1
|
Jin N, Meng F, Zhu L, Xing L, Lin Q, Zhang H. Multimodal image-guided surgical robot versus 3D-printed template for brachytherapy of malignant tumours in the skull base and deep facial region: a clinical comparative study. Int J Oral Maxillofac Surg 2025; 54:217-224. [PMID: 39317561 DOI: 10.1016/j.ijom.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
This study compared a multimodal image-guided robot and three-dimensionally (3D) printed templates for implanting iodine-125 (I125) radioactive seeds in patients with malignant tumours in the skull base and deep facial region. Seventeen patients who underwent I125 radioactive seed implantation between December 2018 and December 2019 were included. The operation time, intraoperative blood loss, and accuracy of seed implantation were compared between the multimodal image-guided robot-assisted implantation (experimental) group (n = 7) and 3D-printed template-assisted implantation (control) group (n = 10). In total, 291 seeds were implanted in the experimental group and 436 in the control group; the mean error of seed implantation accuracy was 1.95 ± 0.13 mm and 1.90 ± 0.08 mm, respectively (P = 0.309). The preparation time was 26.13 ± 5.28 min in the experimental group and 0 min in the control group, while the average operation time was 34.44 ± 6.39 min versus 43.70 ± 6.06 min, respectively. The intraoperative blood loss was 4.96 ± 1.76 ml (experimental) versus 8.97 ± 2.99 ml (control) (P = 0.123). Multimodal image-guided robot-assisted I125 radioactive seed implantation met the clinical requirements for treating malignant tumours in the skull base and deep facial regions.
Collapse
Affiliation(s)
- N Jin
- Medical School of Chinese PLA, Beijing, China; Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - F Meng
- Medical School of Chinese PLA, Beijing, China; Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - L Zhu
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - L Xing
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Q Lin
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - H Zhang
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Karius A, Shariff M, Schaller S, Lotter M, Strnad V, Lackner N, Fietkau R, Bert C, Merten R, Schweizer C. Is model-based dose calculation based on cone-beam computed tomography suitable for adaptive treatment planning in brachytherapy? Strahlenther Onkol 2025; 201:57-70. [PMID: 39601857 PMCID: PMC11739252 DOI: 10.1007/s00066-024-02318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND PURPOSE Model-based dose calculation considering tissue compositions is increasingly being investigated in brachytherapy. The aim of this study was to assess the suitability of modern cone-beam computed tomography (CBCT) imaging compared to conventional computed tomography (CT) scans for this purpose. MATERIALS AND METHODS By means of a phantom study, we evaluated the CT numbers and electron densities measured using a modern CBCT device as well as a conventional CT scanner for various materials. Based on this, we compared dose calculations (using the TG-43 formalism as well as model-based collapsed cone calculations assuming uniform materials [ACEuniform] and considering CT numbers [ACECT#]) on planning CTs and control CBCTs for patients with cervical and breast cancer as well as phantom-simulated skin cancer cases. Assessing dosimetric deviations between the planning CTs and control CBCTs acquired during the treatment course served to estimate interfractional implant variations. RESULTS The comparison of ACEuniform-ACECT# deviations between planning CTs and control CBCTs revealed no statistically significant difference for almost all examined dose parameters. Dosimetric deviations between model-based dose calculations and TG-43 were partly significant but of small magnitude (< 10 cGy per fraction). Interfractional dosimetric variations were substantially larger than the dosimetric differences found between the various dose calculation procedures. CONCLUSION Model-based dose calculation based on modern CBCT imaging was suitable. However, the found differences between these calculations and the TG-43 formalism should be investigated in dose-outcome analyses. The observed interfractional dosimetric variations revealed the importance of performing treatment quality assurance.
Collapse
Affiliation(s)
- Andre Karius
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany.
| | - Maya Shariff
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Sabrina Schaller
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Michael Lotter
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Vratislav Strnad
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Niklas Lackner
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Ricarda Merten
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Claudia Schweizer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
3
|
Fanhao M, Dongsheng X, Nenghao J, Yu S, Huanyu T, Bo Q, Bofu L, Ning Z, Shimin C, Runtao G, Xingguang D, Haizhong Z. Phantom study of a fully automatic radioactive seed placement robot for the treatment of skull base tumours. BMC Oral Health 2024; 24:420. [PMID: 38580965 PMCID: PMC10996177 DOI: 10.1186/s12903-024-04089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/01/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Interstitial brachytherapy is a form of intensive local irradiation that facilitates the effective protection of surrounding structures and the preservation of organ functions, resulting in a favourable therapeutic response. As surgical robots can perform needle placement with a high level of accuracy, our team developed a fully automatic radioactive seed placement robot, and this study aimed to evaluate the accuracy and feasibility of fully automatic radioactive seed placement for the treatment of tumours in the skull base. METHODS A fully automatic radioactive seed placement robot was established, and 4 phantoms of skull base tumours were built for experimental validation. All the phantoms were subjected to computed tomography (CT) scans. Then, the CT data were imported into the Remebot software to design the preoperative seed placement plan. After the phantoms were fixed in place, navigation registration of the Remebot was carried out, and the automatic seed placement device was controlled to complete the needle insertion and particle placement operations. After all of the seeds were implanted in the 4 phantoms, postoperative image scanning was performed, and the results were verified via image fusion. RESULTS A total of 120 seeds were implanted in 4 phantoms. The average error of seed placement was (2.51 ± 1.44) mm. CONCLUSION This study presents an innovative, fully automated radioactive particle implantation system utilizing the Remebot device, which can successfully complete automated localization, needle insertion, and radioactive particle implantation procedures for skull base tumours. The phantom experiments showed the robotic system to be reliable, stable, efficient and safe. However, further research on the needle-soft tissue interaction and deformation mechanism of needle puncture is still needed.
Collapse
Affiliation(s)
- Meng Fanhao
- Department of Oral and Maxillofacial Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xie Dongsheng
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Jin Nenghao
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Song Yu
- Department of Prosthodontics, Beijing Citident Stomatology Hospital, Beijing, China
| | - Tian Huanyu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Qiao Bo
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Liang Bofu
- Clinical Engineering Department, Beijing Baihui Weikang Technology Co., Ltd, Beijing, China
| | - Zhang Ning
- Department of Oral and Maxillofacial Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chang Shimin
- Department of Oral and Maxillofacial Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Gao Runtao
- Department of Oral and Maxillofacial Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Duan Xingguang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Zhang Haizhong
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Kato M, Higashi S, Sugino Y, Kajiwara S, Tanaka S, Kitano G, Yamashita Y, Ogura Y, Tachibana H, Kojima T, Inoue T. Clinical Efficacy and Openness to New Challenges of Low Dose Rate Brachytherapy for Prostate Cancer. Curr Oncol 2023; 30:9824-9835. [PMID: 37999133 PMCID: PMC10670683 DOI: 10.3390/curroncol30110713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Over a century ago, low-dose-rate (LDR) brachytherapy was introduced to treat prostate cancer (PCa). Since then, it has been widely applied worldwide, including in East Asia. LDR brachytherapy has been performed in 88 institutes in Japan. Beneficial clinical outcomes of LDR brachytherapy for intermediate-to-high-risk PCa have been demonstrated in large clinical trials. These clinical outcomes were achieved through advances in methods, such as urological precise needle puncture and seed placement, and the quantitative decision making regarding radiological parameters by radiation oncologists. The combined use of LDR brachytherapy with other therapeutic modalities, such as external beam radiation and androgen deprivation therapy, for the clinical risk classification of PCa has led to better anticancer treatment efficacy. In this study, we summarized basic LDR brachytherapy findings that should remain unchanged and be passed down in urology departments. We also discussed the applications of LDR brachytherapy for PCa in various clinical settings, including focal and salvage therapies. In addition, we highlighted technologies associated with brachytherapy that are under development.
Collapse
Affiliation(s)
- Manabu Kato
- Aichi Cancer Center, Urology, Nagoya 464-8681, Japan; (S.T.); (G.K.); (H.T.); (T.K.)
| | - Shinichiro Higashi
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu 514-0001, Japan; (S.H.); (Y.S.); (S.K.); (T.I.)
| | - Yusuke Sugino
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu 514-0001, Japan; (S.H.); (Y.S.); (S.K.); (T.I.)
| | - Shinya Kajiwara
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu 514-0001, Japan; (S.H.); (Y.S.); (S.K.); (T.I.)
| | - Shiori Tanaka
- Aichi Cancer Center, Urology, Nagoya 464-8681, Japan; (S.T.); (G.K.); (H.T.); (T.K.)
| | - Goshi Kitano
- Aichi Cancer Center, Urology, Nagoya 464-8681, Japan; (S.T.); (G.K.); (H.T.); (T.K.)
| | | | - Yuji Ogura
- Kuwana City Medical Center, Urology, Kuwana 511-0061, Japan;
| | - Hiroyuki Tachibana
- Aichi Cancer Center, Urology, Nagoya 464-8681, Japan; (S.T.); (G.K.); (H.T.); (T.K.)
| | - Takahiro Kojima
- Aichi Cancer Center, Urology, Nagoya 464-8681, Japan; (S.T.); (G.K.); (H.T.); (T.K.)
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu 514-0001, Japan; (S.H.); (Y.S.); (S.K.); (T.I.)
| |
Collapse
|
5
|
de Vries M, Wijntjes M, Sikorski J, Moreira P, van de Berg NJ, van den Dobbelsteen JJ, Misra S. MR-guided HDR prostate brachytherapy with teleoperated steerable needles. J Robot Surg 2023; 17:2461-2469. [PMID: 37480476 PMCID: PMC10492758 DOI: 10.1007/s11701-023-01676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/08/2023] [Indexed: 07/24/2023]
Abstract
Conformity of tumour volumes and dose plans in prostate brachytherapy (BT) can be constrained by unwanted needle deflections, needle access restrictions and visualisation limitations. This work validates the feasibility of teleoperated robotic control of an active steerable needle using magnetic resonance (MR) for guidance. With this system, perturbations can be counteracted and critical structures can be circumvented to access currently inaccessible areas. The system comprises of (1) a novel steerable needle, (2) the minimally invasive robotics in an MR environment (MIRIAM) system, and (3) the daVinci Research Kit (dVRK). MR scans provide visual feedback to the operator controlling the dVRK. Needle steering is performed along curved trajectories to avoid the urethra towards targets (representing tumour tissue) in a prostate phantom with a targeting error of 1.2 ± 1.0 mm. This work shows the potential clinical applicability of active needle steering for prostate BT with a teleoperated robotic system in an MR environment.
Collapse
Affiliation(s)
- M de Vries
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - M Wijntjes
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - J Sikorski
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - P Moreira
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - N J van de Berg
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
- Department of Gynaecological Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - J J van den Dobbelsteen
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - S Misra
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Berger D, Van Dyk S, Beaulieu L, Major T, Kron T. Modern Tools for Modern Brachytherapy. Clin Oncol (R Coll Radiol) 2023:S0936-6555(23)00182-6. [PMID: 37217434 DOI: 10.1016/j.clon.2023.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/28/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
This review aims to showcase the brachytherapy tools and technologies that have emerged during the last 10 years. Soft-tissue contrast using magnetic resonance and ultrasound imaging has seen enormous growth in use to plan all forms of brachytherapy. The era of image-guided brachytherapy has encouraged the development of advanced applicators and given rise to the growth of individualised 3D printing to achieve reproducible and predictable implants. These advances increase the quality of implants to better direct radiation to target volumes while sparing normal tissue. Applicator reconstruction has moved beyond manual digitising, to drag and drop of three-dimensional applicator models with embedded pre-defined source pathways, ready for auto-recognition and automation. The simplified TG-43 dose calculation formalism directly linked to reference air kerma rate of high-energy sources in the medium water remains clinically robust. Model-based dose calculation algorithms accounting for tissue heterogeneity and applicator material will advance the field of brachytherapy dosimetry to become more clinically accurate. Improved dose-optimising toolkits contribute to the real-time and adaptive planning portfolio that harmonises and expedites the entire image-guided brachytherapy process. Traditional planning strategies remain relevant to validate emerging technologies and should continue to be incorporated in practice, particularly for cervical cancer. Overall, technological developments need commissioning and validation to make the best use of the advanced features by understanding their strengths and limitations. Brachytherapy has become high-tech and modern by respecting tradition and remaining accessible to all.
Collapse
Affiliation(s)
- D Berger
- International Atomic Energy Agency, Vienna International Centre, Vienna, Austria.
| | - S Van Dyk
- Radiation Therapy Services, Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - L Beaulieu
- Service de Physique Médicale et Radioprotection, et Axe Oncologie du Centre de Recherche du CHU de Québec, CHU de Québec, Québec, Canada; Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
| | - T Major
- Radiotherapy Centre, National Institute of Oncology, Budapest, Hungary; Department of Oncology, Semmelweis University, Budapest, Hungary
| | - T Kron
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| |
Collapse
|
7
|
Karaçam SÇ, Tunçman D, ALMisned G, Ene A, Tekin HO. Investigation of Radiochromic Film Use for Source Position Verification through a LINAC On-Board Imager (OBI). MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59030628. [PMID: 36984628 PMCID: PMC10053966 DOI: 10.3390/medicina59030628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Background and Objectives: Quality assurance is an integral part of brachytherapy. Traditionally, radiographic films have been used for source position verification, however, in many clinics, computerized tomography simulators have replaced conventional simulators, and computerized radiography systems have replaced radiographic film processing units. With these advances, the problem of controlling source position verification without traditional radiographic films and conventional simulators has appeared. Materials and Methods: In this study, we investigated an alternative method for source position verification for brachytherapy applications. Source positions were evaluated using Gafchromic™ RTQA2 and EBT3 film and visually compared to exposed RTQA radiochromic film when using a Nucletron Oldelft Simulix HP conventional simulator and a Gammamed 12-i brachytherapy device for performance evaluation. Gafchromic film autoradiography was performed with a linear accelerator (LINAC) on-board imager (OBI). Radiochromic films are very suitable for evaluation by visual inspection with a LINAC OBI. Results: The results showed that this type of low-cost, easy-to-find material can be used for verification purposes under clinical conditions. Conclusions: It can be concluded that source-position quality assurance may be performed through a LINAC OBI device.
Collapse
Affiliation(s)
- Songül Çavdar Karaçam
- Department of Radiation Oncology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34303, Türkiye
| | - Duygu Tunçman
- Department of Radiotherapy, Vocational School of Health Services, Istanbul University-Cerrahpaşa, Istanbul 34265, Türkiye
| | - Ghada ALMisned
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Antoaneta Ene
- INPOLDE Research Center, Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Huseyin Ozan Tekin
- Medical Diagnostic Imaging Department, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Faculty of Engineering and Natural Sciences, Computer Engineering Department, Istinye University, Istanbul 34396, Türkiye
| |
Collapse
|
8
|
Ben Halima A, Bert J, Clément JF, Visvikis D. Optimisation and validation of a co-manipulated robot for brachytherapy procedure. Int J Med Robot 2023; 19:e2465. [PMID: 36177788 PMCID: PMC10078344 DOI: 10.1002/rcs.2465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Low-dose rate brachytherapy is the referent treatment for early-stage prostate cancer and consists in manually inserting radioactive seeds within the organ to destroy tumorous cells. This treatment is inaccurate leading to side effects. Researchers developed robots to improve this technique. Despite ameliorating accuracy, they cannot be clinically used because of size and acceptability. Therefore, a 6-DOF parallel and co-manipulated robot is proposed to meet these requirements. METHODS To fulfil the application requirements, a compact design was modelled. The robot's optimal dimensions were defined by establishing kinematics and implementing genetic algorithm. The robot's relevance was evaluated by measuring workspace and needle placement errors. RESULTS The robot fits into a cube of 300 × 300 × 300 mm3 and provides a free-singularity workspace of 55 × 55 × 150 mm3 with a possible end-effector rotation of 15° and a needle placement error <3 mm. CONCLUSION The results are promising and prove that our robot fulfils the application requirements and presents a beneficial alternative to the manual procedure.
Collapse
Affiliation(s)
- Aziza Ben Halima
- Laboratory of Medical Image Processing (LaTIM), INSERM UMR 1011, University of Western Brittany (UBO), Brest, France
| | - Julien Bert
- Laboratory of Medical Image Processing (LaTIM), INSERM UMR 1011, University of Western Brittany (UBO), Brest, France
| | - Jean-François Clément
- Laboratory of Medical Image Processing (LaTIM), INSERM UMR 1011, University of Western Brittany (UBO), Brest, France
| | - Dimitris Visvikis
- Laboratory of Medical Image Processing (LaTIM), INSERM UMR 1011, University of Western Brittany (UBO), Brest, France
| |
Collapse
|
9
|
Prisciandaro J, Zoberi JE, Cohen G, Kim Y, Johnson P, Paulson E, Song W, Hwang KP, Erickson B, Beriwal S, Kirisits C, Mourtada F. AAPM Task Group Report 303 endorsed by the ABS: MRI Implementation in HDR Brachytherapy-Considerations from Simulation to Treatment. Med Phys 2022; 49:e983-e1023. [PMID: 35662032 DOI: 10.1002/mp.15713] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/05/2022] Open
Abstract
The Task Group (TG) on Magnetic Resonance Imaging (MRI) Implementation in High Dose Rate (HDR) Brachytherapy - Considerations from Simulation to Treatment, TG 303, was constituted by the American Association of Physicists in Medicine's (AAPM's) Science Council under the direction of the Therapy Physics Committee, the Brachytherapy Subcommittee, and the Working Group on Brachytherapy Clinical Applications. The TG was charged with developing recommendations for commissioning, clinical implementation, and on-going quality assurance (QA). Additionally, the TG was charged with describing HDR brachytherapy (BT) workflows and evaluating practical consideration that arise when implementing MR imaging. For brevity, the report is focused on the treatment of gynecologic and prostate cancer. The TG report provides an introduction and rationale for MRI implementation in BT, a review of previous publications on topics including available applicators, clinical trials, previously published BT related TG reports, and new image guided recommendations beyond CT based practices. The report describes MRI protocols and methodologies, including recommendations for the clinical implementation and logical considerations for MR imaging for HDR BT. Given the evolution from prescriptive to risk-based QA,1 an example of a risk-based analysis using MRI-based, prostate HDR BT is presented. In summary, the TG report is intended to provide clear and comprehensive guidelines and recommendations for commissioning, clinical implementation, and QA for MRI-based HDR BT that may be utilized by the medical physics community to streamline this process. This report is endorsed by the American Brachytherapy Society (ABS). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | - Gil'ad Cohen
- Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - Perry Johnson
- University of Florida Health Proton Therapy Institute, Jacksonville, FL
| | | | | | - Ken-Pin Hwang
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Sushil Beriwal
- Allegheny Health Network Cancer Institute, Pittsburgh, PA
| | | | - Firas Mourtada
- Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Aleong AM, Looi T, Luo K, Zou Z, Waspe A, Singh S, Drake JM, Weersink RA. Preliminary Study of a Modular MR-Compatible Robot for Image-Guided Insertion of Multiple Needles. Front Oncol 2022; 12:829369. [PMID: 35651801 PMCID: PMC9149218 DOI: 10.3389/fonc.2022.829369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Percutaneous needle-based interventions such as transperineal prostate brachytherapy require the accurate placement of multiple needles to treat cancerous lesions within the target organ. To guide needle placement, magnetic resonance imaging (MRI) offers excellent visualization of the target lesion without the need for ionizing radiation. To date, multi-needle insertion relies on a grid template, which limits the ability to steer individual needles. This work describes an MR-compatible robot designed for the sequential insertion of multiple non-parallel needles under MR guidance. The 6-DOF system is designed with an articulated arm to extend the reach of the robot. This strategy presents a novel approach enabling the robot to maneuver around existing needles while minimizing the footprint of the robot. Forward kinematics as well as optimization-based inverse kinematics are presented. The impact of the robot on image quality was tested for four sequences (T1w-TSE, T2w-TSE, THRIVE and EPI) on a 3T Philips Achieva system. Quantification of the signal-to-noise ratio showed a 46% signal loss in a gelatin phantom when the system was powered on but no further adverse effects when the robot was moving. Joint level testing showed a maximum error of 2.10 ± 0.72°s for revolute joints and 0.31 ± 0.60 mm for prismatic joints. The theoretical workspace spans the proposed clinical target surface of 10 x 10 cm. Lastly, the feasibility of multi-needle insertion was demonstrated with four needles inserted under real-time MR-guidance with no visible loss in image quality.
Collapse
Affiliation(s)
- Amanda M Aleong
- The Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Thomas Looi
- The Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,The Centre of Image Guided Innovation and Therapeutic Intervention in the Hospital for Sick Children, Toronto, ON, Canada
| | - Kevin Luo
- The Centre of Image Guided Innovation and Therapeutic Intervention in the Hospital for Sick Children, Toronto, ON, Canada
| | - Zhiling Zou
- The Centre of Image Guided Innovation and Therapeutic Intervention in the Hospital for Sick Children, Toronto, ON, Canada
| | - Adam Waspe
- The Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,The Centre of Image Guided Innovation and Therapeutic Intervention in the Hospital for Sick Children, Toronto, ON, Canada
| | - Satwinder Singh
- The Centre of Image Guided Innovation and Therapeutic Intervention in the Hospital for Sick Children, Toronto, ON, Canada
| | - James M Drake
- The Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,The Centre of Image Guided Innovation and Therapeutic Intervention in the Hospital for Sick Children, Toronto, ON, Canada
| | - Robert A Weersink
- The Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,The Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,The Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Aumüller P, Rothfuss A, Polednik M, Abo-Madyan Y, Ehmann M, Giordano FA, Clausen S. Multiple direction needle-path planning and inverse dose optimization for robotic low-dose rate brachytherapy. Z Med Phys 2022; 32:173-187. [PMID: 34373188 PMCID: PMC9948865 DOI: 10.1016/j.zemedi.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Robotic systems to assist needle placements for low-dose rate brachytherapy enable conformal dose planning only restricted to path planning around risk structures. We report a treatment planning system (TPS) combining multiple direction needle-path planning with inverse dose optimization algorithms. METHODS We investigated in a path planning algorithm to efficiently locate needle injection points reaching the target volume without puncturing risk structures. A candidate needle domain with all combinations of trajectories is used for the optimization process. We report a modular algorithm for inverse radiation plan optimization. The initial plan with V100>99% is generated by the "greedy optimizer". The "remove-seed algorithm" reduces the number of seeds in the high dose regions. The "depth-optimizer" varies the insertion depth of the needles. The "coverage-optimizer" locates under-dosed areas in the target volume and supports them with an additional amount of seeds. The dose calculation algorithm is benchmarked on an image set of a phantom with a liver metastasis (prescription dose Dpr=100Gy) and is re-planned in a commercial CE-marked TPS to compare the calculated dose grids using a global gamma analysis. The inverse optimizer is benchmarked by calculating 10 plans on the same phantom to investigate the stability and statistical variability of the dose parameters. RESULTS The path planning algorithm efficiently removes 72.5% of all considered injection points. The candidate needle domain consists of combinations of 1971 tip points and 827 injection points. The global gamma analysis with gamma 1%=2.9Gy, 1mm showed a pass rate of 98.5%. The dose parameters were V100=99.1±0.3%, V150=76.4±2.5%, V200=44.5±5.5% and D90=125.9±3.6Gy and 10.7±1.3 needles with 34.0±0.8 seeds were used. The median of the TPS total running time was 4.4minutes. CONCLUSIONS The TPS generates treatment plans with acceptable dose coverage in a reasonable amount of time. The gamma analysis shows good accordance to the commercial TPS. The TPS allows taking full advantage of robotic navigation tools to enable a new precise and safe method of minimally invasive low-dose-rate brachytherapy.
Collapse
Affiliation(s)
- Philipp Aumüller
- Department of Radiation Oncology, University Medical Centre Mannheim, University Heidelberg, Germany.
| | | | - Martin Polednik
- Department of Radiation Oncology, University Medical Centre Mannheim, University Heidelberg, Germany
| | - Yasser Abo-Madyan
- Department of Radiation Oncology, University Medical Centre Mannheim, University Heidelberg, Germany
| | - Michael Ehmann
- Department of Radiation Oncology, University Medical Centre Mannheim, University Heidelberg, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, Germany
| | - Sven Clausen
- Department of Radiation Oncology, University Medical Centre Mannheim, University Heidelberg, Germany
| |
Collapse
|
12
|
Coordinated control of a 3DOF cartesian robot and a shape memory alloy-actuated flexible needle for surgical interventions: a non-model-based control method. ROBOTICA 2021. [DOI: 10.1017/s0263574721001314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Summary
Success of any needle-based medical procedures depends on accurate placement of the needle at the target location. However, accurate targeting and control of flexible self-actuating (active) needle are challenging. We have developed a shape memory alloy-actuated flexible needle steered by a 3D Cartesian robot and performed a comparative study of four, non-model-based, coordinated control methodologies for the combined robot steering and flexible-needle insertion process for surgical interventions. Investigated four controllers are: proportional–integral–derivative (PID), PID with the cubic of positional error term (PID-P3), static PID sliding mode controller, and robust adaptive PID sliding mode controller (RAPID-SMC). Relative efficacies of these controllers are demonstrated by performing experiements using a tissue-mimicking soft material phantom. Results from experiments have reavealed that RAPID-SMC is superior to other three controllers.
Collapse
|
13
|
He P, Guan S, Ren E, Chen H, Chen H, Peng Y, Luo B, Xiong Y, Li B, Li J, Mao J, Liu G. Precision Interventional Brachytherapy: A Promising Strategy Toward Treatment of Malignant Tumors. Front Oncol 2021; 11:753286. [PMID: 34692537 PMCID: PMC8531520 DOI: 10.3389/fonc.2021.753286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 01/22/2023] Open
Abstract
Precision interventional brachytherapy is a radiotherapy technique that combines radiation therapy medicine with computer network technology, physics, etc. It can solve the limitations of conventional brachytherapy. Radioactive drugs and their carriers change with each passing day, and major research institutions and enterprises worldwide have conducted extensive research on them. In addition, the capabilities of interventional robotic systems are also rapidly developing to meet clinical needs for the precise delivery of radiopharmaceuticals in interventional radiotherapy. This study reviews the main radiopharmaceuticals, drug carriers, dispensing and fixation technologies, and interventional robotic precision delivery systems used in precision brachytherapy of malignant tumors. We then discuss the current needs in the field and future development prospects in high-precision interventional brachytherapy.
Collapse
Affiliation(s)
- Pan He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Siwen Guan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Hongwei Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Hu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Yisheng Peng
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bin Luo
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yongfu Xiong
- Institute of Hepato-Biliary-Intestinal Disease, Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Bo Li
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingdong Li
- Institute of Hepato-Biliary-Intestinal Disease, Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jingsong Mao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Buyun W, Yi L, Dezhang X, Yongde Z, Yong X. Design of a seed implantation robot with counterbalance and soft tissue stabilization mechanism for prostate cancer brachytherapy. INT J ADV ROBOT SYST 2021. [DOI: 10.1177/17298814211040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This article focuses on the topic of the structural design of surgical radioactive surgery robot for prostate cancer. To improve the weight-to-payload ratio of surgery robot end-effector, the energy consumption and stability of robot joint drive and reducing the displacement and deformation of needle insertion in soft tissue. This article discusses the new static torque balancing method and multi-needle insertion soft tissue stabilization mechanisms that may be used in previously articulated seed implantation robots. Compared with the existing balancing system schemes, we adopt the idea of mutual conversion of gravitational potential energy and elastic potential energy and establish a static balancing model. With preloaded displacement parameter of the spring α, the variable gravity torque balance of robot arm can be achieved. Torque and equivalent gravity balancing distribution with the spring balance system and the quantitative evaluation experiment were performed, and experiment results provide evidence that these spring balance devices can basically compensate the gravity torque of the robot arm. In addition, we used nonlinear spring–damper model to establish multi-needles insertion soft tissue force model. Then, a variable multi-needle insertion soft tissue stabilization device is designed with six working modes. The innovative design of this device is the use of the first four needles that are introduced simultaneously on either side of the midline. Initially completed displacement simulation of different numbers of needle insertion prostate tissue, experiment results indicate that multi-needle puncture mechanism could reduce prostate displacement in the y- or z-direction. By this method, the prostate may be fixed, thus this mechanism maybe reduces rotation of the prostate and enabling subsequent needles to be inserted accurately.
Collapse
Affiliation(s)
- Wang Buyun
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, China
- Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Ministry of Education, Wuhu, China
| | - Liang Yi
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, China
- Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Ministry of Education, Wuhu, China
| | - Xu Dezhang
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, China
- Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Ministry of Education, Wuhu, China
| | - Zhang Yongde
- Intelligent Machine Institute, Harbin University of Science and Technology, Harbin, China
| | - Xu Yong
- Department of urology, The General Hospital of Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
15
|
Eligibility criteria according to EAU/ESTRO/SIOG guidelines for exclusive iodine-125 brachytherapy for intermediate-risk prostate adenocarcinoma patients: impact on relapse-free survival. J Contemp Brachytherapy 2021; 13:373-386. [PMID: 34484351 PMCID: PMC8407263 DOI: 10.5114/jcb.2021.108592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/05/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose Iodine-125 (125I) brachytherapy (BT) alone for intermediate-risk (IR) prostate adenocarcinoma (PCA) is controversial. The purpose of the study was to investigate potential predictive factors in selected IR-PCA patients treated with BT. Material and methods Among 547 patients treated with 125I BT between 2003 and 2013, 149 IR-PCA cases were selected according to NCCN classification after an additional exclusion of patients with prostate specific antigen (PSA) > 15 ng/ml and ISUP group 3. A relapse was defined as a biochemical failure, using ASTRO Phoenix definition, or a relapse identified on imaging. Survival curves were estimated with Kaplan-Meier method. Potential prognostic variables including EAU/ESTRO/SIOG guidelines eligibility criteria were analyzed using univariate and Cox’s proportional hazards regression analysis. Results Of the 149 IR patients, 112 were classified as favorable, with 69 cases eligible to BT according to EAU/ESTRO/SIOG guidelines, and 37 patients were identified as unfavorable as per NCCN. Androgen deprivation therapy (ADT) was applied in 6 patients only. Percentage of positive biopsy cores were ≤ 33% and ≥ 50% for 119 and 11 patients, respectively. With a median follow-up of 8.5 years, 30 patients experienced a relapse. 10-year overall survival, progression-free survival (PFS), and relapse-free survival (RFS) were 84% (95% CI: 75-90%), 66% (95% CI: 56-75%), and 77% (95% CI: 67-84%), respectively. Failure to meet EAU/ESTRO/SIOG criteria was significantly associated with a lower RFS (p = 0.0267, HR = 2.37 [95% CI: 1.10-5.08%]). Conclusions Brachytherapy is an effective treatment for selected IR-PCA cases. Patients who were not eligible according to EAU/ESTRO/SIOG guidelines demonstrated a lower RFS.
Collapse
|
16
|
Moerland MA, van Schelven LJ, van Lier A, Boskovic E, Peters M, van Son MJ, van der Voort van Zyp JRN, Lagendijk JJW. MR compatibility, safety and accuracy of the redesigned UMC Utrecht single needle implant device. Phys Med Biol 2021; 66. [PMID: 34010820 DOI: 10.1088/1361-6560/ac02d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/19/2021] [Indexed: 11/11/2022]
Abstract
Purpose. The Utrecht single needle implant device (SNID) was redesigned to increase needle insertion velocity. The purpose of this study is to evaluate the magnetic resonance compatibility, safety and accuracy of the implant device preparing its application in a patient study to investigate the feasibility of inserting a brachytherapy needle into the prostate to a defined tumor target point.Methods. Several experiments were performed to evaluate the mechanical and radiofrequency safety of the needle system, the magnetic field perturbation, the calibration of the implant device in the MR coordinate system, functioning of the implant device during imaging and accuracy of needle insertion.Results. Endurance experiments showed the mechanical safety of the needle system. Magnetic field perturbation was acceptable with induced image distortions smaller than 0.5 mm for clinical MR sequences. Calibration of the implant device in the MR coordinate system was reproducible with average error (mean±standard deviation) of 0.2 ± 0.4 mm, 0.1 ± 0.3 mm and 0.6 ± 0.6 mm in thex,y- andz- direction, respectively. The RF safety measurement showed for clinical MR imaging sequences maximum temperature rises of 0.2 °C at the entry and tip points of the needle. Simultaneous functioning of the implant device and imaging is possible albeit with some intensity band artifacts in the fast field echo images. Finally, phantom measurements showed deviations amounting 2.5-3.6 mm measured as target-to-needle distance at a depth of 12 cm.Conclusions. This preclinical evaluation showed that the MR compatibility, safety and accuracy of the redesigned UMC Utrecht SNID allow its application in a patient study on the feasibility of inserting a brachytherapy needle into the prostate to a defined tumor target point.
Collapse
Affiliation(s)
- M A Moerland
- Radiation Oncology Department, University Medical Center Utrecht, The Netherlands
| | - L J van Schelven
- Department of Medical Technology and Clinical Physics, University Medical Center Utrecht, The Netherlands
| | - A van Lier
- Radiation Oncology Department, University Medical Center Utrecht, The Netherlands
| | - E Boskovic
- Department of Medical Technology and Clinical Physics, University Medical Center Utrecht, The Netherlands
| | - M Peters
- Radiation Oncology Department, University Medical Center Utrecht, The Netherlands
| | - M J van Son
- Radiation Oncology Department, University Medical Center Utrecht, The Netherlands
| | | | - J J W Lagendijk
- Radiation Oncology Department, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
17
|
Lin X, Zhou S, Wen T, Jiang S, Wang C, Chen J. A novel multi-DoF surgical robotic system for brachytherapy on liver tumor: Design and control. Int J Comput Assist Radiol Surg 2021; 16:1003-1014. [PMID: 33934286 PMCID: PMC8166720 DOI: 10.1007/s11548-021-02380-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/13/2021] [Indexed: 12/24/2022]
Abstract
Purpose Radioactive seed implantation is an effective invasive treatment method for malignant liver tumors in hepatocellular carcinomas. However, challenges of the manual procedure may degrade the efficacy of the technique, such as the high accuracy requirement and radiation exposure to the surgeons. This paper aims to develop a robotic system and its control methods for assisting surgeons on the treatment. Method We present an interventional robotic system, which consists of a 5 Degree-of-Freedom (DoF) positioning robotic arm (a 3-DoF translational joint and a 2-DoF revolute joint) and a needle actuator used for needle insertion and radioactive seeds implantation. Control strategy is designed for the system to ensure the safety of the motion. In the designed framework, an artificial potential field (APF)-based motion planning and an ultrasound (US) image-based contacting methods are proposed for the control. Result Experiments were performed to evaluate position and orientation accuracy as well as validate the motion planning procedure of the system. The mean and standard deviation of targeting error is 0.69 mm and 0.33 mm, respectively. Needle placement accuracy is 1.10 mm by mean. The feasibility of the control strategy, including path planning and the contacting methods, is demonstrated by simulation and experiments based on an abdominal phantom. Conclusion This paper presents a robotic system with force and US image feedback in assisting surgeons performing brachytherapy on liver tumors. The proposed robotic system is capable of executing an accurate needle insertion task with by optical tracking. The proposed methods improve the safety of the robot’s motion and automate the process of US probe contacting under the feedback of US-image.
Collapse
Affiliation(s)
- Xiaofeng Lin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, GD, 518055, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shoujun Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, GD, 518055, People's Republic of China.
| | - Tiexiang Wen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, GD, 518055, People's Republic of China. .,National Innovation Center for Advanced Medical Devices, Shenzhen, GD, 518110, People's Republic of China.
| | - Shenghao Jiang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, GD, 518055, People's Republic of China
| | - Cheng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, GD, 518055, People's Republic of China
| | - Jingtao Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, GD, 518055, People's Republic of China
| |
Collapse
|
18
|
Dai X, Zhang Y, Jiang J, Li B. Image-guided robots for low dose rate prostate brachytherapy: Perspectives on safety in design and use. Int J Med Robot 2021; 17:e2239. [PMID: 33689202 DOI: 10.1002/rcs.2239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Image-guided brachytherapy (BT) robots can be used to assist urologists during seed implantation, thereby improving therapeutic effects. However, safety issues must be considered in the design of such robots, including their structure, mechanical movements, function, materials and actuators. Previous reviews focused on image-guided prostate BT robot technology (e.g., imaging and robot navigation technology and robot system introduction); however, this review is the first time that safety issues have been investigated as part of a study on low-dose-rate (LDR) prostate BT robots. METHODS Multiple electronic databases were searched for LDR prostate BT robot articles published during the last 24 years (1996-2020), with a particular focus on two aspects of robots: safety in design and use. RESULTS We retrieved a total of 26 LDR prostate BT robots. BT robots were divided into ultrasound, computed tomography, magnetic resonance imaging and fusion-guided systems. The conditions associated with each system were then analysed to develop a set of requirements for the safety of prostate BT robots. Recommendations are also provided for future BT robot development. CONCLUSIONS The transrectal approach for prostate seed implantation is safer than the traditional transperineal approach. Research into the control of a steerable needle by the urologists and robot, the needle deflection model, and robotic automated needle changing and seed injection equipment should be pursued in a future study.
Collapse
Affiliation(s)
- Xuesong Dai
- Robotics & Engineering Research Center, Harbin University of Science and Technology, Harbin, China
| | - Yongde Zhang
- Robotics & Engineering Research Center, Harbin University of Science and Technology, Harbin, China.,Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China
| | - Jingang Jiang
- Robotics & Engineering Research Center, Harbin University of Science and Technology, Harbin, China.,Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China
| | - Bing Li
- Robotics & Engineering Research Center, Harbin University of Science and Technology, Harbin, China
| |
Collapse
|
19
|
Djohossou M, Ben Halima A, Valérie A, Bert J, Visvikis D. Design and Kinematics of a Comanipulated Robot Dedicated to Prostate Brachytherapy. ROBOTICA 2021; 39:468-482. [DOI: 10.1017/s026357472000051x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYIn brachytherapy, the manual implantation of seeds is not accurate leading to side effects and limiting the use of new procedures. Robotics solutions have to be fully suitable for medical applications especially considering the operating room. This paper investigates a delta robot solution for improving the accuracy of the prostate brachytherapy procedure by proposing a compact and lightweight robot. In addition, the design was thought as a comanipulated robot for a better acceptability and human–machine interaction. The robot kinematics and singularities were determined and the theoretical capability in term of resolution and force feedback was evaluated. A prototype was built in order to experimentally measure the capability of this first prototype.
Collapse
|
20
|
Physician-Friendly Tool Center Point Calibration Method for Robot-Assisted Puncture Surgery. SENSORS 2021; 21:s21020366. [PMID: 33430365 PMCID: PMC7825783 DOI: 10.3390/s21020366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 11/17/2022]
Abstract
After each robot end tool replacement, tool center point (TCP) calibration must be performed to achieve precise control of the end tool. This process is also essential for robot-assisted puncture surgery. The purpose of this article is to solve the problems of poor accuracy stability and strong operational dependence in traditional TCP calibration methods and to propose a TCP calibration method that is more suitable for a physician. This paper designs a special binocular vision system and proposes a vision-based TCP calibration algorithm that simultaneously identifies tool center point position (TCPP) and tool center point frame (TCPF). An accuracy test experiment proves that the designed special binocular system has a positioning accuracy of ±0.05 mm. Experimental research shows that the magnitude of the robot configuration set is a key factor affecting the accuracy of TCPP. Accuracy of TCPF is not sensitive to the robot configuration set. Comparison experiments show that the proposed TCP calibration method reduces the time consumption by 82%, improves the accuracy of TCPP by 65% and improves the accuracy of TCPF by 52% compared to the traditional method. Therefore, the method proposed in this article has higher accuracy, better stability, less time consumption and less dependence on the operations than traditional methods, which has a positive effect on the clinical application of high-precision robot-assisted puncture surgery.
Collapse
|
21
|
Connor MJ, Dasgupta P, Ahmed HU, Raza A. Autonomous surgery in the era of robotic urology: friend or foe of the future surgeon? Nat Rev Urol 2020; 17:643-649. [DOI: 10.1038/s41585-020-0375-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
|
22
|
Needle placement accuracy in CT-guided robotic post mortem biopsy. CURRENT DIRECTIONS IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1515/cdbme-2020-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Forensic autopsies include a thorough examination of the corpse to detect the source or alleged manner of death as well as to estimate the time since death. However, a full autopsy may be not feasible due to limited time, cost or ethical objections by relatives. Hence, we propose an automated minimal invasive needle biopsy system with a robotic arm, which does not require any online calibrations during a procedure. The proposed system can be easily integrated into the workflow of a forensic biopsy since the robot can be flexibly positioned relative to the corpse. With our proposed system, we performed needle insertions into wax phantoms and livers of two corpses and achieved an accuracy of 4.34 ± 1.27 mm and 10.81 ± 4.44 mm respectively.
Collapse
|
23
|
Zhang C, Hilts M, Batchelar D, Orlando N, Gardi L, Fenster A, Crook J. Characterization and registration of 3D ultrasound for use in permanent breast seed implant brachytherapy treatment planning. Brachytherapy 2020; 20:248-256. [PMID: 32900644 DOI: 10.1016/j.brachy.2020.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 01/16/2023]
Abstract
PURPOSE Permanent breast seed implant (PBSI) brachytherapy is a novel technique for early-stage breast cancer. Computed tomography (CT) images are used for treatment planning and freehand 2D ultrasound for implant guidance. The multimodality imaging approach leads to discrepancies in target identification. To address this, a prototype 3D ultrasound (3DUS) system was recently developed for PBSI. In this study, we characterize the 3DUS system performance, establish QA baselines, and develop and test a method to register 3DUS images to CT images for PBSI planning. METHODS AND MATERIALS 3DUS system performance was characterized by testing distance and volume measurement accuracy, and needle template alignment accuracy. 3DUS-CT registration was achieved through point-based registration using a 3D-printed model designed and constructed to provide visible landmarks on both images and tested on an in-house made gel breast phantom. RESULTS The 3DUS system mean distance measurement accuracy was within 1% in axial, lateral, and elevational directions. A volumetric error of 3% was observed. The mean needle template alignment error was 1.0° ± 0.3 ° and 1.3 ± 0.5 mm. The mean 3DUS-CT registration error was within 3 mm when imaging at the breast centre or across all breast quadrants. CONCLUSIONS This study provided baseline data to characterize the performance of a prototype 3DUS system for PBSI planning and developed and tested a method to obtain accurate 3DUS-CT image registration for PBSI planning. Future work will focus on system validation and characterization in a clinical context as well as the assessment of impact on treatment plans.
Collapse
Affiliation(s)
- Claire Zhang
- Department of Medical Physics, BC Cancer - Kelowna, Kelowna, British Columbia, Canada; Department of Computer Science, Mathematics, Physics and Statistics, The University of British Columbia Okanagan, Kelowna, British Columbia, Canada.
| | - Michelle Hilts
- Department of Medical Physics, BC Cancer - Kelowna, Kelowna, British Columbia, Canada; Department of Computer Science, Mathematics, Physics and Statistics, The University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Deidre Batchelar
- Department of Medical Physics, BC Cancer - Kelowna, Kelowna, British Columbia, Canada; Department of Computer Science, Mathematics, Physics and Statistics, The University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Nathan Orlando
- Robarts Research Institute, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Lori Gardi
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Aaron Fenster
- Robarts Research Institute, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Juanita Crook
- Department of Radiation Oncology, BC Cancer - Kelowna, Kelowna, British Columbia, Canada; Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Prospect of robotic assistance for fully automated brachytherapy seed placement into skull base: Experimental validation in phantom and cadaver. Radiother Oncol 2020; 131:160-165. [PMID: 29269094 DOI: 10.1016/j.radonc.2017.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE To investigate the feasibility and accuracy of robot-assisted brachytherapy for skull base tumours. MATERIAL AND METHODS A custom robot system was tested on both phantom and cadaveric specimen. Cone beam CT (CBCT) images were transferred to the graphical user interface (GUI) for planning trajectories and the data were sent to the robot control unit. Following registration, the puncture needle was inserted into the target by the robot under navigation guidance, and seeds were implanted. Placement error was instantly displayed on the GUI; the result was verified after postoperative image scanning. RESULTS A total of 150 seeds (100 for phantom experiments, 50 for cadaveric studies) were deposited by the robot system. In phantom experiments the mean placement error was 0.57 ± 0.21 mm (measured by the navigation system) vs. 1.41 ± 0.38 mm (measured by image fusion) (p < 0.001); in cadaveric studies the corresponding figures were 0.60 ± 0.30 mm vs. 2.48 ± 0.32 mm (p < 0.001). There was no significant difference for comparison of accuracy test in phantom experiments (p = 0.173) as well as in cadaveric studies (p = 0.354). Accuracy was better in the phantom experiment than in cadaveric studies (p < 0.001). CONCLUSIONS The performance of robot-assisted skull base brachytherapy is feasible and accurate. Dosimetric coverage will need to be demonstrated in further studies.
Collapse
|
25
|
Risk Management for the Reliability of Robotic Assisted Treatment of Non-resectable Liver Tumors. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app10010052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hepatic cancers represent an important worldwide health issue where surgery alone in most cases is not a feasible therapeutic solution since most tumors are non-resectable. Despite targeted therapies showing positive results in other areas of cancer treatment, in the case of liver tumors, no low-risk delivery methods have been identified. Based on a risk assessment approach, this paper proposes a technical solution in the form of a robotic system capable of achieving a reliable delivery method for targeted treatment, focusing on the patient safety and therapeutic efficiency. The design of the robotic system starts from the definition of the design constraints with respect to the medical protocol. An analytical hierarchy process is used to prioritize the data correlated with the technical characteristics of a new robotic system, aiming to minimize risks associated with the medical procedure. In a four-phase quality function deployment, the technical solution is evaluated with respect to the quality characteristics, functions, subsystems, and components aiming to achieve a safe and reliable system with high therapeutic efficiency. The results lead to the concept of HeRo, a parallel robotic system for the reliable targeted treatment of non-resectable liver tumors.
Collapse
|
26
|
Bi J, Zhang Y. US/MRI Guided Robotic System for the Interventional Treatment of Prostate. INT J PATTERN RECOGN 2019. [DOI: 10.1142/s0218001420590144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Needle-based percutaneous prostate interventions include biopsy and brachytherapy and the former is the gold standard for the diagnosis of prostate cancer and the latter is often used in the treatment of prostate cancer. This paper introduces a novel robotic assistant system for prostate intervention and the system architecture and workflow are described, which is significant for the design of similar systems. In order to offer higher precision and better real-time performance, a Ultrasound (US)/Magnetic Resonance Imaging (MRI) fusion method is proposed to guide the procedures in this study. Moreover, image registration is a key step and a hot issue in image fusion, especially in multimodal image fusion. In this work, we adopt a novel registration method based on active demons and optic flow for prostate image fusion. To verify the availability of the system, we evaluate our approach of the US/MRI image fusion by using data acquired from six patients, and root mean square error (RMSE) for anatomical landmarks is 3.15[Formula: see text]mm. In order to verify the accuracy and validity of the system developed in this paper, a system experimental platform was built and used for bionic tissue puncture of prostate under the guidance of MR and Transrectal Ultrasound (TRUS) fusion images. The experimental results show that the deviations of the final actual needle points of the three target points on the bionic tissue model measured in the laboratory environment are less than 2.5[Formula: see text]mm.
Collapse
Affiliation(s)
- Jintao Bi
- Intelligent Machine Institute, Harbin University of Science and Technology, Harbin, P. R. China
- School of Information Engineering, Huangshan University, Huangshan, P. R. China
| | - Yongde Zhang
- Intelligent Machine Institute, Harbin University of Science and Technology, Harbin, P. R. China
| |
Collapse
|
27
|
Ma X, Yang Z, Jiang S, Zhang G, Chai S. A novel auto-positioning method in Iodine-125 seed brachytherapy driven by preoperative planning. J Appl Clin Med Phys 2019; 20:23-30. [PMID: 31017371 PMCID: PMC6560314 DOI: 10.1002/acm2.12591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/28/2019] [Accepted: 03/29/2019] [Indexed: 12/02/2022] Open
Abstract
Iodine-125 seed brachytherapy has great potential in the treatment of malignant tumors. However, the success of this treatment is highly dependent on the ability to accurately position the coplanar template. The aim of this study was to develop an auto-positioning system for the template with a design focus on efficiency and accuracy. In this study, an auto-positioning system was presented, which was composed of a treatment planning system (TPS) and a robot-assisted system. The TPS was developed as a control system for the robot-assisted system. Then, the robot-assisted system was driven by the output of the TPS to position the template. Contrast experiments for error validation were carried out in a computed tomography environment to compare with the traditional positioning method (TPM). Animal experiments on Sprague-Dawley rats were also carried out to evaluate the auto-positioning system. The error validation experiments and animal experiments with this auto-positioning system were successfully carried out with improved efficiency and accuracy. The error validation experiments achieved a positioning error of 1.04 ± 0.19 mm and a positioning time of 23.15 ± 2.52 min, demonstrating a great improvement compared with the TPM (2.55 ± 0.21 mm and 40.35 ± 2.99 min, respectively). The animal experiments demonstrated that the mean deviation of the seed position was 0.75 mm. The dose-volume histogram of the preoperative planning showed the same as the postoperative dosimetry validation. A novel auto-positioning system driven by preoperative planning was established, which exhibited higher efficiency and accuracy compared with the TPM.
Collapse
Affiliation(s)
- Xiaodong Ma
- Centre for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Zhiyong Yang
- Centre for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Shan Jiang
- Centre for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Guobin Zhang
- Centre for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Shude Chai
- Department of Oncology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
28
|
Abstract
SummaryMany medical procedures such as brachytherapy, thermal ablations, and biopsies are performed using needle-based procedures. In this work, 3D manipulation of an active needle realized by multiple Shape Memory Alloy (SMA) actuators was first predicted by Finite Element Analyses (FEA), and then demonstrated by a fabricate prototype. The FEA results were validated by planar deflection of an active needle. A similar FEA was developed to predict 3D manipulation of the active needle. For 17-gage needle, a maximum of 26° reversible deflection was achieved in 3D space via actuation forces of a 0.127 mm SMA wire. A scaled prototype was also developed and tested to show the feasibility of developing a 3D steering active needle with multiple actuators.
Collapse
|
29
|
Post-implant analysis in permanent breast seed implant: automated plan reconstruction using simulated annealing. J Contemp Brachytherapy 2019; 11:61-68. [PMID: 30911312 PMCID: PMC6431098 DOI: 10.5114/jcb.2019.83338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/30/2019] [Indexed: 11/17/2022] Open
Abstract
Purpose Post-implant analysis in permanent breast seed implant (PBSI) brachytherapy is an important component of the quality assurance process that indicates dosimetric quality relevant to patient outcome, indicating salvage therapy if inadequate, as well as providing feedback to the brachytherapy team to improve future treatments. To measure geometric indices on implant quality, plan reconstruction must be performed to correlate each planned and post-implant seed location. In this work, a simulated-annealing-based algorithm is developed to perform this plan reconstruction automatically. Material and methods The plan reconstruction algorithm was developed in MATLAB, taking the patient pre-treatment and post-implant (Day 0) plan and associated contours as inputs. For 19 treated patients, a reconstruction was obtained that defined the correspondence between each planned and post-implant seed. The simulated-annealing algorithm was used to reconstruct each patient 10 times to assess the variability in convergence. Manual reconstructions performed by at least two independent observers to obtain consensus were defined as the ground truth; these were compared to the automatic reconstructions obtained by the algorithm. Metrics on seed placement accuracy and needle strand angulation were calculated for the patients. Results The algorithm performed reconstructions on 19 patients (1235 seeds) with ground-truth reconstructions, obtaining 97 ± 8% correct matches. This strong performance indicates the ability to incorporate this algorithm into the clinical quality assurance workflow. Conclusions The plan reconstruction algorithm developed herein performed very well in a 19-patient cohort. This algorithm can be incorporated into the clinical process to assist in the assessment of center-specific seed placement accuracy and can be used to gather implant metrics in an automated, standardized fashion for future PBSI trials.
Collapse
|
30
|
The Role of Magnetic Resonance Imaging in Brachytherapy. Clin Oncol (R Coll Radiol) 2018; 30:728-736. [DOI: 10.1016/j.clon.2018.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 11/19/2022]
|
31
|
Rothfuss A, Oesterle O, Bürgy D, Nwankwo C, Schneider F, van Poelgeest A, Wenz F, Stallkamp J, Clausen S. System and path planning algorithm for low-kV X-ray free-form surface irradiation. Int J Med Robot 2018; 14:e1899. [PMID: 29484802 PMCID: PMC5947750 DOI: 10.1002/rcs.1899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Intraoperative radiotherapy (IORT) after surgical resection using a low-kV-X-ray source is a proven method used in cancer treatment. However, the shape and size of the targeted surface area are limited to the size of the available applicators. This can lead to nonconformal and therefore suboptimal treatment for many patients. METHODS A system is proposed comprising an X-ray source with an applicator for surface irradiation mounted on a robotic arm. This is controlled by an algorithm designed for planning the required continuous path, enabling irradiation of any desired shape with a controlled dose distribution. RESULTS The system is shown to be capable of irradiating areas composed of rectangles on a flat surface with a homogeneity index of less than 7% inside the targeted area. CONCLUSION The presented results demonstrate the potential of the proposed setup to eliminate the current limitations, leading to better treatment of patients.
Collapse
Affiliation(s)
- Andreas Rothfuss
- Project group for Automation in Medicine and Biotechnology, Fraunhofer IPAMannheimGermany
| | - Oliver Oesterle
- Project group for Automation in Medicine and Biotechnology, Fraunhofer IPAMannheimGermany
| | - Daniel Bürgy
- Department of Radiotherapy and Radiation OncologyMedical Faculty Mannheim at Heidelberg UniversityMannheimGermany
| | - Charles Nwankwo
- Department of Radiotherapy and Radiation OncologyMedical Faculty Mannheim at Heidelberg UniversityMannheimGermany
| | - Frank Schneider
- Department of Radiotherapy and Radiation OncologyMedical Faculty Mannheim at Heidelberg UniversityMannheimGermany
| | - Auguste van Poelgeest
- Project group for Automation in Medicine and Biotechnology, Fraunhofer IPAMannheimGermany
| | - Frederik Wenz
- Department of Radiotherapy and Radiation OncologyMedical Faculty Mannheim at Heidelberg UniversityMannheimGermany
| | - Jan Stallkamp
- Project group for Automation in Medicine and Biotechnology, Fraunhofer IPAMannheimGermany
| | - Sven Clausen
- Department of Radiotherapy and Radiation OncologyMedical Faculty Mannheim at Heidelberg UniversityMannheimGermany
| |
Collapse
|
32
|
LIANG YI, XU DEZHANG, WANG BUYUN, ZHANG YONGDE, XU YONG. EXPERIMENTAL STUDY OF NEEDLE INSERTION STRATEGIES OF SEED IMPLANTATION ARTICULATED ROBOT. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519418500239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper discusses several new mechanisms that may be used in prostate cancer seed implant robotics. Aiming at the limitation of human body structure space, and in order to improve robotic kinematic dexterity and execution efficiency. We have developed an articulated seed implantation robot with three-dimensional transrectal ultrasound navigation. It is noteworthy that the organization will produce displacement, deformation and needle tip deflection and other issues while needle inserting prostate. In order to improve positioning accuracy of robot to control the puncture needle, a piezoelectric vibration and rotation needle insertion device is designed and developed. Based on the evaluation experiment of vibration and rotation needle insertion, a high accuracy mixed needle insertion strategy is proposed and the corresponding control software is designed. Finally, the insertion force evaluation experiment is completed by mixed needle insertion strategy, and the experimental results validate the effectiveness of this method.
Collapse
Affiliation(s)
- YI LIANG
- School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu, P. R. China
| | - DEZHANG XU
- School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu, P. R. China
| | - BUYUN WANG
- School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu, P. R. China
| | - YONGDE ZHANG
- Intelligent Machine Institute, Harbin University of Science and Technology, Harbin, P. R. China
| | - YONG XU
- General Hospital of Chinese People’s Liberation Army, Beijing, P. R. China
| |
Collapse
|
33
|
Banerjee S, Banerjee S. Robot-assisted laparoscopic implantation of brachytherapy catheters in bladder cancer recent interests and prospective. Transl Androl Urol 2018; 7:S114-S117. [PMID: 29644176 PMCID: PMC5881195 DOI: 10.21037/tau.2017.11.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Susovan Banerjee
- Division of Radiation Oncology, Medanta the Medicity, Gurgaon, NCR-Delhi, India
| | | |
Collapse
|
34
|
Treatment planning considerations for permanent breast seed implant. Brachytherapy 2018; 17:456-464. [DOI: 10.1016/j.brachy.2017.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/07/2017] [Accepted: 11/03/2017] [Indexed: 11/21/2022]
|
35
|
Podder TK, Fredman ET, Ellis RJ. Advances in Radiotherapy for Prostate Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1096:31-47. [PMID: 30324346 DOI: 10.1007/978-3-319-99286-0_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Major categories of radiotherapy (RT) for prostate cancer (CaP) treatment are: (1) external beam RT (EBRT), and (2) brachytherapy (BT). EBRT are performed using different techniques like three-dimensional conformal RT (3D-CRT), intensity modulated RT (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic body radiation therapy (SBRT), stereotactic radiosurgery (SRS) and intensity modulated proton therapy (IMPT), etc., using a variety of radiation delivery machines, such as a linear accelerator (Linac), Cyberknife robotic system, Gamma knife, Tomotherapy and proton beam machine. The primary advantage of proton beam therapy is sparing of normal tissues and organ at risks (OARs) with comparable coverage of the tumor volume. MR-Linac is the latest addition in the image-guided RT. Robot-assisted brachytherapy is one of the latest technological innovations in the field. With the advancement of technology, radiation therapy for prostate cancer can be improved using high quality multimodal imaging, robot-assistance for brachytherapy as well as EBRT. This chapter presents the advances in radiation therapy for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Tarun K Podder
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Elisha T Fredman
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Rodney J Ellis
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
36
|
Verma S, Choyke PL, Eberhardt SC, Oto A, Tempany CM, Turkbey B, Rosenkrantz AB. The Current State of MR Imaging-targeted Biopsy Techniques for Detection of Prostate Cancer. Radiology 2017; 285:343-356. [PMID: 29045233 DOI: 10.1148/radiol.2017161684] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Systematic transrectal ultrasonography (US)-guided biopsy is the standard approach for histopathologic diagnosis of prostate cancer. However, this technique has multiple limitations because of its inability to accurately visualize and target prostate lesions. Multiparametric magnetic resonance (MR) imaging of the prostate is more reliably able to localize significant prostate cancer. Targeted prostate biopsy by using MR imaging may thus help to reduce false-negative results and improve risk assessment. Several commercial devices are now available for targeted prostate biopsy, including in-gantry MR imaging-targeted biopsy and real-time transrectal US-MR imaging fusion biopsy systems. This article reviews the current status of MR imaging-targeted biopsy platforms, including technical considerations, as well as advantages and challenges of each technique. © RSNA, 2017.
Collapse
Affiliation(s)
- Sadhna Verma
- From the Department of Radiology, University of Cincinnati Medical Center, 234 Goodman St, Cincinnati, OH 45267-0761 (S.V.); National Cancer Institute, National Institutes of Health, Bethesda, Md (P.L.C.); Department of Radiology, University of New Mexico, Albuquerque, NM (S.C.E.); Department of Radiology, University of Chicago Medicine, Chicago, Ill (A.O.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (C.M.T.); Center for Cancer Research, National Cancer Institute, Bethesda, Md (B.T.); and Department of Radiology, New York University School of Medicine, NYU Langone Medical Center, New York, NY (A.B.R.)
| | - Peter L Choyke
- From the Department of Radiology, University of Cincinnati Medical Center, 234 Goodman St, Cincinnati, OH 45267-0761 (S.V.); National Cancer Institute, National Institutes of Health, Bethesda, Md (P.L.C.); Department of Radiology, University of New Mexico, Albuquerque, NM (S.C.E.); Department of Radiology, University of Chicago Medicine, Chicago, Ill (A.O.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (C.M.T.); Center for Cancer Research, National Cancer Institute, Bethesda, Md (B.T.); and Department of Radiology, New York University School of Medicine, NYU Langone Medical Center, New York, NY (A.B.R.)
| | - Steven C Eberhardt
- From the Department of Radiology, University of Cincinnati Medical Center, 234 Goodman St, Cincinnati, OH 45267-0761 (S.V.); National Cancer Institute, National Institutes of Health, Bethesda, Md (P.L.C.); Department of Radiology, University of New Mexico, Albuquerque, NM (S.C.E.); Department of Radiology, University of Chicago Medicine, Chicago, Ill (A.O.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (C.M.T.); Center for Cancer Research, National Cancer Institute, Bethesda, Md (B.T.); and Department of Radiology, New York University School of Medicine, NYU Langone Medical Center, New York, NY (A.B.R.)
| | - Aytekin Oto
- From the Department of Radiology, University of Cincinnati Medical Center, 234 Goodman St, Cincinnati, OH 45267-0761 (S.V.); National Cancer Institute, National Institutes of Health, Bethesda, Md (P.L.C.); Department of Radiology, University of New Mexico, Albuquerque, NM (S.C.E.); Department of Radiology, University of Chicago Medicine, Chicago, Ill (A.O.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (C.M.T.); Center for Cancer Research, National Cancer Institute, Bethesda, Md (B.T.); and Department of Radiology, New York University School of Medicine, NYU Langone Medical Center, New York, NY (A.B.R.)
| | - Clare M Tempany
- From the Department of Radiology, University of Cincinnati Medical Center, 234 Goodman St, Cincinnati, OH 45267-0761 (S.V.); National Cancer Institute, National Institutes of Health, Bethesda, Md (P.L.C.); Department of Radiology, University of New Mexico, Albuquerque, NM (S.C.E.); Department of Radiology, University of Chicago Medicine, Chicago, Ill (A.O.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (C.M.T.); Center for Cancer Research, National Cancer Institute, Bethesda, Md (B.T.); and Department of Radiology, New York University School of Medicine, NYU Langone Medical Center, New York, NY (A.B.R.)
| | - Baris Turkbey
- From the Department of Radiology, University of Cincinnati Medical Center, 234 Goodman St, Cincinnati, OH 45267-0761 (S.V.); National Cancer Institute, National Institutes of Health, Bethesda, Md (P.L.C.); Department of Radiology, University of New Mexico, Albuquerque, NM (S.C.E.); Department of Radiology, University of Chicago Medicine, Chicago, Ill (A.O.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (C.M.T.); Center for Cancer Research, National Cancer Institute, Bethesda, Md (B.T.); and Department of Radiology, New York University School of Medicine, NYU Langone Medical Center, New York, NY (A.B.R.)
| | - Andrew B Rosenkrantz
- From the Department of Radiology, University of Cincinnati Medical Center, 234 Goodman St, Cincinnati, OH 45267-0761 (S.V.); National Cancer Institute, National Institutes of Health, Bethesda, Md (P.L.C.); Department of Radiology, University of New Mexico, Albuquerque, NM (S.C.E.); Department of Radiology, University of Chicago Medicine, Chicago, Ill (A.O.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (C.M.T.); Center for Cancer Research, National Cancer Institute, Bethesda, Md (B.T.); and Department of Radiology, New York University School of Medicine, NYU Langone Medical Center, New York, NY (A.B.R.)
| |
Collapse
|
37
|
Rivard MJ, Ballester F, Butler WM, DeWerd LA, Ibbott GS, Meigooni AS, Melhus CS, Mitch MG, Nath R, Papagiannis P. Supplement 2 for the 2004 update of the AAPM Task Group No. 43 Report: Joint recommendations by the AAPM and GEC-ESTRO. Med Phys 2017. [DOI: 10.1002/mp.12430] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Mark J. Rivard
- Department of Radiation Oncology; Tufts University School of Medicine; Boston MA 02111 USA
| | - Facundo Ballester
- Unidad Mixta de Investigación en Radiofísica e Instrumentación Nuclear en Medicina (IRIMED); Instituto de Investigación Sanitaria La Fe (IIS-La Fe)-Universitat de Valéncia; Bujassot 46100 Spain
| | - Wayne M. Butler
- Schiffler Cancer Center; Wheeling Hospital; Wheeling WV 26003 USA
| | - Larry A. DeWerd
- Accredited Dosimetry and Calibration Laboratory; University of Wisconsin; Madison WI 53706 USA
| | - Geoffrey S. Ibbott
- Department of Radiation Physics; M.D. Anderson Cancer Center; Houston TX 77030 USA
| | - Ali S. Meigooni
- Comprehensive Cancer Centers of Nevada; Las Vegas NV 89169 USA
| | - Christopher S. Melhus
- Department of Radiation Oncology; Tufts University School of Medicine; Boston MA 02111 USA
| | - Michael G. Mitch
- Radiation Physics Division; National Institute of Standards and Technology; Gaithersburg MD 20899 USA
| | - Ravinder Nath
- Department of Therapeutic Radiology; Yale University School of Medicine; New Haven CT 06510 USA
| | | |
Collapse
|
38
|
Dou H, Jiang S, Yang Z, Sun L, Ma X, Huo B. Design and validation of a CT-guided robotic system for lung cancer brachytherapy. Med Phys 2017; 44:4828-4837. [PMID: 28657112 DOI: 10.1002/mp.12435] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Currently, lung brachytherapy in clinical setting is a complex procedure. Operation accuracy depends on accurate positioning of the template; however, it is difficult to guarantee the positioning accuracy manually. Application of robotic-assisted systems can simplify the procedure and improve the manual positioning accuracy. Therefore, a novel CT-guided robotic system was developed to assist the lung cancer brachytherapy. METHODS A four degree-of-freedom (DOF) robot, controlled by a lung brachytherapy treatment planning system (TPS) software, was designed and manufactured to assist the template positioning. Target position of the template can be obtained from the treatment plan, thus the robot is driven to the target position automatically. The robotic system was validated in both the laboratory and the CT environment. In laboratory environment, a 3D laser tracker and an inertial measurement unit (IMU) were used to measure the mechanical accuracy in air, which includes positioning accuracy and position repeatability. Working reliability was also validated in this procedure by observing the response reliability and calculating the position repeatability. Imaging artifacts and accuracy of the robot registration were validated in the CT environment by using an artificial phantom with fiducial markers. CT images were obtained and used to test the image artifact and calculate the registration accuracy. Phantom experiments were conducted to test the accuracy of needle insertion by using a transparent hydrogel phantom with a high imitation artificial phantom. Also, the efficiency was validated in this procedure by comparing time costs in manual positioning with robotic positioning under the same experimental conditions. RESULTS The robotic system achieved the positioning accuracy of 0.28 ± 0.25 mm and the position repeatability of 0.09 ± 0.11 mm. Experimental results showed that the robot was CT-compatible and responded reliably to the control commands. The mean registration accuracy of the robotic system was 0.49 ± 0.29 mm. Phantom experiments indicated that the accuracy of needle insertion was 1.5 ± 1.7 mm at a depth ranging from 30 to 80 mm. The time used to adjust the template to the target position was 12 min on average by robotic system automatically. An average of 30 min was saved compared with the manual positioning procedure in phantom experiments. CONCLUSIONS This paper describes the design and experimental validation of a novel CT-guided robotic system for lung cancer brachytherapy. The robotic system was validated in a number of aspects which prove that it was capable of locating the template with clinically acceptable accuracy in the CT environment. All experimental results indicated that the system is reliable and ready to be applied to further studies on animals.
Collapse
Affiliation(s)
- Huaisu Dou
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Shan Jiang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China.,Centre for advanced Mechanisms and Robotics, Tianjin University, Tianjin, 300350, China
| | - Zhiyong Yang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Luqing Sun
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Xiaodong Ma
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Bin Huo
- Department of Oncology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| |
Collapse
|
39
|
Brachytherapy patient safety events in an academic radiation medicine program. Brachytherapy 2017; 17:16-23. [PMID: 28757402 DOI: 10.1016/j.brachy.2017.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/26/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE To describe the incidence and type of brachytherapy patient safety events over 10 years in an academic brachytherapy program. METHODS AND MATERIALS Brachytherapy patient safety events reported between January 2007 and August 2016 were retrieved from the incident reporting system and reclassified using the recently developed National System for Incident Reporting in Radiation Treatment taxonomy. A multi-incident analysis was conducted to identify common themes and key learning points. RESULTS During the study period, 3095 patients received 4967 brachytherapy fractions. An additional 179 patients had MR-guided prostate biopsies without treatment as part of an interventional research program. A total of 94 brachytherapy- or biopsy-related safety events (incidents, near misses, or programmatic hazards) were identified, corresponding to a rate of 2.8% of brachytherapy patients, 1.7% of brachytherapy fractions, and 3.4% of patients undergoing MR-guided prostate biopsy. Fifty-one (54%) events were classified as actual incidents, 29 (31%) as near misses, and 14 (15%) as programmatic hazards. Two events were associated with moderate acute medical harm or dosimetric severity, and two were associated with high dosimetric severity. Multi-incident analysis identified five high-risk activities or clinical scenarios as follows: (1) uncommon, low-volume or newly implemented brachytherapy procedures, (2) real-time MR-guided brachytherapy or biopsy procedures, (3) use of in-house devices or software, (4) manual data entry, and (5) patient scheduling and handoffs. CONCLUSIONS Brachytherapy is a safe treatment and associated with a low rate of patient safety events. Effective incident management is a key element of continuous quality improvement and patient safety in brachytherapy.
Collapse
|
40
|
Biochemical control and toxicity for favorable- and intermediate-risk patients using real-time intraoperative inverse optimization prostate seed implant: Less is more! Brachytherapy 2017; 16:490-496. [DOI: 10.1016/j.brachy.2016.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/30/2016] [Accepted: 12/30/2016] [Indexed: 01/19/2023]
|
41
|
Wang J, Tanderup K, Cunha A, Damato AL, Cohen GN, Kudchadker RJ, Mourtada F. Magnetic resonance imaging basics for the prostate brachytherapist. Brachytherapy 2017; 16:715-727. [PMID: 28396178 DOI: 10.1016/j.brachy.2017.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/23/2017] [Accepted: 03/04/2017] [Indexed: 11/27/2022]
Abstract
Magnetic resonance imaging (MRI) is increasingly being used in radiation therapy, and integration of MRI into brachytherapy in particular is becoming more common. We present here a systematic review of the basic physics and technical aspects of incorporating MRI into prostate brachytherapy. Terminology and MRI system components are reviewed along with typical work flows in prostate high-dose-rate and low-dose-rate brachytherapy. In general, the brachytherapy workflow consists of five key components: diagnosis, implantation, treatment planning (scan + plan), implant verification, and delivery. MRI integration is discussed for diagnosis; treatment planning; and MRI-guided brachytherapy implants, in which MRI is used to guide the physical insertion of the brachytherapy applicator or needles. Considerations and challenges for establishing an MRI brachytherapy program are also discussed.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Adam Cunha
- Department of Radiation Oncology, University of California-San Francisco, CA
| | - Antonio L Damato
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gil'ad N Cohen
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rajat J Kudchadker
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Firas Mourtada
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX; Department of Radiation Oncology, Helen F. Graham Cancer Center, Newark, DE; Department of Radiation Oncology, Bodine Cancer Center, Thomas Jefferson University, Philadelphia, PA.
| |
Collapse
|
42
|
Nath R, Rivard MJ, DeWerd LA, Dezarn WA, Thompson Heaton H, Ibbott GS, Meigooni AS, Ouhib Z, Rusch TW, Siebert FA, Venselaar JLM. Guidelines by the AAPM and GEC-ESTRO on the use of innovative brachytherapy devices and applications: Report of Task Group 167. Med Phys 2017; 43:3178-3205. [PMID: 27277063 DOI: 10.1118/1.4951734] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used in the evaluation of innovative devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining the equivalence of the innovative treatment modality to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of innovative radiotherapy devices or applications is a critical part in which physicists should be actively involved. The physicist's role, along with physician colleagues, in this process is highlighted for innovative brachytherapy devices and applications and includes evaluation of (1) dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, (2) risks and benefits from a regulatory and safety perspective, and (3) resource assessment and preparedness. Further, it is suggested that any developed calibration methods be traceable to a primary standards dosimetry laboratory (PSDL) such as the National Institute of Standards and Technology in the U.S. or to other PSDLs located elsewhere such as in Europe. Clinical users should follow standards as approved by their country's regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the Accredited Dosimetry Calibration Laboratories in the U.S. is encouraged before a source is introduced into widespread routine clinical use. The American Association of Physicists in Medicine and the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO) have developed guidelines for the safe and consistent application of brachytherapy using innovative devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. Nuclear Regulatory Commission, U.S. Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, U.S. Food and Drug Administration, European Commission for CE Marking (Conformité Européenne), and institutional review boards and radiation safety committees.
Collapse
Affiliation(s)
- Ravinder Nath
- Department of Therapeutic Radiology, School of Medicine, Yale University, New Haven, Connecticut 06510
| | - Mark J Rivard
- Department of Radiation Oncology, School of Medicine, Tufts University, Boston, Massachusetts 02111
| | - Larry A DeWerd
- Accredited Dosimetry and Calibration Laboratory, University of Wisconsin, Madison, Wisconsin 53706
| | - William A Dezarn
- Department of Radiation Oncology, School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157
| | | | - Geoffrey S Ibbott
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Ali S Meigooni
- Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada 89169
| | - Zoubir Ouhib
- Radiation Oncology, Lynn Regional Cancer Center, Delray Beach, Florida 33484
| | - Thomas W Rusch
- Xoft, Inc., A Subsidiary of iCAD, Inc., San Jose, California 95134
| | - Frank-André Siebert
- Clinic of Radiotherapy, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Jack L M Venselaar
- Department of Medical Physics and Engineering, Instituut Verbeeten, Tilburg LA 5000, The Netherlands
| |
Collapse
|
43
|
Rossa C, Usmani N, Sloboda R, Tavakoli M. A Hand-Held Assistant for Semiautomated Percutaneous Needle Steering. IEEE Trans Biomed Eng 2017; 64:637-648. [DOI: 10.1109/tbme.2016.2565690] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Racine E, Hautvast G, Binnekamp D, Beaulieu L. Real-time electromagnetic seed drop detection for permanent implants brachytherapy: Technology overview and performance assessment. Med Phys 2016; 43:6217. [PMID: 27908149 DOI: 10.1118/1.4966135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- E Racine
- Département de Radio-Oncologie et Centre de recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6, Canada and Département de Physique, de Génie Physique et d'Optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada
| | - G Hautvast
- Biomedical Systems, Philips Group Innovation, High Tech Campus 34 (HTC 34), Eindhoven 5656 AE, The Netherlands
| | - D Binnekamp
- Integrated Clinical Solutions & Marketing, Philips Healthcare, Veenpluis 4-6, Best 5680 DA, The Netherlands
| | - L Beaulieu
- Département de Radio-Oncologie et Centre de recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6, Canada and Département de Physique, de Génie Physique et d'Optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
45
|
Borot de Battisti M, Denis de Senneville B, Maenhout M, Lagendijk JJW, van Vulpen M, Hautvast G, Binnekamp D, Moerland MA. Fiber Bragg gratings-based sensing for real-time needle tracking during MR-guided brachytherapy. Med Phys 2016; 43:5288. [DOI: 10.1118/1.4961743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
46
|
Li M, Li G, Gonenc B, Duan X, Iordachita I. Towards human-controlled, real-time shape sensing based flexible needle steering for MRI-guided percutaneous therapies. Int J Med Robot 2016; 13. [PMID: 27487833 DOI: 10.1002/rcs.1762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/05/2016] [Accepted: 06/18/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Accurate needle placement into soft tissue is essential to percutaneous prostate cancer diagnosis and treatment procedures. METHODS This paper discusses the steering of a 20 gauge (G) FBG-integrated needle with three sets of Fiber Bragg Grating (FBG) sensors. A fourth-order polynomial shape reconstruction method is introduced and compared with previous approaches. To control the needle, a bicycle model based navigation method is developed to provide visual guidance lines for clinicians. A real-time model updating method is proposed for needle steering inside inhomogeneous tissue. A series of experiments were performed to evaluate the proposed needle shape reconstruction, visual guidance and real-time model updating methods. RESULTS Targeting experiments were performed in soft plastic phantoms and in vitro tissues with insertion depths ranging between 90 and 120 mm. Average targeting errors calculated based upon the acquired camera images were 0.40 ± 0.35 mm in homogeneous plastic phantoms, 0.61 ± 0.45 mm in multilayer plastic phantoms and 0.69 ± 0.25 mm in ex vivo tissue. CONCLUSIONS Results endorse the feasibility and accuracy of the needle shape reconstruction and visual guidance methods developed in this work. The approach implemented for the multilayer phantom study could facilitate accurate needle placement efforts in real inhomogeneous tissues. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Meng Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China.,Hackerman 200, Johns Hopkins University, Baltimore, MD, USA
| | - Gang Li
- 100 Institute Road, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Berk Gonenc
- Hackerman 200, Johns Hopkins University, Baltimore, MD, USA
| | - Xingguang Duan
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | | |
Collapse
|
47
|
Morton D, Hilts M, Batchelar D, Crook J. Seed Placement in Permanent Breast Seed Implant Brachytherapy: Are Concerns Over Accuracy Valid? Int J Radiat Oncol Biol Phys 2016; 95:1050-1057. [DOI: 10.1016/j.ijrobp.2016.01.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/06/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
|
48
|
Borot de Battisti M, Denis de Senneville B, Maenhout M, Hautvast G, Binnekamp D, Lagendijk JJW, van Vulpen M, Moerland MA. Adaptive planning strategy for high dose rate prostate brachytherapy—a simulation study on needle positioning errors. Phys Med Biol 2016; 61:2177-95. [PMID: 26907732 DOI: 10.1088/0031-9155/61/5/2177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of magnetic resonance (MR) guided high dose rate (HDR) brachytherapy for prostate cancer has gained increasing interest for delivering a high tumor dose safely in a single fraction. To support needle placement in the limited workspace inside the closed-bore MRI, a single-needle MR-compatible robot is currently under development at the University Medical Center Utrecht (UMCU). This robotic device taps the needle in a divergent way from a single rotation point into the prostate. With this setup, it is warranted to deliver the irradiation dose by successive insertions of the needle. Although robot-assisted needle placement is expected to be more accurate than manual template-guided insertion, needle positioning errors may occur and are likely to modify the pre-planned dose distribution.In this paper, we propose a dose plan adaptation strategy for HDR prostate brachytherapy with feedback on the needle position: a dose plan is made at the beginning of the interventional procedure and updated after each needle insertion in order to compensate for possible needle positioning errors. The introduced procedure can be used with the single needle MR-compatible robot developed at the UMCU. The proposed feedback strategy was tested by simulating complete HDR procedures with and without feedback on eight patients with different numbers of needle insertions (varying from 4 to 12). In of the cases tested, the number of clinically acceptable plans obtained at the end of the procedure was larger with feedback compared to the situation without feedback. Furthermore, the computation time of the feedback between each insertion was below 100 s which makes it eligible for intra-operative use.
Collapse
|
49
|
Hrinivich WT, Hoover DA, Surry K, Edirisinghe C, Montreuil J, D'Souza D, Fenster A, Wong E. Three-dimensional transrectal ultrasound guided high-dose-rate prostate brachytherapy: A comparison of needle segmentation accuracy with two-dimensional image guidance. Brachytherapy 2016; 15:231-9. [DOI: 10.1016/j.brachy.2015.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
|
50
|
Brachytherapy next generation: robotic systems. J Contemp Brachytherapy 2016; 7:510-4. [PMID: 26816510 PMCID: PMC4716136 DOI: 10.5114/jcb.2015.56769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/21/2015] [Indexed: 11/27/2022] Open
Abstract
In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance.
Collapse
|