1
|
Gao Y, Dong Y, Wang X, Su W, Cloutier P, Zheng Y, Sanche L. Comparisons between the Direct and Indirect Effect of 1.5 keV X-rays and 0-30 eV Electrons on DNA: Base Lesions, Stand Breaks, Cross-Links, and Cluster Damages. J Phys Chem B 2024; 128:11041-11053. [PMID: 39453992 DOI: 10.1021/acs.jpcb.4c02799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The interaction of low energy electrons (LEEs; 1-30 eV) with genomic material can induce multiple types of damage that may cause the loss of genetic information, mutations, genome instability, and cell death. For all damages measurable by electrophoresis, we provide the first complete set of G-values (yield of a specific product per energy deposited) induced in plasmid DNA by the direct and indirect effects of LEEs (GLEE) and 1.5 keV X-rays (GX) under identical conditions. Low energy photoelectrons are produced via X-rays incident on a tantalum (Ta) substrate covered with DNA and placed in a chamber filled with nitrogen at atmospheric pressure, under four different humidity levels, ranging from dry conditions to full hydration (Γ = 2.5 to Γ = 33, where Γ is the number of water molecules/nucleotide). Damage yields are measured as a function of X-ray fluence and humidity. GLEE values are between 2 and 27 times larger than those for X-rays. At Γ = 2.5 and 33, GLEE values for double strand breaks are 27 and 16 times larger than GX, respectively. The indirect effect contributes ∼50% to the total damage. These G-values allow quantification of potentially lethal lesions composed of strand breaks and/or base damages in the presence of varying amounts of water, i.e., closer to cellular conditions.
Collapse
Affiliation(s)
- Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yanfang Dong
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 47100, P. R. China
| | - Xuran Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Wenyue Su
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Pierre Cloutier
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
2
|
Yu ZW, Zheng M, Fan HY, Liang XH, Tang YL. Ultraviolet (UV) radiation: a double-edged sword in cancer development and therapy. MOLECULAR BIOMEDICINE 2024; 5:49. [PMID: 39417901 PMCID: PMC11486887 DOI: 10.1186/s43556-024-00209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
It has long been widely acknowledged that ultraviolet (UV) light is an environment risk factor that can lead to cancer, particularly skin cancer. However, it is worth noting that UV radiation holds potential for cancer treatment as a relatively high-energy electromagnetic wave. With the help of nanomaterials, the role of UV radiation has caught increasing attention in cancer treatment. In this review, we briefly summarized types of UV-induced cancers, including malignant melanoma, squamous cell carcinoma, basal cell carcinoma, Merkel cell carcinoma. Importantly, we discussed the primary mechanisms underlying UV carcinogenesis, including mutations by DNA damage, immunosuppression, inflammation and epigenetic alterations. Historically limited by its shallow penetration depth, the introduction of nanomaterials has dramatically transformed the utilization of UV light in cancer treatment. The direct effect of UV light itself generally leads to the suppression of cancer cell growth and the initiation of apoptosis and ferroptosis. It can also be utilized to activate photosensitizers for reactive oxygen species (ROS) production, sensitize radiotherapy and achieve controlled drug release. Finally, we comprehensively weigh the significant risks and limitations associated with the therapeutic use of UV radiation. And the contradictory effect of UV exposure in promoting and inhibiting tumor has been discussed. This review provides clues for potential clinical therapy as well as future study directions in the UV radiation field. The precise delivery and control of UV light or nanomaterials and the wavelength as well as dose effects of UV light are needed for a thorough understanding of UV radiation.
Collapse
Affiliation(s)
- Zhen-Wei Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Hua-Yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
3
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
4
|
Du C, Wang Y, Xue H, Gao H, Liu K, Kong X, Zhang W, Yin Y, Qiu D, Wang Y, Sun L. Research on the proximity functions of microdosimetry of low energy electrons in liquid water based on different Monte Carlo codes. Phys Med 2022; 101:120-128. [PMID: 35988482 DOI: 10.1016/j.ejmp.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
PURPOSE The proximity function is an important index in microdosimetry for describing the spatial distribution of energy, which is closely related to the biological effects of organs or tissues in the target area. In this work, the impact of parameters, such as physic models, cut-off energy, and initial energy, on the proximity function are quantitated and compared. METHODS According to the track structure (TS) and condensed history (CH) low-energy electromagnetic models, this paper chooses a variety of Monte Carlo (Monte Carlo, MC) codes (Geant4-DNA, PHITS, and Penelope) to simulate the track structure of low-energy electrons in liquid water and evaluates the influence of the electron initial energy, cut-off energy, energy spectrum, and physical model factors on the differential proximity function. RESULTS The results show that the initial energy of electrons in the low-energy part (especially less than 1 keV) has a greater impact on the differential proximity function, and the choice of cut-off energy has a greater impact on the differential proximity function corresponding to small radius sites (generally less than 10 nm). The difference in the electronic energy spectrum has little effect on the result, and the proximity functions of different physics models show better consistency under large radius sites. CONCLUSIONS This work comprehensively compares the differential proximity functions under different codes by setting a variety of simulation conditions and has basic guiding significance for helping users simulate and analyze the deposition characteristics of microscale electrons according to the selection of an appropriate methodology and cut-off energy.
Collapse
Affiliation(s)
- ChuanSheng Du
- State Key Laboratory of Radiation Medicine and Protection, China; School of Radiation Medicine and Protection, Soochow University, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - YiDi Wang
- State Key Laboratory of Radiation Medicine and Protection, China; School of Radiation Medicine and Protection, Soochow University, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - HuiYuan Xue
- State Key Laboratory of Radiation Medicine and Protection, China; School of Radiation Medicine and Protection, Soochow University, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Han Gao
- State Key Laboratory of Radiation Medicine and Protection, China; School of Radiation Medicine and Protection, Soochow University, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Kun Liu
- State Key Laboratory of Radiation Medicine and Protection, China; School of Radiation Medicine and Protection, Soochow University, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - XiangHui Kong
- State Key Laboratory of Radiation Medicine and Protection, China; School of Radiation Medicine and Protection, Soochow University, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - WenYue Zhang
- State Key Laboratory of Radiation Medicine and Protection, China; School of Radiation Medicine and Protection, Soochow University, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - YuChen Yin
- State Key Laboratory of Radiation Medicine and Protection, China; School of Radiation Medicine and Protection, Soochow University, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Dong Qiu
- State Key Laboratory of Radiation Medicine and Protection, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China; School of Public Health, Medical College of Soochow University, China
| | - YouYou Wang
- The Second Affiliated Hospital of Soochow University, China
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, China; School of Radiation Medicine and Protection, Soochow University, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| |
Collapse
|
5
|
Taioli S, Trevisanutto PE, de Vera P, Simonucci S, Abril I, Garcia-Molina R, Dapor M. Relative Role of Physical Mechanisms on Complex Biodamage Induced by Carbon Irradiation. J Phys Chem Lett 2021; 12:487-493. [PMID: 33373242 DOI: 10.1021/acs.jpclett.0c03250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The effective use of swift ion beams in cancer treatment (known as hadrontherapy) as well as appropriate protection in manned space missions rely on the accurate understanding of the energy delivery to cells that damages their genetic information. The key ingredient characterizing the response of a medium to the perturbation induced by charged particles is its electronic excitation spectrum. By using linear-response time-dependent density functional theory, we obtained the energy and momentum transfer excitation spectrum (the energy-loss function, ELF) of liquid water (the main constituent of biological tissues), which was in excellent agreement with experimental data. The inelastic scattering cross sections obtained from this ELF, together with the elastic scattering cross sections derived by considering the condensed phase nature of the medium, were used to perform accurate Monte Carlo simulations of the energy deposited by swift carbon ions in liquid water and carried away by the generated secondary electrons, producing inelastic events such as ionization, excitation, and dissociative electron attachment (DEA). The latter are strongly correlated with cellular death, which is scored in sensitive volumes with the size of two DNA convolutions. The sizes of the clusters of damaging events for a wide range of carbon-ion energies, from those relevant to hadrontherapy up to those for cosmic radiation, predict with unprecedented statistical accuracy the nature and relative magnitude of the main inelastic processes contributing to radiation biodamage, confirming that ionization accounts for the vast majority of complex damage. DEA, typically regarded as a very relevant biodamage mechanism, surprisingly plays a minor role in carbon-ion induced clusters of harmful events.
Collapse
Affiliation(s)
- Simone Taioli
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy
- Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Paolo E Trevisanutto
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy
- Center for Information Technology, Bruno Kessler Foundation, 38123 Trento, Italy
| | - Pablo de Vera
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy
- Departamento de Física, Centro de Investigación en Óptica y Nanofísica, Universidad de Murcia, 30100 Murcia, Spain
| | - Stefano Simonucci
- School of Science and Technology, University of Camerino, 62032 Camerino, Italy
- INFN, Sezione di Perugia, 06123 Perugia, Italy
| | - Isabel Abril
- Departament de Física Aplicada, Universitat d'Alacant, 03080 Alacant, Spain
| | - Rafael Garcia-Molina
- Departamento de Física, Centro de Investigación en Óptica y Nanofísica, Universidad de Murcia, 30100 Murcia, Spain
| | - Maurizio Dapor
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy
| |
Collapse
|
6
|
de Vera P, Abril I, Garcia-Molina R. Excitation and ionisation cross-sections in condensed-phase biomaterials by electrons down to very low energy: application to liquid water and genetic building blocks. Phys Chem Chem Phys 2021; 23:5079-5095. [DOI: 10.1039/d0cp04951d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A model is presented for computing electron-impact electronic excitation and ionisation cross-sections for arbitrary condensed-phase biomaterials in a wide energy range, showing a general good agreement with the available experimental data.
Collapse
Affiliation(s)
- Pablo de Vera
- Departamento de Física – Centro de Investigación en Óptica y Nanofísica
- Universidad de Murcia
- Murcia
- Spain
- Currently at European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*)
| | - Isabel Abril
- Departament de Física Aplicada
- Universitat d’Alacant
- Alacant
- Spain
| | - Rafael Garcia-Molina
- Departamento de Física – Centro de Investigación en Óptica y Nanofísica
- Universidad de Murcia
- Murcia
- Spain
| |
Collapse
|
7
|
Ionizing Radiation and Complex DNA Damage: Quantifying the Radiobiological Damage Using Monte Carlo Simulations. Cancers (Basel) 2020; 12:cancers12040799. [PMID: 32225023 PMCID: PMC7226293 DOI: 10.3390/cancers12040799] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation is a common tool in medical procedures. Monte Carlo (MC) techniques are widely used when dosimetry is the matter of investigation. The scientific community has invested, over the last 20 years, a lot of effort into improving the knowledge of radiation biology. The present article aims to summarize the understanding of the field of DNA damage response (DDR) to ionizing radiation by providing an overview on MC simulation studies that try to explain several aspects of radiation biology. The need for accurate techniques for the quantification of DNA damage is crucial, as it becomes a clinical need to evaluate the outcome of various applications including both low- and high-energy radiation medical procedures. Understanding DNA repair processes would improve radiation therapy procedures. Monte Carlo simulations are a promising tool in radiobiology studies, as there are clear prospects for more advanced tools that could be used in multidisciplinary studies, in the fields of physics, medicine, biology and chemistry. Still, lot of effort is needed to evolve MC simulation tools and apply them in multiscale studies starting from small DNA segments and reaching a population of cells.
Collapse
|
8
|
Lemelin V, Bass AD, Cloutier P, Sanche L. Low energy (1-19 eV) electron scattering from condensed thymidine (dT) I: absolute vibrational excitation cross sections. Phys Chem Chem Phys 2019; 21:23808-23817. [PMID: 31503266 DOI: 10.1039/c9cp03447a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Absolute cross sections (CSs) for vibrational excitation by electrons of energy between 1-19 eV scattering from condensed thymidine (dT) were measured by means of high-resolution electron energy loss spectroscopy (HREELS). The CSs were extracted from electron energy loss spectra of dT condensed on multilayers film of Ar held at about 20 K under ultra-high vacuum (∼1 × 10-11 Torr). dT is one of the most complex molecules to be studied in condensed phase by HREELS. The magnitudes of the vibrational CSs lie within the 10-17 cm2 range. Structures observed in the energy dependence of the vibrational CSs under 3 eV and around 4 eV were compared with previous results of gas- and solid-phase studies on dT and related molecules (e.g., thymine and tetrahydrofuran). These structures were attributed to the formation of shape resonances.
Collapse
Affiliation(s)
- V Lemelin
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et Sciences des radiations, Université de Sherbrooke, Québec J1H 5N4, Canada.
| | | | | | | |
Collapse
|
9
|
Abdulle A, Chow JCL. Contrast Enhancement for Portal Imaging in Nanoparticle-Enhanced Radiotherapy: A Monte Carlo Phantom Evaluation Using Flattening-Filter-Free Photon Beams. NANOMATERIALS 2019; 9:nano9070920. [PMID: 31248046 PMCID: PMC6669570 DOI: 10.3390/nano9070920] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/02/2022]
Abstract
Our team evaluated contrast enhancement for portal imaging using Monte Carlo simulation in nanoparticle-enhanced radiotherapy. Dependencies of percentage contrast enhancement on flattening-filter (FF) and flattening-filter-free (FFF) photon beams were determined by varying the nanoparticle material (gold, platinum, iodine, silver, iron oxide), nanoparticle concentration (3–40 mg/mL) and photon beam energy (6 and 10 MV). Phase-space files and energy spectra of the 6 MV FF, 6 MV FFF, 10 MV FF and 10 MV FFF photon beams were generated based on a Varian TrueBeam linear accelerator. We found that gold and platinum nanoparticles (NP) produced the highest contrast enhancement for portal imaging, compared to other NP with lower atomic numbers. The maximum percentage contrast enhancements for the gold and platinum NP were 18.9% and 18.5% with a concentration equal to 40 mg/mL. The contrast enhancement was also found to increase with the nanoparticle concentration. The maximum rate of increase of contrast enhancement for the gold NP was equal to 0.29%/mg/mL. Using the 6 MV photon beams, the maximum contrast enhancements for the gold NP were 79% (FF) and 78% (FFF) higher than those using the 10 MV beams. For the FFF beams, the maximum contrast enhancements for the gold NP were 53.6% (6 MV) and 53.8% (10 MV) higher than those using the FF beams. It is concluded that contrast enhancement for portal imaging can be increased when a higher atomic number of NP, higher nanoparticle concentration, lower photon beam energy and no flattening filter of photon beam are used in nanoparticle-enhanced radiotherapy.
Collapse
Affiliation(s)
- Aniza Abdulle
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - James C L Chow
- Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5T 1P5, Canada.
| |
Collapse
|
10
|
de Vera P, Abril I, Garcia-Molina R. Energy Spectra of Protons and Generated Secondary Electrons around the Bragg Peak in Materials of Interest in Proton Therapy. Radiat Res 2018; 190:282-297. [PMID: 29995591 DOI: 10.1667/rr14988.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The number and energy of secondary electrons generated around the trajectories of swift protons interacting with biological materials are highly relevant in proton therapy, due to the prominent role of low-energy electrons in the production of biodamage. For a given material, electron energy distributions are determined by the proton energy; and it is imperative that the distribution of proton energy at depths around the Bragg peak region be described as accurately as possible. With this objective, we simulated the energy distributions of proton beams of clinically relevant energies (50-300 MeV) at depths around the Bragg peak in liquid water and the water-equivalent polymer poly(methyl methacrylate) (PMMA). By using a simple model, this simulation has been conveniently extended to account for nuclear fragmentation reactions, providing depth-dose curves in excellent agreement with available experimental data. Special care has been taken to describe the electronic excitation spectrum of the target, taking into account its condensed phase nature. A predictive formula has been obtained for the mean value and the width of the proton energy distribution at the Bragg peak depth, quantities which are found to grow linearly with the initial energy of the beam, in good agreement with available data. To accurately characterize (in number and energy) the electrons generated around the proton paths, the energy distributions of the latter at each depth have been convoluted with the energy-dependent ionization inverse mean free paths. This results in a number of low-energy electrons around the Bragg peak larger than when only the proton beam average energy at the given depths is considered. The convoluted ionization inverse mean free path closely resembles the Bragg curve shape. The average energy of the secondary electrons is nearly constant (∼55 eV for liquid water and ∼43 eV for PMMA) in the plateau of the Bragg curve, independent of the proton incident energy and suddenly decaying once the Bragg peak is reached. These findings highlight the importance of a precise calculation of the proton beam energy distribution as a function of the target depth to reliably characterize the secondary electrons generated around the Bragg peak region.
Collapse
Affiliation(s)
- Pablo de Vera
- a Departamento de Física - Centro de Investigación en Óptica y Nanofísica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain
| | - Isabel Abril
- b Departament de Física Aplicada, Universitat d'Alacant, E-03080 Alacant, Spain
| | - Rafael Garcia-Molina
- a Departamento de Física - Centro de Investigación en Óptica y Nanofísica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
11
|
Hahn MB, Meyer S, Schröter MA, Seitz H, Kunte HJ, Solomun T, Sturm H. Direct electron irradiation of DNA in a fully aqueous environment. Damage determination in combination with Monte Carlo simulations. Phys Chem Chem Phys 2018; 19:1798-1805. [PMID: 28059422 DOI: 10.1039/c6cp07707b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report on a study in which plasmid DNA in water was irradiated with 30 keV electrons generated by a scanning electron microscope and passed through a 100 nm thick Si3N4 membrane. The corresponding Monte Carlo simulations suggest that the kinetic energy spectrum of the electrons throughout the water is dominated by low energy electrons (<100 eV). The DNA radiation damage, single-strand breaks (SSBs) and double-strand breaks (DSBs), was determined by gel electrophoresis. The median lethal dose of D1/2 = 1.7 ± 0.3 Gy was found to be much smaller as compared to partially or fully hydrated DNA irradiated under vacuum conditions. The ratio of the DSBs to SSBs was found to be 1 : 12 as compared to 1 : 88 found for hydrated DNA. Our method enables quantitative measurements of radiation damage to biomolecules (DNA, proteins) in solutions under varying conditions (pH, salinity, co-solutes) for an electron energy range which is difficult to probe by standard methods.
Collapse
Affiliation(s)
- Marc Benjamin Hahn
- Free University Berlin, Department of Physics, D-14195 Berlin, Germany. and Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany.
| | - Susann Meyer
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany. and University of Potsdam, Institute of Biochemistry and Biology, D-14476 Potsdam, Germany
| | | | - Harald Seitz
- Fraunhofer-Institut für Zelltherapie und Immunologie, Institutsteil Bioanalytik und Bioprozesse, D-14476 Potsdam, Germany
| | - Hans-Jörg Kunte
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany.
| | - Tihomir Solomun
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany.
| | - Heinz Sturm
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany. and Technical University Berlin, D-10587 Berlin, Germany
| |
Collapse
|
12
|
Schürmann R, Vogel S, Ebel K, Bald I. The Physico-Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy. Chemistry 2018. [PMID: 29522244 DOI: 10.1002/chem.201800804] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High-energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizing action of these compounds can at least partly be ascribed to an enhanced reactivity towards secondary low-energy electrons generated along the radiation track of the high-energy primary radiation, or to an additional emission of secondary reactive electrons close to the tumor tissue. This is referred to as physico-chemical radiosensitization. In this Concept article we present current experimental methods used to study fundamental processes of physico-chemical radiosensitization and discuss the most relevant classes of radiosensitizers. Open questions in the current discussions are identified and future directions outlined, which can lead to optimized treatment protocols or even novel therapeutic concepts.
Collapse
Affiliation(s)
- Robin Schürmann
- Institute of Chemistry-Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.,Department 1-Analytical Chemistry and Reference Materials, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter Str. 11, 12489, Berlin, Germany
| | - Stefanie Vogel
- Institute of Chemistry-Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.,Department 1-Analytical Chemistry and Reference Materials, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter Str. 11, 12489, Berlin, Germany.,School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Kenny Ebel
- Institute of Chemistry-Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.,Department 1-Analytical Chemistry and Reference Materials, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter Str. 11, 12489, Berlin, Germany
| | - Ilko Bald
- Institute of Chemistry-Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.,Department 1-Analytical Chemistry and Reference Materials, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter Str. 11, 12489, Berlin, Germany
| |
Collapse
|
13
|
Rezaee M, Hill RP, Jaffray DA. The Exploitation of Low-Energy Electrons in Cancer Treatment. Radiat Res 2017; 188:123-143. [PMID: 28557630 DOI: 10.1667/rr14727.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Given the distinct characteristics of low-energy electrons (LEEs), particularly at energies less than 30 eV, they can be applied to a wide range of therapeutic modalities to improve cancer treatment. LEEs have been shown to efficiently produce complex molecular damage resulting in substantial cellular toxicities. Since LEEs are produced in copious amounts from high-energy radiation beam, including photons, protons and ions; the control of LEE distribution can potentially enhance the therapeutic radio of such beams. LEEs can play a substantial role in the synergistic effect between radiation and chemotherapy, particularly halogenated and platinum-based anticancer drugs. Radiosensitizing entities containing atoms of high atomic number such as gold nanoparticles can be a source of LEE production if high-energy radiation interacts with them. This can provide a high local density of LEEs in a cell and produce cellular toxicity. Auger-electron-emitting radionuclides also create a high number of LEEs in each decay, which can induce lethal damage in a cell. Exploitation of LEEs in cancer treatment, however, faces a few challenges, such as dosimetry of LEEs and selective delivery of radiosensitizing and chemotherapeutic molecules close to cellular targets. This review first discusses the rationale for utilizing LEEs in cancer treatment by explaining their mechanism of action, describes theoretical and experimental studies at the molecular and cellular levels, then discusses strategies for achieving modification of the distribution and effectiveness of LEEs in cancerous tissue and their associated clinical benefit.
Collapse
Affiliation(s)
- Mohammad Rezaee
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Ontario Cancer Institute and Campbell Family Institute for Cancer Research and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Richard P Hill
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Ontario Cancer Institute and Campbell Family Institute for Cancer Research and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - David A Jaffray
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Ontario Cancer Institute and Campbell Family Institute for Cancer Research and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Letfullin RR, George TF. Nanotherapy of cancer by photoelectrons emitted from the surface of nanoparticles exposed to nonionizing ultraviolet radiation. Nanomedicine (Lond) 2017; 12:1107-1117. [PMID: 28447907 DOI: 10.2217/nnm-2017-0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM We introduce a new method for selectively destroying cancer cell organelles by electrons emitted from the surface of intracellularly localized nanoparticles exposed to the nonionizing ultraviolet (UV) radiation. METHODS We propose to target cancerous intracellular organelles by nanoparticles and expose them to UV radiation with energy density safe for healthy tissue. RESULTS We simulate the number of photoelectrons produced by the nanoparticles made of various metals and radii, calculate their kinetic energy and compare it to the threshold energy for producing biological damage. CONCLUSION Exposure of metal nanoparticles to UV radiation generates photoelectrons with kinetic energies up to 11 eV, which is high enough to produce single- to double-strand breaks in the DNA and damage the cancerous cell organelles.
Collapse
Affiliation(s)
- Renat R Letfullin
- Department of Physics & Optical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Ave, Terre Haute, IN 47803, USA
| | - Thomas F George
- Office of the Chancellor & Center for Nanoscience, Departments of Chemistry/Biochemistry & Physics/Astronomy, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| |
Collapse
|
15
|
Molecular excitation and relaxation of extreme ultraviolet lithography photoresists. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-08-100354-1.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
16
|
Zygmanski P, Sajo E. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays. Br J Radiol 2015; 89:20150200. [PMID: 26642305 PMCID: PMC4986475 DOI: 10.1259/bjr.20150200] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 11/17/2015] [Accepted: 12/01/2015] [Indexed: 11/05/2022] Open
Abstract
We review radiation transport and clinical beam modelling for gold nanoparticle dose-enhanced radiotherapy using X-rays. We focus on the nanoscale radiation transport and its relation to macroscopic dosimetry for monoenergetic and clinical beams. Among other aspects, we discuss Monte Carlo and deterministic methods and their applications to predicting dose enhancement using various metrics.
Collapse
Affiliation(s)
- Piotr Zygmanski
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, USA
| | - Erno Sajo
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Medical Physics Program, Lowell, MA, USA
| |
Collapse
|