020; 47:2869-2880. [PMID: 32233091 DOI: 10.1002/mp.14159] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/30/2019] [Accepted: 03/13/2020] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Clinical use of dedicated breast computed tomography (bCT) requires relatively short scan times necessitating systems with high frame rates. This in turn impacts the x-ray tube operating range. We characterize the effects of tube voltage, beam filtration, dose, and object size on contrast and noise properties related to soft tissue and iodine contrast agents as a way to optimize imaging protocols for soft tissue and iodine contrast at high frame rates. METHODS This study design uses the signal-difference-to-noise ratio (SDNR), noise-equivalent quanta (NEQ), and detectability (d´) as measures of imaging performance for a prototype breast CT scanner that utilizes a pulsed x-ray tube (with a 4 ms pulse width) at 43.5 fps acquisition rate. We assess a range of kV, filtration, breast phantom size, and mean glandular dose (MGD). Performance measures are estimated from images of adipose-equivalent breast phantoms machined to have a representative size and shape of small, medium, and large breasts. Water (glandular tissue equivalent) and iodine contrast (5 mg/ml) were used to fill two cylindrical wells in the phantoms. RESULTS Air kerma levels required for obtaining an MGD of 6 mGy ranged from 7.1 to 9.1 mGy and are reported across all kV, filtration, and breast phantom sizes. However, at 50 kV, the thick filters (0.3 mm of Cu or Gd) exceeded the maximum available mA of the x-ray generator, and hence, these conditions were excluded from subsequent analysis. There was a strong positive association between measurements of SDNR and d' (R2 > 0.97) within the range of parameters investigated in this work. A significant decrease in soft tissue SDNR was observed for increasing phantom size and increasing kV with a maximum SDNR at 50 kV with 0.2 mm Cu or 0.2 mm Gd filtration. For iodine contrast SDNR, a significant decrease was observed with increasing phantom size, but a decrease in SDNR for increasing kV was only observed for 70 kV (50 and 60 kV were not significantly different). Thicker Gd filtration (0.3 mm Gd) resulted in a significant increase in iodine SDNR and decrease in soft tissue SDNR but requires significantly more tube current to deliver the same MGD. CONCLUSIONS The choice of 60 kV with 0.2 mm Gd filtration provides a good trade-off for maximizing both soft tissue and iodine contrast. This scanning technique takes advantage of the ~50 keV Gd k-edge to produce contrast and can be achieved within operating range of the x-ray generator used in this work. Imaging at 60 kV allows for a greater range in dose delivered to the large breast sizes when uniform image quality is desired across all breast sizes. While imaging performance metrics (i.e., detectability index and SDNR) were shown to be strongly correlated, the methodologies presented in this work for the estimation of NEQ (and subsequently d') provides a meaningful description of the spatial resolution and noise characteristics of this prototype bCT system across a range of beam quality, dose, and object sizes.
Collapse
Affiliation(s)
- Andrew M Hernandez
- Department of Radiology, University of California Davis, Sacramento, 95817, CA, USA
| | - Craig K Abbey
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | | | - George Burkett
- Department of Radiology, University of California Davis, Sacramento, 95817, CA, USA
| | - John M Boone
- Department of Radiology, University of California Davis, Sacramento, 95817, CA, USA.,Department of Biomedical Engineering, University of California Davis, Sacramento, CA, 95817, USA
| |
Collapse
|
25
|
Glandular dose indices using a glandular dose to air kerma volume histogram in mammography. Med Phys 2020; 47:1340-1348. [DOI: 10.1002/mp.13981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 01/25/2023] Open
|
26
|
Sarno A, Tucciariello RM, Mettivier G, di Franco F, Russo P. Monte Carlo calculation of monoenergetic and polyenergetic DgN coefficients for mean glandular dose estimates in mammography using a homogeneous breast model. ACTA ACUST UNITED AC 2019; 64:125012. [DOI: 10.1088/1361-6560/ab253f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Santos JC, Tomal A, de Barros N, Costa PR. Normalized glandular dose (DgN) coefficients from experimental mammographic x-ray spectra. ACTA ACUST UNITED AC 2019; 64:105010. [DOI: 10.1088/1361-6560/ab171a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Beaudoux V, Blin G, Barbrel B, Kantor G, Zacharatou C. Geant4 physics list comparison for the simulation of phase-contrast mammography (XPulse project). Phys Med 2019; 60:66-75. [PMID: 31000088 DOI: 10.1016/j.ejmp.2019.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Breast cancer is the most frequent cancer in women. Early and accurate detection of the disease is a major factor in patient survival. To this end, phase-contrast imaging has gained significant interest in recent years. The aim of this work was to validate the physics models of a Geant4 mammography imaging simulation (in the context of the XPulse project) by comparing to EGSnrc results. METHODS We used three Geant4 electromagnetic physics lists of the version 10.4 of the toolkit: Standard, Livermore and Penelope. We calculated energy distributions in homogeneous and inhomogeneous phantoms and breast doses in DICOM images. The simulations used photon beams of energies 20-100 keV. The Geant4 calculations were compared with EGSnrc/DOSXYZnrc simulations. RESULTS We found a very good agreement between the Standard Electromagnetic option 4 and Livermore Physics Lists (within 1% for all beam energies). Larger differences were found between Standard Electromagnetic option 4 and Penelope Physics Lists (about 4%). The agreement of longitudinal energy distributions between Geant4 Standard Electromagnetic option 4 and EGSnrc was good in water and light biological materials, but important discrepancies were found in heavy elements. We confirmed with both codes that dose to the breast is minimal at beam energy around 60 keV. CONCLUSIONS Overall, we found good agreement between the option 4 of the Standard Electromagnetic physics list and Livermore physics lists of Geant4, as well as EGSnrc for materials relevant to mammography screening. Further investigations are needed for the case of heavier materials.
Collapse
Affiliation(s)
- V Beaudoux
- Bordeaux University, LaBRI, CNRS UMR 5800, F-33400 Talence, France.
| | - G Blin
- Bordeaux University, LaBRI, CNRS UMR 5800, F-33400 Talence, France
| | - B Barbrel
- ALPhANOV Optics and Lasers Technology Center, Bordeaux, France
| | - G Kantor
- Department of Radiotherapy, Institut Bergonié, Comprehensive Cancer Center, 229 cours de l'Argonne, 33076 Bordeaux, France
| | - C Zacharatou
- Department of Radiotherapy, Institut Bergonié, Comprehensive Cancer Center, 229 cours de l'Argonne, 33076 Bordeaux, France
| |
Collapse
|
29
|
Hernandez AM, Becker AE, Boone JM. Updated breast CT dose coefficients (DgNCT) using patient-derived breast shapes and heterogeneous fibroglandular distributions. Med Phys 2019; 46:1455-1466. [DOI: 10.1002/mp.13391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Andrew M. Hernandez
- Department of Radiology; University of California Davis; Sacramento CA 95817 USA
| | - Amy E. Becker
- Department of Radiology; University of California Davis; Sacramento CA 95817 USA
- Biomedical Engineering Graduate Group; University of California Davis; Sacramento CA 95817 USA
| | - John M. Boone
- Department of Radiology; University of California Davis; Sacramento CA 95817 USA
- Biomedical Engineering; University of California Davis; Sacramento CA 9581 USA
| |
Collapse
|
30
|
Oliver PAK, Thomson RM. Investigating energy deposition in glandular tissues for mammography using multiscale Monte Carlo simulations. Med Phys 2019; 46:1426-1436. [PMID: 30657190 DOI: 10.1002/mp.13372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/29/2018] [Accepted: 12/22/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To investigate energy deposition in glandular tissues of the breast on macro- and microscopic length scales in the context of mammography. METHODS Multiscale mammography models of breasts are developed, which include segmented, voxelized macroscopic tissue structure as well as nine regions of interest (ROIs) embedded throughout the breast tissue containing explicitly-modelled cells. Using a 30 kVp Mo/Mo spectrum, Monte Carlo (MC) techniques are used to calculate dose to ∼mm voxels containing glandular and/or adipose tissues, as well as energy deposition on cellular length scales. ROIs consist of at least 1000 mammary epithelial cells and ∼200 adipocytes; specific energy (energy imparted per unit mass; stochastic analogue of the absorbed dose) is calculated within mammary epithelial cell nuclei. RESULTS Macroscopic dose distributions within segmented breast tissue demonstrate considerable variation in energy deposition depending on depth and tissue structure. Doses to voxels containing glandular tissue vary between ∼0.1 and ∼4 times the mean glandular dose (MGD, averaged over the entire breast). Considering microscopic length scales, mean specific energies for mammary epithelial cell nuclei are ∼30% higher than the corresponding glandular voxel dose. Additionally, due to the stochastic nature of radiation, there is considerable variation in energy deposition throughout a cell population within a ROI: for a typical glandular voxel dose of 4 mGy, the standard deviation of the specific energy for mammary epithelial cell nuclei is 85% relative to the mean. Thus, for a glandular voxel dose of 4 mGy at the centre of the breast, corresponding mammary epithelial cell nuclei will receive specific energies up to ∼9 mGy (considering the upper end of the 1σ standard deviation of the specific energy), while a ROI located 2 cm closer to the radiation source will receive specific energies up to ∼40 mGy. Energy deposition within mammary epithelial cell nuclei is sensitive to cell model details including cellular elemental compositions and nucleus size, underlining the importance of realistic cellular models. CONCLUSIONS There is considerable variation in energy deposition on both macro- and microscopic length scales for mammography, with glandular voxel doses and corresponding cell nuclei specific energies many times higher than the MGD in parts of the breast. These results should be considered for radiation-induced cancer risk evaluation in mammography which has traditionally focused on a single metric such as the MGD.
Collapse
Affiliation(s)
- Patricia A K Oliver
- Carleton Laboratory for Radiotherapy Physics, Physics Dept., Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Rowan M Thomson
- Carleton Laboratory for Radiotherapy Physics, Physics Dept., Carleton University, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
31
|
Fedon C, Rabin C, Caballo M, Diaz O, García E, Rodríguez-Ruiz A, González-Sprinberg GA, Sechopoulos I. Monte Carlo study on optimal breast voxel resolution for dosimetry estimates in digital breast tomosynthesis. Phys Med Biol 2018; 64:015003. [PMID: 30524034 DOI: 10.1088/1361-6560/aaf453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Digital breast tomosynthesis (DBT) is currently used as an adjunct technique to digital mammography (DM) for breast cancer imaging. Being a quasi-3D image, DBT is capable of providing depth information on the internal breast glandular tissue distribution, which may be enough to obtain an accurate patient-specific radiation dose estimate. However, for this, information regarding the location of the glandular tissue, especially in the vertical direction (i.e. x-ray source to detector), is needed. Therefore, a dedicated reconstruction algorithm designed to localize the amount of glandular tissue, rather than for optimal diagnostic value, could be desirable. Such a reconstruction algorithm, or, alternatively, a reconstructed DBT image classification algorithm, could benefit from the use of larger voxels, rather than the small sizes typically used for the diagnostic task. In addition, the Monte Carlo (MC) based dose estimates would be accelerated by the representation of the breast tissue with fewer and larger voxels. Therefore, in this study we investigate the optimal DBT reconstructed voxel size that allows accurate dose evaluations (i.e. within 5%) using a validated Geant4-based MC code. For this, sixty patient-based breast models, previously acquired using dedicated breast computed tomography (BCT) images, were deformed to reproduce the breast during compression under a given DBT scenario. Two re-binning approaches were applied to the compressed phantoms, leading to isotropic and anisotropic voxels of different volumes. MC DBT simulations were performed reproducing the acquisition geometry of a SIEMENS Mammomat Inspiration system. Results show that isotropic cubic voxels of 2.73 mm size provide a dose estimate accurate to within 5% for 51/60 patients, while a comparable accuracy is obtained with anisotropic voxels of dimension 5.46 × 5.46 × 2.73 mm3. In addition, the MC simulation time is reduced by more than half in respect to the original voxel dimension of 0.273 × 0.273 × 0.273 mm3 when either of the proposed re-binning approaches is used. No significant differences in the effect of binning on the dose estimates are observed (Wilcoxon-Mann-Whitney test, p-value > 0.4) between the 0° the 23° (i.e. the widest angular range) exposure.
Collapse
Affiliation(s)
- Christian Fedon
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmgen, The Netherlands. These authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
32
|
M Ali R, England A, Mercer CE, Tootell A, Hogg P. Calculating Individual Lifetime Effective Risk from Initial Mean Glandular Dose Arising from the First Screening Mammogram. J Med Imaging Radiat Sci 2018; 49:406-413. [PMID: 30514558 DOI: 10.1016/j.jmir.2018.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The objective of the study was to use the initial mean glandular dose (MGD) arising from the first screening mammogram to estimate the individual total screening lifetime effective risk. METHODS Organ doses from full-field digital mammography (FFDM) screening exposures (craniocaudal and mediolateral oblique for each breast) were measured using a simulated approach, with average breast thickness and adult ATOM phantoms, on 16 FFDM machines. Doses were measured using thermoluminescent dosimeters accommodated inside the ATOM phantom; examined breast MGD was calculated. Total effective risk during a client's lifetime was calculated for 150 screening scenarios of different screening commencement ages and frequencies. For each scenario, a set of conversion factors were obtained to convert MGD values into total effective risk. RESULTS For the 16 FFDM machines, MGD contributes approximately 98% of total effective risk. This contribution is approximately constant for different screening regimes of different screening commencement ages. MGD contribution remains constant, but the risk reduced because the radiosensitivity of all body tissues, including breast tissue, reduces with age. Three sets of conversion factors were obtained for three screening frequencies (annual, biennial, triennial). Three relationship graphs between screening commencement age and total effective risk, as percentages of MGD, were created. CONCLUSIONS Graphical representation of total risk could be an easy way to illustrate the total effective risk during a client's lifetime. Screening frequency, commencement age, and MGD are good predictors for total effective risk, generating more understandable data for clients than MGD.
Collapse
Affiliation(s)
- Raed M Ali
- Faculty of Medicine, University of Kufa, Najaf, Iraq; Radiography Directorate, University of Salford, Greater Manchester, UK.
| | - Andrew England
- Radiography Directorate, University of Salford, Greater Manchester, UK
| | - Claire E Mercer
- Radiography Directorate, University of Salford, Greater Manchester, UK
| | - Andrew Tootell
- Radiography Directorate, University of Salford, Greater Manchester, UK
| | - Peter Hogg
- Radiography Directorate, University of Salford, Greater Manchester, UK; Division of Radiography, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
33
|
Normalized glandular dose coefficients in mammography, digital breast tomosynthesis and dedicated breast CT. Phys Med 2018; 55:142-148. [DOI: 10.1016/j.ejmp.2018.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/03/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
|
34
|
Massera RT, Tomal A. Skin models and their impact on mean glandular dose in mammography. Phys Med 2018; 51:38-47. [DOI: 10.1016/j.ejmp.2018.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/29/2018] [Accepted: 04/08/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Rodrigo Trevisan Massera
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, 13083-859 Campinas, Brazil
| | - Alessandra Tomal
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, 13083-859 Campinas, Brazil.
| |
Collapse
|
35
|
Homogeneous vs. patient specific breast models for Monte Carlo evaluation of mean glandular dose in mammography. Phys Med 2018; 51:56-63. [DOI: 10.1016/j.ejmp.2018.04.392] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 12/15/2022] Open
|
36
|
Sarno A, Mettivier G, Tucciariello RM, Bliznakova K, Boone JM, Sechopoulos I, Di Lillo F, Russo P. Monte Carlo evaluation of glandular dose in cone-beam X-ray computed tomography dedicated to the breast: Homogeneous and heterogeneous breast models. Phys Med 2018; 51:99-107. [DOI: 10.1016/j.ejmp.2018.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
|
37
|
Fedon C, Caballo M, Sechopoulos I. Internal breast dosimetry in mammography: Monte Carlo validation in homogeneous and anthropomorphic breast phantoms with a clinical mammography system. Med Phys 2018; 45:3950-3961. [PMID: 29956334 PMCID: PMC6099211 DOI: 10.1002/mp.13069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/17/2018] [Accepted: 06/21/2018] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To validate Monte Carlo (MC)-based breast dosimetry estimations using both a homogeneous and a 3D anthropomorphic breast phantom under polyenergetic irradiation for internal breast dosimetry purposes. METHODS Experimental measurements were performed with a clinical digital mammography system (Mammomat Inspiration, Siemens Healthcare), using the x-ray spectrum selected by the automatic exposure control and a tube current-exposure time product of 360 mAs. A homogeneous 50% glandular breast phantom and a 3D anthropomorphic breast phantom were used to investigate the dose at different depths (range 0-4 cm with 1 cm steps) for the homogeneous case and at a depth of 2.25 cm for the anthropomorphic case. Local dose deposition was measured using thermoluminescent dosimeters (TLD), metal oxide semiconductor field-effect transistor dosimeters (MOSFET), and GafChromic™ films. A Geant4-based MC simulation was modified to match the clinical experimental setup. Thirty sensitive volumes (3.2 × 3.2 × 0.38 mm3 ) on the axial-phantom plane were included at each depth in the simulation to characterize the internal dose variation and compare it to the experimental TLD and MOSFET measurements. The experimental 2D dose maps obtained with the GafChromic™ films were compared to the simulated 2D dose distributions. RESULTS Due to the energy dependence of the dosimeters and due to x-ray beam hardening, dosimeters based on these three technologies have to be calibrated at each depth of the phantom. As expected, the dose was found to decrease with increasing phantom depth, with the reduction being ~93% after 4 cm for the homogeneous breast phantom. The 2D dose map showed nonuniformities in the dose distribution in the axial plane of the phantom. The mean combined standard uncertainty increased with phantom depth by up to 5.3% for TLD, 6.3% for MOSFET, and 9.6% for GafChromic™ film. In the case of a heterogeneous phantom, the dosimeters are able to detect local dose gradient variations. In particular, GafChromic™ film showed local dose variations of about 46% at the boundaries of two materials. CONCLUSIONS Results showed a good agreement between experimental measurements (with TLD and MOSFET) and MC data for both homogeneous and anthropomorphic breast phantoms. Larger discrepancies are found when comparing the GafChromic™ dose values to the MC results due to the inherent less precise nature of the former. MC validations in a heterogeneous background at the level of local dose deposition and in absolute terms play a fundamental role in the development of an accurate method to estimate radiation dose. The potential introduction of a breast dosimetry model involving a nonhomogeneous glandular/adipose tissue composition makes the validation of internal dose distributions estimates crucial.
Collapse
Affiliation(s)
- Christian Fedon
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterPO Box 91016500 HBNijmegenThe Netherlands
| | - Marco Caballo
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterPO Box 91016500 HBNijmegenThe Netherlands
| | - Ioannis Sechopoulos
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterPO Box 91016500 HBNijmegenThe Netherlands
- Dutch Expert Center for Screening (LRCB)PO Box 68736503 GJNijmegenThe Netherlands
| |
Collapse
|
38
|
Fedon C, Caballo M, Longo R, Trianni A, Sechopoulos I. Internal breast dosimetry in mammography: Experimental methods and Monte Carlo validation with a monoenergetic x-ray beam. Med Phys 2018; 45:1724-1737. [DOI: 10.1002/mp.12792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/05/2017] [Accepted: 01/19/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Christian Fedon
- Department of Radiology and Nuclear Medicine; Radboud University Medical Center; PO Box 9101 6500 HB Nijmegen The Netherlands
- Istituto Nazionale di Fisica Nucleare (INFN); sezione di Trieste; 34127 Trieste Italy
| | - Marco Caballo
- Department of Radiology and Nuclear Medicine; Radboud University Medical Center; PO Box 9101 6500 HB Nijmegen The Netherlands
| | - Renata Longo
- Istituto Nazionale di Fisica Nucleare (INFN); sezione di Trieste; 34127 Trieste Italy
- Dipartimento di Fisica; Università degli Studi di Trieste; 34127 Trieste Italy
| | - Annalisa Trianni
- Medical Physics Department; Azienda Sanitaria Universitaria Integrata (ASUIUD) - Presidio Ospedaliero “S. Maria della Misericordia”; p.le S. Maria della Misericordia, 15 33100 Udine Italy
| | - Ioannis Sechopoulos
- Department of Radiology and Nuclear Medicine; Radboud University Medical Center; PO Box 9101 6500 HB Nijmegen The Netherlands
- Dutch Expert Center for Screening (LRCB); PO Box 6873 6503 GJ Nijmegen The Netherlands
| |
Collapse
|
39
|
Balta C, Bouwman RW, Sechopoulos I, Broeders MJM, Karssemeijer N, van Engen RE, Veldkamp WJH. A model observer study using acquired mammographic images of an anthropomorphic breast phantom. Med Phys 2017; 45:655-665. [DOI: 10.1002/mp.12703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/19/2017] [Accepted: 11/12/2017] [Indexed: 12/31/2022] Open
Affiliation(s)
- Christiana Balta
- Dutch Expert Centre for Screening (LRCB), Radboud University Medical Center, Wijchenseweg 101, 6538 SW, Nijmegen, The Netherlands.,Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ramona W Bouwman
- Dutch Expert Centre for Screening (LRCB), Radboud University Medical Center, Wijchenseweg 101, 6538 SW, Nijmegen, The Netherlands
| | - Ioannis Sechopoulos
- Dutch Expert Centre for Screening (LRCB), Radboud University Medical Center, Wijchenseweg 101, 6538 SW, Nijmegen, The Netherlands.,Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Mireille J M Broeders
- Dutch Expert Centre for Screening (LRCB), Radboud University Medical Center, Wijchenseweg 101, 6538 SW, Nijmegen, The Netherlands.,Department for Health Evidence, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Nico Karssemeijer
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ruben E van Engen
- Dutch Expert Centre for Screening (LRCB), Radboud University Medical Center, Wijchenseweg 101, 6538 SW, Nijmegen, The Netherlands
| | - Wouter J H Veldkamp
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
40
|
Bouwman RW, Mackenzie A, van Engen RE, Broeders MJM, Young KC, Dance DR, den Heeten GJ, Veldkamp WJH. Toward image quality assessment in mammography using model observers: Detection of a calcification-like object. Med Phys 2017; 44:5726-5739. [PMID: 28837225 DOI: 10.1002/mp.12532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/17/2017] [Accepted: 08/17/2017] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Model observers (MOs) are of interest in the field of medical imaging to assess image quality. However, before procedures using MOs can be proposed in quality control guidelines for mammography systems, we need to know whether MOs are sensitive to changes in image quality and correlations in background structure. Therefore, as a proof of principle, in this study human and model observer (MO) performance are compared for the detection of calcification-like objects using different background structures and image quality levels of unprocessed mammography images. METHOD Three different phantoms, homogeneous polymethyl methacrylate, BR3D slabs with swirled patterns (CIRS, Norfolk, VA, USA), and a prototype anthropomorphic breast phantom (Institute of Medical Physics and Radiation Protection, Technische Hochschule Mittelhessen, Germany) were imaged on an Amulet Innovality (FujiFilm, Tokyo, Japan) mammographic X-ray unit. Because the complexities of the structures of these three phantoms were different and not optimized to match the characteristics of real mammographic images, image processing was not applied in this study. In addition, real mammograms were acquired on the same system. Regions of interest (ROIs) were extracted from each image. In half of the ROIs, a 0.25-mm diameter disk was inserted at four different contrast levels to represent a calcification-like object. Each ROI was then modified, so four image qualities relevant for mammography were simulated. The signal-present and signal-absent ROIs were evaluated by a non-pre-whitening model observer with eye filter (NPWE) and a channelized Hotelling observer (CHO) using dense difference of Gaussian channels. The ROIs were also evaluated by human observers in a two alternative forced choice experiment. Detectability results for the human and model observer experiments were correlated using a mixed-effect regression model. Threshold disk contrasts for human and predicted human observer performance based on the NPWE MO and CHO were estimated. RESULTS Global trends in threshold contrast were similar for the different background structures, but absolute contrast threshold levels differed. Contrast thresholds tended to be lower in ROIs from simple phantoms compared with ROIs from real mammographic images. The correlation between human and model observer performance was not affected by the range of image quality levels studied. CONCLUSIONS The correlation between human and model observer performance does not depend on image quality. This is a promising outcome for the use of model observers in image quality analysis and allows for subsequent research toward the development of MO-based quality control procedures and guidelines.
Collapse
Affiliation(s)
- Ramona W Bouwman
- Dutch Expert Centre for Screening (LRCB), Radboud University Medical Center, PO Box 6873, 6503 GJ, Nijmegen, The Netherlands
| | - Alistair Mackenzie
- National Co-ordinating Centre for the Physics of Mammography (NCCPM), Royal Surrey County Hospital, Guildford, Surrey, GU2 7XX, UK
| | - Ruben E van Engen
- Dutch Expert Centre for Screening (LRCB), Radboud University Medical Center, PO Box 6873, 6503 GJ, Nijmegen, The Netherlands
| | - Mireille J M Broeders
- Dutch Expert Centre for Screening (LRCB), Radboud University Medical Center, PO Box 6873, 6503 GJ, Nijmegen, The Netherlands
- Radboud Institute for Health Sciences (RIHS), Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Kenneth C Young
- National Co-ordinating Centre for the Physics of Mammography (NCCPM), Royal Surrey County Hospital, Guildford, Surrey, GU2 7XX, UK
- Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - David R Dance
- National Co-ordinating Centre for the Physics of Mammography (NCCPM), Royal Surrey County Hospital, Guildford, Surrey, GU2 7XX, UK
- Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Gerard J den Heeten
- Dutch Expert Centre for Screening (LRCB), Radboud University Medical Center, PO Box 6873, 6503 GJ, Nijmegen, The Netherlands
- Department of Radiology, Academic Medical Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Wouter J H Veldkamp
- Dutch Expert Centre for Screening (LRCB), Radboud University Medical Center, PO Box 6873, 6503 GJ, Nijmegen, The Netherlands
- Department of Radiology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
41
|
Sarno A, Mettivier G, Lillo FD, Bliznakova K, Sechopoulos I, Russo P. Abstract ID: 203 Breast model validation for Monte Carlo evaluation of normalized glandular dose coefficients in mammography. Phys Med 2017. [DOI: 10.1016/j.ejmp.2017.09.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
42
|
Rodríguez-Ruiz A, Agasthya GA, Sechopoulos I. The compressed breast during mammography and breast tomosynthesis: in vivo shape characterization and modeling. Phys Med Biol 2017; 62:6920-6937. [PMID: 28665291 DOI: 10.1088/1361-6560/aa7cd0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To characterize and develop a patient-based 3D model of the compressed breast undergoing mammography and breast tomosynthesis. During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3D breast surface imaging with structured light (SL) during breast compression, along with simultaneous acquisition of a tomosynthesis image. A pair of SL systems were used to acquire 3D surface images by projecting 24 different patterns onto the compressed breast and capturing their reflection off the breast surface in approximately 12-16 s. The 3D surface was characterized and modeled via principal component analysis. The resulting surface model was combined with a previously developed 2D model of projected compressed breast shapes to generate a full 3D model. Data from ten patients were discarded due to technical problems during image acquisition. The maximum breast thickness (found at the chest-wall) had an average value of 56 mm, and decreased 13% towards the nipple (breast tilt angle of 5.2°). The portion of the breast not in contact with the compression paddle or the support table extended on average 17 mm, 18% of the chest-wall to nipple distance. The outermost point along the breast surface lies below the midline of the total thickness. A complete 3D model of compressed breast shapes was created and implemented as a software application available for download, capable of generating new random realistic 3D shapes of breasts undergoing compression. Accurate characterization and modeling of the breast curvature and shape was achieved and will be used for various image processing and clinical tasks.
Collapse
Affiliation(s)
- Alejandro Rodríguez-Ruiz
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmegen, Netherlands
| | | | | |
Collapse
|
43
|
Sarno A, Dance DR, van Engen RE, Young KC, Russo P, Di Lillo F, Mettivier G, Bliznakova K, Fei B, Sechopoulos I. A Monte Carlo model for mean glandular dose evaluation in spot compression mammography. Med Phys 2017; 44:3848-3860. [PMID: 28500759 PMCID: PMC5534220 DOI: 10.1002/mp.12339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 01/26/2023] Open
Abstract
PURPOSE To characterize the dependence of normalized glandular dose (DgN) on various breast model and image acquisition parameters during spot compression mammography and other partial breast irradiation conditions, and evaluate alternative previously proposed dose-related metrics for this breast imaging modality. METHODS Using Monte Carlo simulations with both simple homogeneous breast models and patient-specific breasts, three different dose-related metrics for spot compression mammography were compared: the standard DgN, the normalized glandular dose to only the directly irradiated portion of the breast (DgNv), and the DgN obtained by the product of the DgN for full field irradiation and the ratio of the mid-height area of the irradiated breast to the entire breast area (DgNM ). How these metrics vary with field-of-view size, spot area thickness, x-ray energy, spot area and position, breast shape and size, and system geometry was characterized for the simple breast model and a comparison of the simple model results to those with patient-specific breasts was also performed. RESULTS The DgN in spot compression mammography can vary considerably with breast area. However, the difference in breast thickness between the spot compressed area and the uncompressed area does not introduce a variation in DgN. As long as the spot compressed area is completely within the breast area and only the compressed breast portion is directly irradiated, its position and size does not introduce a variation in DgN for the homogeneous breast model. As expected, DgN is lower than DgNv for all partial breast irradiation areas, especially when considering spot compression areas within the clinically used range. DgNM underestimates DgN by 6.7% for a W/Rh spectrum at 28 kVp and for a 9 × 9 cm2 compression paddle. CONCLUSION As part of the development of a new breast dosimetry model, a task undertaken by the American Association of Physicists in Medicine and the European Federation of Organizations of Medical Physics, these results provide insight on how DgN and two alternative dose metrics behave with various image acquisition and model parameters.
Collapse
Affiliation(s)
- Antonio Sarno
- Dipartimento di Fisica “Ettore Pancini”Università di Napoli Federico IIVia CintiaI‐80126NapoliItaly
- INFN Sezione di NapoliI‐80126NapoliItaly
| | - David R. Dance
- National Co‐ordinating Centre for the Physics of Mammography (NCCPM)Royal Surrey County HospitalGuildfordGU2 7XXUK
- Department of PhysicsUniversity of SurreyGuildfordGU2 7XHUK
| | - Ruben E. van Engen
- Dutch Reference Centre for Screening (LRCB)P.O. Box 68736503 GJNijmegenThe Netherlands
| | - Kenneth C. Young
- National Co‐ordinating Centre for the Physics of Mammography (NCCPM)Royal Surrey County HospitalGuildfordGU2 7XXUK
- Department of PhysicsUniversity of SurreyGuildfordGU2 7XHUK
| | - Paolo Russo
- Dipartimento di Fisica “Ettore Pancini”Università di Napoli Federico IIVia CintiaI‐80126NapoliItaly
- INFN Sezione di NapoliI‐80126NapoliItaly
| | - Francesca Di Lillo
- Dipartimento di Fisica “Ettore Pancini”Università di Napoli Federico IIVia CintiaI‐80126NapoliItaly
- INFN Sezione di NapoliI‐80126NapoliItaly
| | - Giovanni Mettivier
- Dipartimento di Fisica “Ettore Pancini”Università di Napoli Federico IIVia CintiaI‐80126NapoliItaly
- INFN Sezione di NapoliI‐80126NapoliItaly
| | - Kristina Bliznakova
- Department of ElectronicsTechnical University of Varna1 Studentska StrVarna9010Bulgaria
| | - Baowei Fei
- Department of Radiology and Imaging SciencesEmory University School of Medicine1701 Upper Gate Drive Northeast, Suite 5018AtlantaGA30322USA
- Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Ioannis Sechopoulos
- Dutch Reference Centre for Screening (LRCB)P.O. Box 68736503 GJNijmegenThe Netherlands
- Department of Radiology and Nuclear MedicineRadboud University Medical CentreP.O. Box 91016500 HBNijmegenThe Netherlands
| |
Collapse
|
44
|
Boone JM, Hernandez AM, Seibert JA. Two-dimensional breast dosimetry improved using three-dimensional breast image data. Radiol Phys Technol 2017; 10:129-141. [PMID: 28573551 DOI: 10.1007/s12194-017-0404-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 02/07/2023]
Abstract
Conventional mammographic dosimetry has been developed over the past 40 years. Prior to the availability of high-resolution three-dimensional breast images, certain assumptions about breast anatomy were required. These assumptions were based on the information evident on two-dimensional mammograms; they included assumptions of thick skin, a uniform mixture of glandular and adipose tissue, and a median breast density of 50%. Recently, the availability of high-resolution breast CT studies has provided more accurate data about breast anatomy, and this, in turn, has provided the opportunity to update mammographic dosimetry. Based on hundreds of data sets on breast CT volume, a number of studies were performed and reported which have shed light on the basic breast anatomy specific to dosimetry in mammography. It was shown that the average skin thickness of the breast was approximately 1.5 mm, instead of the 4 or 5 mm in the past. In another study, 3-D breast CT data sets were used for validation of the 2-D algorithm developed at the University of Toronto, leading to data suggesting that the overall average breast density is of the order of 16-20%, rather than the previously assumed 50%. Both of these assumptions led to normalized glandular dose (DgN) coefficients which are higher than those of the past. However, a comprehensive study on hundreds of breast CT data sets confirmed the findings of other investigators that there is a more centralized average location of glandular tissue within the breast. Combined with Monte Carlo studies for dosimetry, when accurate models of the distribution of glandular tissue were used, a 30% reduction in the radiation dose (as determined by the DgN coefficient) was found as an average across typical molybdenum and tungsten spectra used clinically. The 30% average reduction was found even when the thinner skin and the lower average breast density were considered. The article reviews three specific anatomic observations made possible based on high-resolution breast CT data by several different research groups. It is noted that, periodically, previous assumptions pertaining to dosimetry can be updated when new information becomes available, so that more accurate dosimetry is achieved. Dogmatic practices typically change slowly, but it is hoped that the medical physics community will continue to evaluate changes in DgN coefficients such that they become more accurate.
Collapse
Affiliation(s)
- John M Boone
- Department of Radiology, UC Davis Medical Center, University of California Davis, Sacramento, CA, 95817, USA.
| | - Andrew M Hernandez
- Department of Radiology, UC Davis Medical Center, University of California Davis, Sacramento, CA, 95817, USA
| | - J Anthony Seibert
- Department of Radiology, UC Davis Medical Center, University of California Davis, Sacramento, CA, 95817, USA
| |
Collapse
|
45
|
Rodríguez-Ruiz A, Feng SSJ, van Zelst J, Vreemann S, Mann JR, D'Orsi CJ, Sechopoulos I. Improvements of an objective model of compressed breasts undergoing mammography: Generation and characterization of breast shapes. Med Phys 2017; 44:2161-2172. [PMID: 28244109 DOI: 10.1002/mp.12186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/28/2016] [Accepted: 02/18/2017] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To develop a set of accurate 2D models of compressed breasts undergoing mammography or breast tomosynthesis, based on objective analysis, to accurately characterize mammograms with few linearly independent parameters, and to generate novel clinically realistic paired cranio-caudal (CC) and medio-lateral oblique (MLO) views of the breast. METHODS We seek to improve on an existing model of compressed breasts by overcoming detector size bias, removing the nipple and non-mammary tissue, pairing the CC and MLO views from a single breast, and incorporating the pectoralis major muscle contour into the model. The outer breast shapes in 931 paired CC and MLO mammograms were automatically detected with an in-house developed segmentation algorithm. From these shapes three generic models (CC-only, MLO-only, and joint CC/MLO) with linearly independent components were constructed via principal component analysis (PCA). The ability of the models to represent mammograms not used for PCA was tested via leave-one-out cross-validation, by measuring the average distance error (ADE). RESULTS The individual models based on six components were found to depict breast shapes with accuracy (mean ADE-CC = 0.81 mm, ADE-MLO = 1.64 mm, ADE-Pectoralis = 1.61 mm), outperforming the joint CC/MLO model (P ≤ 0.001). The joint model based on 12 principal components contains 99.5% of the total variance of the data, and can be used to generate new clinically realistic paired CC and MLO breast shapes. This is achieved by generating random sets of 12 principal components, following the Gaussian distributions of the histograms of each component, which were obtained from the component values determined from the images in the mammography database used. CONCLUSION Our joint CC/MLO model can successfully generate paired CC and MLO view shapes of the same simulated breast, while the individual models can be used to represent with high accuracy clinical acquired mammograms with a small set of parameters. This is the first step toward objective 3D compressed breast models, useful for dosimetry and scatter correction research, among other applications.
Collapse
Affiliation(s)
- Alejandro Rodríguez-Ruiz
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
| | - Steve Si Jia Feng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, GA, 30322, USA
| | - Jan van Zelst
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
| | - Suzan Vreemann
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
| | - Jessica Rice Mann
- Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Carl Joseph D'Orsi
- Department of Radiology and Imaging Sciences, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, GA, 30322, USA
| | - Ioannis Sechopoulos
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands.,Dutch Reference Centre for Screening (LRCB), Wijchenseweg 101, 6538, SW, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Sarno A, Mettivier G, Di Lillo F, Russo P. A Monte Carlo study of monoenergetic and polyenergetic normalized glandular dose (DgN) coefficients in mammography. Phys Med Biol 2016; 62:306-325. [PMID: 27991451 DOI: 10.1088/1361-6560/62/1/306] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Abstract
The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (DBCT). Almost all of the methodology used employs Monte Carlo calculated conversion factors to relate the measurable quantity, generally the incident air kerma, to the MGD. After a review of the size and composition of the female breast, the various mathematical models used are discussed, with particular emphasis on models for mammography. These range from simple geometrical shapes, to the more recent complex models based on patient DBCT examinations. The possibility of patient-specific dose estimates is considered as well as special diagnostic views and the effect of breast implants. Calculations using the complex models show that the MGD for mammography is overestimated by about 30% when the simple models are used. The design and uses of breast-simulating test phantoms for measuring incident air kerma are outlined and comparisons made between patient and phantom-based dose estimates. The most widely used national and international dosimetry protocols for mammography are based on different simple geometrical models of the breast, and harmonisation of these protocols using more complex breast models is desirable.
Collapse
Affiliation(s)
- David R Dance
- National Co-ordinating Centre for the Physics of Mammography (NCCPM), Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Ioannis Sechopoulos
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands and Dutch reference centre for screening (LRCB), PO Box 6873, 6503 GJ Nijmegen, The Netherlands
| |
Collapse
|
48
|
Hernandez AM, Seibert JA, Boone JM. Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered. Med Phys 2016; 42:6337-48. [PMID: 26520725 DOI: 10.1118/1.4931966] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Current dosimetry methods in mammography assume that the breast is comprised of a homogeneous mixture of glandular and adipose tissues. Three-dimensional (3D) dedicated breast CT (bCT) data sets were used previously to assess the complex anatomical structure within the breast, characterizing the statistical distribution of glandular tissue in the breast. The purpose of this work was to investigate the effect of bCT-derived heterogeneous glandular distributions on dosimetry in mammography. METHODS bCT-derived breast diameters, volumes, and 3D fibroglandular distributions were used to design realistic compressed breast models comprised of heterogeneous distributions of glandular tissue. The bCT-derived glandular distributions were fit to biGaussian functions and used as probability density maps to assign the density distributions within compressed breast models. The MCNPX 2.6.0 Monte Carlo code was used to estimate monoenergetic normalized mean glandular dose "DgN(E)" values in mammography geometry. The DgN(E) values were then weighted by typical mammography x-ray spectra to determine polyenergetic DgN (pDgN) coefficients for heterogeneous (pDgNhetero) and homogeneous (pDgNhomo) cases. The dependence of estimated pDgN values on phantom size, volumetric glandular fraction (VGF), x-ray technique factors, and location of the heterogeneous glandular distributions was investigated. RESULTS The pDgNhetero coefficients were on average 35.3% (SD, 4.1) and 24.2% (SD, 3.0) lower than the pDgNhomo coefficients for the Mo-Mo and W-Rh x-ray spectra, respectively, across all phantom sizes and VGFs when the glandular distributions were centered within the breast phantom in the coronal plane. At constant breast size, increasing VGF from 7.3% to 19.1% lead to a reduction in pDgNhetero relative to pDgNhomo of 23.6%-27.4% for a W-Rh spectrum. Displacement of the glandular distribution, at a distance equal to 10% of the compressed breast width in the superior and inferior directions, resulted in a 37.3% and a -26.6% change in the pDgNhetero coefficient, respectively, relative to the centered distribution for the Mo-Mo spectrum. Lateral displacement of the glandular distribution, at a distance equal to 10% of the compressed breast width, resulted in a 1.5% change in the pDgNhetero coefficient relative to the centered distribution for the W-Rh spectrum. CONCLUSIONS Introducing bCT-derived heterogeneous glandular distributions into mammography phantom design resulted in decreased glandular dose relative to the widely used homogeneous assumption. A homogeneous distribution overestimates the amount of glandular tissue near the entrant surface of the breast, where dose deposition is exponentially higher. While these findings are based on clinically measured distributions of glandular tissue using a large cohort of women, future work is required to improve the classification of glandular distributions based on breast size and overall glandular fraction.
Collapse
Affiliation(s)
- Andrew M Hernandez
- Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817
| | - J Anthony Seibert
- Departments of Radiology and Biomedical Engineering, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817
| | - John M Boone
- Departments of Radiology and Biomedical Engineering, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817
| |
Collapse
|
49
|
|
50
|
Hendrick RE, Tredennick T. Benefit to Radiation Risk of Breast-specific Gamma Imaging Compared with Mammography in Screening Asymptomatic Women with Dense Breasts. Radiology 2016; 281:583-588. [PMID: 27257949 DOI: 10.1148/radiol.2016151581] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To estimate the benefit-to-radiation risk ratios of mammography alone, breast-specific gamma imaging (BSGI) alone, and mammography plus BSGI in women with dense breasts who were asymptomatic and examined in the 2015 study by Rhodes et al. Materials and Methods This study uses previously published breast cancer detection rates and estimates of radiation dose and radiation risk and is, therefore, exempt from institutional review board approval. By using breast cancer detection rates for mammography alone, BSGI alone, and mammography plus BSGI from the study by Rhodes et al, as well as lifetime estimates of radiation-induced cancer mortality for mammography and BSGI on the basis of the Biologic Effects of Ionizing Radiation VII report, the benefit-to-radiation risk ratios of mammography alone, BSGI alone, and mammography plus BSGI performed annually over 10-year age intervals from ages 40 to 79 years are estimated. Results The benefit-to-radiation risk ratio is estimated to be 13 for women who are 40-49 years old and are screened with mammography, a figure that approximately doubles for each subsequent 10-year age interval up to 70-79 years old. For low-dose BSGI, annual screening benefit-to-radiation risk ratios are estimated to be 5 for women 40-49 years old and to double by age 70-79 years, while mammography plus BSGI has benefit-to-radiation risk ratios similar to those of BSGI alone. There are wide ranges for all of these estimates. Conclusion While lower dose (300 MBq) BSGI has estimated benefit-to-radiation risk ratios well in excess of 1 for screening of asymptomatic women with dense breasts who are 40 years old and older, it does not match the benefit-to-radiation risk ratio of screening mammography. © RSNA, 2016.
Collapse
Affiliation(s)
- R Edward Hendrick
- From the Department of Radiology, University of Colorado-Denver, School of Medicine, 12700 E 19th Ave, Mail Stop C278, Aurora, CO 80045 (R.E.H.); and Breast Imaging Section, Department of Radiology, University of Colorado-Denver, Anschutz Medical Campus, Aurora, Colo (T.T.)
| | - Tara Tredennick
- From the Department of Radiology, University of Colorado-Denver, School of Medicine, 12700 E 19th Ave, Mail Stop C278, Aurora, CO 80045 (R.E.H.); and Breast Imaging Section, Department of Radiology, University of Colorado-Denver, Anschutz Medical Campus, Aurora, Colo (T.T.)
| |
Collapse
|