1
|
Nakao M, Ozawa S, Miura H, Yamada K, Hayata M, Hayashi K, Kawahara D, Nakashima T, Ochi Y, Okumura T, Kunimoto H, Kawakubo A, Kusaba H, Nozaki H, Habara K, Tohyama N, Nishio T, Nakamura M, Minemura T, Okamoto H, Ishikawa M, Kurooka M, Shimizu H, Hotta K, Saito M, Nakano M, Tsuneda M, Nagata Y. CT number calibration audit in photon radiation therapy. Med Phys 2024; 51:1571-1582. [PMID: 38112216 DOI: 10.1002/mp.16887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/29/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Inadequate computed tomography (CT) number calibration curves affect dose calculation accuracy. Although CT number calibration curves registered in treatment planning systems (TPSs) should be consistent with human tissues, it is unclear whether adequate CT number calibration is performed because CT number calibration curves have not been assessed for various types of CT number calibration phantoms and TPSs. PURPOSE The purpose of this study was to investigate CT number calibration curves for mass density (ρ) and relative electron density (ρe ). METHODS A CT number calibration audit phantom was sent to 24 Japanese photon therapy institutes from the evaluating institute and scanned using their individual clinical CT scan protocols. The CT images of the audit phantom and institute-specific CT number calibration curves were submitted to the evaluating institute for analyzing the calibration curves registered in the TPSs at the participating institutes. The institute-specific CT number calibration curves were created using commercial phantom (Gammex, Gammex Inc., Middleton, WI, USA) or CIRS phantom (Computerized Imaging Reference Systems, Inc., Norfolk, VA, USA)). At the evaluating institute, theoretical CT number calibration curves were created using a stoichiometric CT number calibration method based on the CT image, and the institute-specific CT number calibration curves were compared with the theoretical calibration curve. Differences in ρ and ρe over the multiple points on the curve (Δρm and Δρe,m , respectively) were calculated for each CT number, categorized for each phantom vendor and TPS, and evaluated for three tissue types: lung, soft tissues, and bones. In particular, the CT-ρ calibration curves for Tomotherapy TPSs (ACCURAY, Sunnyvale, CA, USA) were categorized separately from the Gammex CT-ρ calibration curves because the available tissue-equivalent materials (TEMs) were limited by the manufacturer recommendations. In addition, the differences in ρ and ρe for the specific TEMs (ΔρTEM and Δρe,TEM , respectively) were calculated by subtracting the ρ or ρe of the TEMs from the theoretical CT-ρ or CT-ρe calibration curve. RESULTS The mean ± standard deviation (SD) of Δρm and Δρe,m for the Gammex phantom were -1.1 ± 1.2 g/cm3 and -0.2 ± 1.1, -0.3 ± 0.9 g/cm3 and 0.8 ± 1.3, and -0.9 ± 1.3 g/cm3 and 1.0 ± 1.5 for lung, soft tissues, and bones, respectively. The mean ± SD of Δρm and Δρe,m for the CIRS phantom were 0.3 ± 0.8 g/cm3 and 0.9 ± 0.9, 0.6 ± 0.6 g/cm3 and 1.4 ± 0.8, and 0.2 ± 0.5 g/cm3 and 1.6 ± 0.5 for lung, soft tissues, and bones, respectively. The mean ± SD of Δρm for Tomotherapy TPSs was 2.1 ± 1.4 g/cm3 for soft tissues, which is larger than those for other TPSs. The mean ± SD of Δρe,TEM for the Gammex brain phantom (BRN-SR2) was -1.8 ± 0.4, implying that the tissue equivalency of the BRN-SR2 plug was slightly inferior to that of other plugs. CONCLUSIONS Latent deviations between human tissues and TEMs were found by comparing the CT number calibration curves of the various institutes.
Collapse
Affiliation(s)
- Minoru Nakao
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Department of Radiation Oncology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
| | - Shuichi Ozawa
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Department of Radiation Oncology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
| | - Hideharu Miura
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Department of Radiation Oncology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Kiyoshi Yamada
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Masahiro Hayata
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Kosuke Hayashi
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Daisuke Kawahara
- Department of Radiation Oncology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
| | - Takeo Nakashima
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Radiation Therapy Section, Department of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Yusuke Ochi
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Radiation Therapy Section, Department of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Takuro Okumura
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Radiation Therapy Section, Department of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Haruhide Kunimoto
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Radiation Therapy Department, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Atsushi Kawakubo
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Radiation Therapy Department, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Hayate Kusaba
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Radiation Therapy Department, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Hiroshige Nozaki
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Division of Radiology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Kosaku Habara
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Division of Radiology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Naoki Tohyama
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Division of Medical Physics, Tokyo Bay Makuhari Clinic for Advanced Imaging, Cancer Screening, and High-Precision Radiotherapy, Chiba, Japan
| | - Teiji Nishio
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mitsuhiro Nakamura
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University, Kyoto, Japan
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiyuki Minemura
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Division of Medical Support and Partnership, Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Hiroyuki Okamoto
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, Tokyo, Japan
| | - Masayori Ishikawa
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Faculty of Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Masahiko Kurooka
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Department of Radiation Therapy, Tokyo Medical University Hospital, Tokyo, Japan
| | - Hidetoshi Shimizu
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Kenji Hotta
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Radiation Safety and Quality Assurance division, National Cancer Center Hospital East, Chiba, Japan
- Particle Therapy Division, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Masahide Saito
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | - Masahiro Nakano
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Department of Radiation Oncology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Masato Tsuneda
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasushi Nagata
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Department of Radiation Oncology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| |
Collapse
|
2
|
Hughes J, Lye JE, Kadeer F, Alves A, Shaw M, Supple J, Keehan S, Gibbons F, Lehmann J, Kron T. Calculation algorithms and penumbra: Underestimation of dose in organs at risk in dosimetry audits. Med Phys 2021; 48:6184-6197. [PMID: 34287963 DOI: 10.1002/mp.15123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The aim of this study is to investigate overdose to organs at risk (OARs) observed in dosimetry audits in Monte Carlo (MC) algorithms and Linear Boltzmann Transport Equation (LBTE) algorithms. The impact of penumbra modeling on OAR dose was assessed with the adjustment of MC modeling parameters and the clinical relevance of the audit cases was explored with a planning study of spine and head and neck (H&N) patient cases. METHODS Dosimetric audits performed by the Australian Clinical Dosimetry Service (ACDS) of 43 anthropomorphic spine plans and 1318 C-shaped target plans compared the planned dose to doses measured with ion chamber, microdiamond, film, and ion chamber array. An MC EGSnrc model was created to simulate the C-shape target case. The electron cut-off energy Ecut(kinetic) was set at 500, 200, and 10 keV, and differences between 1 and 3 mm voxel were calculated. A planning study with 10 patient stereotactic body radiotherapy (SBRT) spine plans and 10 patient H&N plans was calculated in both Acuros XB (AXB) v15.6.06 and Anisotropic Analytical Algorithm (AAA) v15.6.06. The patient contour was overridden to water as only the penumbral differences between the two different algorithms were under investigation. RESULTS The dosimetry audit results show that for the SBRT spine case, plans calculated in AXB are colder than what is measured in the spinal cord by 5%-10%. This was also observed for other audit cases where a C-shape target is wrapped around an OAR where the plans were colder by 3%-10%. Plans calculated with Monaco MC were colder than measurements by approximately 7% with the OAR surround by a C-shape target, but these differences were not noted in the SBRT spine case. Results from the clinical patient plans showed that the AXB was on average 7.4% colder than AAA when comparing the minimum dose in the spinal cord OAR. This average difference between AXB and AAA reduced to 4.5% when using the more clinically relevant metric of maximum dose in the spinal cord. For the H&N plans, AXB was cooler on average than AAA in the spinal cord OAR (1.1%), left parotid (1.7%), and right parotid (2.3%). The EGSnrc investigation also noted similar, but smaller differences. The beam penumbra modeled by Ecut(kinetic) = 500 keV was steeper than the beam penumbra modeled by Ecut(kinetic) = 10 keV as the full scatter is not accounted for, which resulted in less dose being calculated in a central OAR region where the penumbra contributes much of the dose. The dose difference when using 2.5 mm voxels of the center of the OAR between 500 and 10 keV was 3%, reducing to 1% between 200 and 10 keV. CONCLUSIONS Lack of full penumbral modeling due to approximations in the algorithms in MC based or LBTE algorithms are a contributing factor as to why these algorithms under-predict the dose to OAR when the treatment volume is wrapped around the OAR. The penumbra modeling approximations also contribute to AXB plans predicting colder doses than AAA in areas that are in the vicinity of beam penumbra. This effect is magnified in regions where there are many beam penumbras, for example in the spinal cord for spine SBRT cases.
Collapse
Affiliation(s)
- Jeremy Hughes
- Australian Clinical Dosimetry Service, ARPANSA, Yallambie, Victoria, Australia.,Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jessica Elizabeth Lye
- Australian Clinical Dosimetry Service, ARPANSA, Yallambie, Victoria, Australia.,Physical Sciences, Olivia Newton-John Cancer Wellness Centre, Heidelberg, Victoria, Australia
| | - Fayz Kadeer
- Australian Clinical Dosimetry Service, ARPANSA, Yallambie, Victoria, Australia
| | - Andrew Alves
- Australian Clinical Dosimetry Service, ARPANSA, Yallambie, Victoria, Australia
| | - Maddison Shaw
- Australian Clinical Dosimetry Service, ARPANSA, Yallambie, Victoria, Australia.,Applied Sciences Physics Department, RMIT University, Melbourne, Victoria, Australia
| | - Jeremy Supple
- Australian Clinical Dosimetry Service, ARPANSA, Yallambie, Victoria, Australia
| | - Stephanie Keehan
- Australian Clinical Dosimetry Service, ARPANSA, Yallambie, Victoria, Australia.,Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Francis Gibbons
- Australian Clinical Dosimetry Service, ARPANSA, Yallambie, Victoria, Australia.,Physical Sciences, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Joerg Lehmann
- Applied Sciences Physics Department, RMIT University, Melbourne, Victoria, Australia.,Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, New South Wales, Australia.,School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, New South Wales, Australia.,Institute of Medical Physics, University of Sydney, Camperdown, New South Wales, Australia
| | - Tomas Kron
- Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Applied Sciences Physics Department, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Nishio T, Nakamura M, Okamoto H, Kito S, Minemura T, Ozawa S, Kumazaki Y, Ishikawa M, Tohyama N, Kurooka M, Nakashima T, Shimizu H, Suzuki R, Ishikura S, Nishimura Y. An overview of the medical-physics-related verification system for radiotherapy multicenter clinical trials by the Medical Physics Working Group in the Japan Clinical Oncology Group-Radiation Therapy Study Group. JOURNAL OF RADIATION RESEARCH 2020; 61:999-1008. [PMID: 32989445 PMCID: PMC7674673 DOI: 10.1093/jrr/rraa089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Indexed: 05/14/2023]
Abstract
The Japan Clinical Oncology Group-Radiation Therapy Study Group (JCOG-RTSG) has initiated several multicenter clinical trials for high-precision radiotherapy, which are presently ongoing. When conducting multi-center clinical trials, a large difference in physical quantities, such as the absolute doses to the target and the organ at risk, as well as the irradiation localization accuracy, affects the treatment outcome. Therefore, the differences in the various physical quantities used in different institutions must be within an acceptable range for conducting multicenter clinical trials, and this must be verified with medical physics consideration. In 2011, Japan's first Medical Physics Working Group (MPWG) in the JCOG-RTSG was established to perform this medical-physics-related verification for multicenter clinical trials. We have developed an auditing method to verify the accuracy of the absolute dose and the irradiation localization. Subsequently, we credentialed the participating institutions in the JCOG multicenter clinical trials that were using stereotactic body radiotherapy (SBRT) for lungs, intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for several disease sites, and proton beam therapy (PT) for the liver. From the verification results, accuracies of the absolute dose and the irradiation localization among the participating institutions of the multicenter clinical trial were assured, and the JCOG clinical trials could be initiated.
Collapse
Affiliation(s)
- Teiji Nishio
- Corresponding author. Department of Medical Physics, Graduate School of Medicine, Tokyo Women’s Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan. Tel: +81-3-3353-8111; Fax: +81-3-5269-7040;
| | - Mitsuhiro Nakamura
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human He Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Hiroyuki Okamoto
- Department of Medical Physics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Satoshi Kito
- Department of Radiology, Tokyo Metropolitan Bokutoh Hospital, 4-23-15 Kotobashi, Sumida-ku, Tokyo 130-8575, Japan
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human He Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Toshiyuki Minemura
- Division of Medical Support and Partnership, Center for Cancer Control and Information Services, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Shuichi Ozawa
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Hiroshima High-Precision Radiotherapy Cancer Center, 3-2-2, Futabanosato, Higashi-ku, Hiroshima 732-0057, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Yu Kumazaki
- Department of Radiation Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Masayori Ishikawa
- Faculty of Health Sciences, Hokkaido University, N-12 W-5 Kita-ku, Sapporo, 060-0812, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Naoki Tohyama
- Division of Medical Physics, Tokyo Bay Advanced Imaging & Radiation Oncology Makuhari Clinic, 1-17 Toyosuna, Mihama-ku, Chiba, 261-0024, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Masahiko Kurooka
- Department of Radiation Therapy, Tokyo Medical University Hospital, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Takeo Nakashima
- Radiation Therapy Section, Department of Clinical Support, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Hidetoshi Shimizu
- Department of Radiation Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Ryusuke Suzuki
- Department of Medical Physics, Hokkaido University Hospital, North-14, West-5, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Satoshi Ishikura
- Department of Radiology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Radiotherapy Committee (RC) in Japan Clinical Oncology Group, Tokyo, Japan
- Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Yasumasa Nishimura
- Department of Radiation Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
- Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| |
Collapse
|
4
|
Nakao M, Ozawa S, Miura H, Yamada K, Habara K, Hayata M, Kusaba H, Kawahara D, Miki K, Nakashima T, Ochi Y, Tsuda S, Seido M, Morimoto Y, Kawakubo A, Nozaki H, Nagata Y. Development of a CT number calibration audit phantom in photon radiation therapy: A pilot study. Med Phys 2020; 47:1509-1522. [PMID: 32026482 PMCID: PMC7216906 DOI: 10.1002/mp.14077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 01/24/2023] Open
Abstract
PURPOSE In photon radiation therapy, computed tomography (CT) numbers are converted into values for mass density (MD) or relative electron density to water (RED). CT-MD or CT-RED calibration tables are relevant for human body dose calculation in an inhomogeneous medium. CT-MD or CT-RED calibration tables are influenced by patient imaging (CT scanner manufacturer, scanning parameters, and patient size), the calibration process (tissue-equivalent phantom manufacturer, and selection of tissue-equivalent material), differences between tissue-equivalent materials and standard tissues, and the dose calculation algorithm applied; however, a CT number calibration audit has not been established. The purposes of this study were to develop a postal audit phantom, and to establish a CT number calibration audit process. METHODS A conventional stoichiometric calibration conducts a least square fit of the relationships between the MD, material weight, and measured CT number, using two parameters. In this study, a new stoichiometric CT number calibration scheme has been empirically established, using three parameters to harmonize the calculated CT number with the measured CT number for air and lung tissue. In addition, the suitable material set and the minimal number of materials required for stoichiometric CT number calibration were determined. The MDs and elemental weights from the International Commission on Radiological Protection Publication 110 were used as standard tissue data, to generate the CT-MD and CT-RED calibration tables. A small-sized, CT number calibration phantom was developed for a postal audit, and stoichiometric CT number calibration with the phantom was compared to the CT number calibration tables registered in the radiotherapy treatment planning systems (RTPSs) associated with five radiotherapy institutions. RESULTS When a least square fit was performed for the stoichiometric CT number calibration with the three parameters, the calculated CT number showed better agreement with the measured CT number. We established stoichiometric CT number calibration using only two materials because the accuracy of the process was determined not by the number of used materials but by the number of elements contained. The stoichiometric CT number calibration was comparable to the tissue-substitute calibration, with a dose difference less than 1%. An outline of the CT number calibration audit was demonstrated through a multi-institutional study. CONCLUSIONS We established a new stoichiometric CT number calibration method for validating the CT number calibration tables registered in RTPSs. We also developed a CT number calibration phantom for a postal audit, which was verified by the performances of multiple CT scanners located at several institutions. The new stoichiometric CT number calibration has the advantages of being performed using only two materials, and decreasing the difference between the calculated and measured CT numbers for air and lung tissue. In the future, a postal CT number calibration audit might be achievable using a smaller phantom.
Collapse
Affiliation(s)
- Minoru Nakao
- Hiroshima High‐Precision Radiotherapy Cancer Center3‐2‐2, Futabanosato, Higashi‐kuHiroshima732‐0057Japan
- Department of Radiation OncologyGraduate School of Biomedical & Health SciencesHiroshima University1‐2‐3 Kasumi, Minami‐kuHiroshima734‐8551Japan
| | - Shuichi Ozawa
- Hiroshima High‐Precision Radiotherapy Cancer Center3‐2‐2, Futabanosato, Higashi‐kuHiroshima732‐0057Japan
- Department of Radiation OncologyGraduate School of Biomedical & Health SciencesHiroshima University1‐2‐3 Kasumi, Minami‐kuHiroshima734‐8551Japan
| | - Hideharu Miura
- Hiroshima High‐Precision Radiotherapy Cancer Center3‐2‐2, Futabanosato, Higashi‐kuHiroshima732‐0057Japan
- Department of Radiation OncologyGraduate School of Biomedical & Health SciencesHiroshima University1‐2‐3 Kasumi, Minami‐kuHiroshima734‐8551Japan
| | - Kiyoshi Yamada
- Hiroshima High‐Precision Radiotherapy Cancer Center3‐2‐2, Futabanosato, Higashi‐kuHiroshima732‐0057Japan
| | - Kosaku Habara
- Hiroshima High‐Precision Radiotherapy Cancer Center3‐2‐2, Futabanosato, Higashi‐kuHiroshima732‐0057Japan
| | - Masahiro Hayata
- Hiroshima High‐Precision Radiotherapy Cancer Center3‐2‐2, Futabanosato, Higashi‐kuHiroshima732‐0057Japan
| | - Hayate Kusaba
- Hiroshima High‐Precision Radiotherapy Cancer Center3‐2‐2, Futabanosato, Higashi‐kuHiroshima732‐0057Japan
| | - Daisuke Kawahara
- Department of Radiation OncologyGraduate School of Biomedical & Health SciencesHiroshima University1‐2‐3 Kasumi, Minami‐kuHiroshima734‐8551Japan
| | - Kentaro Miki
- Department of Radiation OncologyHiroshima University Hospital1‐2‐3 Kasumi, Minami‐kuHiroshima734‐8551Japan
| | - Takeo Nakashima
- Radiation Therapy SectionDepartment of Clinical SupportHiroshima University Hospital1‐2‐3 Kasumi, Minami‐kuHiroshima734‐8551Japan
| | - Yusuke Ochi
- Radiation Therapy SectionDepartment of Clinical SupportHiroshima University Hospital1‐2‐3 Kasumi, Minami‐kuHiroshima734‐8551Japan
| | - Shintaro Tsuda
- Radiation Therapy SectionDepartment of Clinical SupportHiroshima University Hospital1‐2‐3 Kasumi, Minami‐kuHiroshima734‐8551Japan
| | - Mineaki Seido
- Department of RadiologyHiroshima Prefectural Hospital1‐5‐54, Ujinakanda, Minami‐kuHiroshima734‐8530Japan
| | - Yoshiharu Morimoto
- Department of RadiologyHiroshima Prefectural Hospital1‐5‐54, Ujinakanda, Minami‐kuHiroshima734‐8530Japan
| | - Atsushi Kawakubo
- Radiation Therapy DepartmentHiroshima City Hiroshima Citizens Hospital7‐33, Motomachi, Naka‐kuHiroshima730‐8518Japan
| | - Hiroshige Nozaki
- Division of RadiologyHiroshima Red Cross Hospital & Atomic‐bomb Survivors Hospital1‐9‐6, Senda, Naka‐kuHiroshima730‐8619Japan
| | - Yasushi Nagata
- Hiroshima High‐Precision Radiotherapy Cancer Center3‐2‐2, Futabanosato, Higashi‐kuHiroshima732‐0057Japan
- Department of Radiation OncologyGraduate School of Biomedical & Health SciencesHiroshima University1‐2‐3 Kasumi, Minami‐kuHiroshima734‐8551Japan
- Department of Radiation OncologyHiroshima University Hospital1‐2‐3 Kasumi, Minami‐kuHiroshima734‐8551Japan
| |
Collapse
|
5
|
Lye J, Kry S, Shaw M, Gibbons F, Keehan S, Lehmann J, Kron T, Followill D, Williams I. A comparison of IROC and ACDS on-site audits of reference and non-reference dosimetry. Med Phys 2019; 46:5878-5887. [PMID: 31494941 PMCID: PMC6916618 DOI: 10.1002/mp.13800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Consistency between different international quality assurance groups is important in the progress toward similar standards and expectations in radiotherapy dosimetry around the world, and in the context of consistent clinical trial data from international trial participants. This study compares the dosimetry audit methodology and results of two international quality assurance groups performing a side-by-side comparison at the same radiotherapy department, and interrogates the ability of the audits to detect deliberately introduced errors. METHODS A comparison of the core dosimetry components of reference and non-reference audits was conducted by the Imaging and Radiation Oncology Core (IROC, Houston, USA) and the Australian Clinical Dosimetry Service (ACDS, Melbourne, Australia). A set of measurements were conducted over 2 days at an Australian radiation therapy facility in Melbourne. Each group evaluated the reference dosimetry, output factors, small field output factors, percentage depth dose (PDD), wedge, and off-axis factors according to their standard protocols. IROC additionally investigated the Electron PDD and the ACDS investigated the effect of heterogeneities. In order to evaluate and compare the performance of these audits under suboptimal conditions, artificial errors in percentage depth dose (PDD), EDW, and small field output factors were introduced into the 6 MV beam model to simulate potential commissioning/modeling errors and both audits were tested for their sensitivity in detecting these errors. RESULTS With the plans from the clinical beam model, almost all results were within tolerance and at an optimal pass level. Good consistency was found between the two audits as almost all findings were consistent between them. Only two results were different between the results of IROC and the ACDS. The measurements of reference FFF photons showed a discrepancy of 0.7% between ACDS and IROC due to the inclusion of a 0.5% nonuniformity correction by the ACDS. The second difference between IROC and the ACDS was seen with the lung phantom. The asymmetric field behind lung measured by the ACDS was slightly (0.3%) above the ACDS's pass (optimal) level of 3.3%. IROC did not detect this issue because their measurements were all assessed in a homogeneous phantom. When errors were deliberately introduced neither audit was sensitive enough to pick up a 2% change to the small field output factors. The introduced PDD change was flagged by both audits. Similarly, the introduced error of using 25° wedge instead of 30° wedge was detectible in both audits as out of tolerance. CONCLUSIONS Despite different equipment, approach, and scope of measurements in on-site audits, there were clear similarities between the results from the two groups. This finding is encouraging in the context of a global harmonized approach to radiotherapy quality assurance and dosimetry audit.
Collapse
Affiliation(s)
- Jessica Lye
- Australian Clinical Dosimetry ServiceARPANSAMelbourneAustralia
| | - Stephen Kry
- Imaging and Radiation Oncology Core Houston QA CenterMD Anderson Cancer CenterHoustonTXUSA
| | - Maddison Shaw
- Australian Clinical Dosimetry ServiceARPANSAMelbourneAustralia
| | - Francis Gibbons
- Australian Clinical Dosimetry ServiceARPANSAMelbourneAustralia
- Sunshine Coast Hospital and Health ServiceBirtinyaQldAustralia
| | | | - Joerg Lehmann
- Australian Clinical Dosimetry ServiceARPANSAMelbourneAustralia
- Department of Radiation OncologyCalvary Mater NewcastleNewcastleAustralia
| | - Tomas Kron
- Peter MacCallum Cancer CentreMelbourneAustralia
| | - David Followill
- Imaging and Radiation Oncology Core Houston QA CenterMD Anderson Cancer CenterHoustonTXUSA
| | - Ivan Williams
- Australian Clinical Dosimetry ServiceARPANSAMelbourneAustralia
| |
Collapse
|
6
|
Dunn L, Jolly D. Automated data mining of a plan-check database and example application. J Appl Clin Med Phys 2018; 19:739-748. [PMID: 29956454 PMCID: PMC6123163 DOI: 10.1002/acm2.12396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/15/2018] [Accepted: 05/24/2018] [Indexed: 12/02/2022] Open
Abstract
Purpose The aim of this work was to present the development and example application of an automated data mining software platform that preforms bulk analysis of results and patient data passing through the 3D plan and delivery QA system, Mobius3D. Methods Python, matlab, and Java were used to create an interface that reads JavaScript Object Notation (JSON) created for every approved Mobius3D pre‐treatment plan‐check. The aforementioned JSON files contain all the information for every pre‐treatment QA check performed by Mobius3D, including all 3D dose, CT, structure set information, as well as all plan information and patient demographics. Two Graphical User Interfaces (GUIs) were created, the first is called Mobius3D‐Database (M3D‐DB) and presents the check results in both filterable tabular and graphical form. These data are presented for all patients and includes mean dose differences, 90% coverage, 3D gamma pass rate percentages, treatment sites, machine, beam energy, Multi‐Leaf Collimator (MLC) mode, treatment planning system (TPS), plan names, approvers, dates and times. Group statistics and statistical process control levels are then calculated based on filter settings. The second GUI, called Mobius3D organ at risk (M3DOAR), analyzes dose‐volume histogram data for all patients and all Organs‐at‐Risk (OAR). The design of the software is such that all treatment parameters and treatment site information are able to be filtered and sorted with the results, plots, and statistics updated. Results The M3D‐DB software can summarize and filter large numbers of plan‐checks from Mobius3D. The M3DOAR software is also able to analyze large amounts of dose‐volume data for patient groups which may prove useful in clinical trials, where OAR doses for large numbers of patients can be compared and correlated. Target DVHs can also be analyzed en mass. Conclusions This work demonstrates a method to extract the large amount of treatment data for every patient that is stored by Mobius3D but not easily accessible. With scripting, it is possible to mine this data for research and clinical trials as well as patient and TPS QA.
Collapse
Affiliation(s)
- Leon Dunn
- Icon Cancer Centre - The Valley, Mulgrave, Melbourne, Vic, Australia
| | - David Jolly
- Icon Cancer Centre - Richmond, Richmond, Melbourne, Vic, Australia
| |
Collapse
|
7
|
A virtual dosimetry audit - Towards transferability of gamma index analysis between clinical trial QA groups. Radiother Oncol 2018; 125:398-404. [PMID: 29100698 DOI: 10.1016/j.radonc.2017.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 11/22/2022]
Abstract
PURPOSE Quality assurance (QA) for clinical trials is important. Lack of compliance can affect trial outcome. Clinical trial QA groups have different methods of dose distribution verification and analysis, all with the ultimate aim of ensuring trial compliance. The aim of this study was to gain a better understanding of different processes to inform future dosimetry audit reciprocity. MATERIALS Six clinical trial QA groups participated. Intensity modulated treatment plans were generated for three different cases. A range of 17 virtual 'measurements' were generated by introducing a variety of simulated perturbations (such as MLC position deviations, dose differences, gantry rotation errors, Gaussian noise) to three different treatment plan cases. Participants were blinded to the 'measured' data details. Each group analysed the datasets using their own gamma index (γ) technique and using standardised parameters for passing criteria, lower dose threshold, γ normalisation and global γ. RESULTS For the same virtual 'measured' datasets, different results were observed using local techniques. For the standardised γ, differences in the percentage of points passing with γ < 1 were also found, however these differences were less pronounced than for each clinical trial QA group's analysis. These variations may be due to different software implementations of γ. CONCLUSIONS This virtual dosimetry audit has been an informative step in understanding differences in the verification of measured dose distributions between different clinical trial QA groups. This work lays the foundations for audit reciprocity between groups, particularly with more clinical trials being open to international recruitment.
Collapse
|
8
|
Lehmann J, Alves A, Dunn L, Shaw M, Kenny J, Keehan S, Supple J, Gibbons F, Manktelow S, Oliver C, Kron T, Williams I, Lye J. Dosimetric end-to-end tests in a national audit of 3D conformal radiotherapy. Phys Imaging Radiat Oncol 2018; 6:5-11. [PMID: 33458381 PMCID: PMC7807562 DOI: 10.1016/j.phro.2018.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Independent dosimetry audits improve quality and safety of radiation therapy. This work reports on design and findings of a comprehensive 3D conformal radiotherapy (3D-CRT) Level III audit. MATERIALS AND METHODS The audit was conducted as onsite audit using an anthropomorphic thorax phantom in an end-to-end test by the Australian Clinical Dosimetry Service (ACDS). Absolute dose point measurements were performed with Farmer-type ionization chambers. The audited treatment plans included open and half blocked fields, wedges and lung inhomogeneities. Audit results were determined as Pass Optimal Level (deviations within 3.3%), Pass Action Level (greater than 3.3% but within 5%) and Out of Tolerance (beyond 5%), as well as Reported Not Scored (RNS). The audit has been performed between July 2012 and January 2018 on 94 occasions, covering approximately 90% of all Australian facilities. RESULTS The audit pass rate was 87% (53% optimal). Fifty recommendations were given, mainly related to planning system commissioning. Dose overestimation behind low density inhomogeneities by the analytical anisotropic algorithm (AAA) was identified across facilities and found to extend to beam setups which resemble a typical breast cancer treatment beam placement. RNS measurements inside lung showed a variation in the opposite direction: AAA under-dosed a target beyond lung and over-dosed the lung upstream and downstream of the target. Results also highlighted shortcomings of some superposition and convolution algorithms in modelling large angle wedges. CONCLUSIONS This audit showed that 3D-CRT dosimetry audits remain relevant and can identify fundamental global and local problems that also affect advanced treatments.
Collapse
Affiliation(s)
- Joerg Lehmann
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
- Institute of Medical Physics, School of Physics A28, University of Sydney NSW 2006, Australia
- School of Mathematical and Physical Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- School of Science, Royal Melbourne Institute of Technology (RMIT) University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Andrew Alves
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| | - Leon Dunn
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| | - Maddison Shaw
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
- School of Science, Royal Melbourne Institute of Technology (RMIT) University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - John Kenny
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| | - Stephanie Keehan
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
- School of Science, Royal Melbourne Institute of Technology (RMIT) University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Jeremy Supple
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| | - Francis Gibbons
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| | - Sophie Manktelow
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| | - Chris Oliver
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| | - Tomas Kron
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
- School of Science, Royal Melbourne Institute of Technology (RMIT) University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
- Department of Radiation Oncology, Peter MacCallum Cancer Center, 305 Grattan Street, Melbourne, VIC 3000, Australia
| | - Ivan Williams
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| | - Jessica Lye
- Australian Clinical Dosimetry Service (ACDS), Australian Radiation Protection and National Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC 3085, Australia
| |
Collapse
|
9
|
Pasler M, Hernandez V, Jornet N, Clark CH. Novel methodologies for dosimetry audits: Adapting to advanced radiotherapy techniques. Phys Imaging Radiat Oncol 2018; 5:76-84. [PMID: 33458373 PMCID: PMC7807589 DOI: 10.1016/j.phro.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 11/25/2022] Open
Abstract
With new radiotherapy techniques, treatment delivery is becoming more complex and accordingly, these treatment techniques require dosimetry audits to test advanced aspects of the delivery to ensure best practice and safe patient treatment. This review of novel methodologies for dosimetry audits for advanced radiotherapy techniques includes recent developments and future techniques to be applied in dosimetry audits. Phantom-based methods (i.e. phantom-detector combinations) including independent audit equipment and local measurement equipment as well as phantom-less methods (i.e. portal dosimetry, transmission detectors and log files) are presented and discussed. Methodologies for both conventional linear accelerator (linacs) and new types of delivery units, i.e. Tomotherapy, stereotactic devices and MR-linacs, are reviewed. Novel dosimetry audit techniques such as portal dosimetry or log file evaluation have the potential to allow parallel auditing (i.e. performing an audit at multiple institutions at the same time), automation of data analysis and evaluation of multiple steps of the radiotherapy treatment chain. These methods could also significantly reduce the time needed for audit and increase the information gained. However, to maximise the potential, further development and harmonisation of dosimetry audit techniques are required before these novel methodologies can be applied.
Collapse
Affiliation(s)
- Marlies Pasler
- Lake Constance Radiation Oncology Center Singen-Friedrichshafen, Germany
| | - Victor Hernandez
- Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, Tarragona, Spain
| | - Núria Jornet
- Servei de RadiofísicaiRadioprotecció, Hospital de la Santa CreuiSant Pau, Spain
| | - Catharine H. Clark
- Department of Medical Physics, Royal Surrey County Hospital, Guildford, Surrey, UK
- Metrology for Medical Physics (MEMPHYS), National Physical Laboratory, Teddington, Middlesex, UK
| |
Collapse
|
10
|
Clark CH, Hurkmans CW, Kry SF. The role of dosimetry audit in lung SBRT multi-centre clinical trials. Phys Med 2017; 44:171-176. [PMID: 28391958 DOI: 10.1016/j.ejmp.2017.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/20/2017] [Accepted: 04/01/2017] [Indexed: 11/29/2022] Open
Abstract
Stereotactic Body Radiotherapy (SBRT) in the lung is a challenging technique which requires high quality clinical trials to answer the un-resolved clinical questions. Quality assurance of these clinical trials not only ensures the safety of the treatment of the participating patients but also minimises the variation in treatment, thus allowing the lowest number of patient treatments to answer the trial question. This review addresses the role of dosimetry audits in the quality assurance process and considers what can be done to ensure the highest accuracy of dose calculation and delivery and it's assessment in multi-centre trials.
Collapse
Affiliation(s)
- Catharine H Clark
- Royal Surrey County Hospital, Guildford, UK; National Physical Laboratory, Teddington, UK; National Radiotherapy Trials QA (RTTQA) Group, Mount Vernon Hospital, Northwood, UK.
| | - Coen W Hurkmans
- Catharina Ziekenhuis, Eindhoven, The Netherlands; European Organisation for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| | - Stephen F Kry
- MD Andersen Cancer Center, Houston, TX, USA; Imaging and Radiation Oncology Core (IROC), Houston, USA
| | | |
Collapse
|
11
|
Miri N, Lehmann J, Legge K, Vial P, Greer PB. Virtual EPID standard phantom audit (VESPA) for remote IMRT and VMAT credentialing. Phys Med Biol 2017; 62:4293-4299. [PMID: 28248642 DOI: 10.1088/1361-6560/aa63df] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A virtual EPID standard phantom audit (VESPA) has been implemented for remote auditing in support of facility credentialing for clinical trials using IMRT and VMAT. VESPA is based on published methods and a clinically established IMRT QA procedure, here extended to multi-vendor equipment. Facilities are provided with comprehensive instructions and CT datasets to create treatment plans. They deliver the treatment directly to their EPID without any phantom or couch in the beam. In addition, they deliver a set of simple calibration fields per instructions. Collected EPID images are uploaded electronically. In the analysis, the dose is projected back into a virtual cylindrical phantom. 3D gamma analysis is performed. 2D dose planes and linear dose profiles are provided and can be considered when needed for clarification. In addition, using a virtual flat-phantom, 2D field-by-field or arc-by-arc gamma analyses are performed. Pilot facilities covering a range of planning and delivery systems have performed data acquisition and upload successfully. Advantages of VESPA are (1) fast turnaround mainly driven by the facility's capability of providing the requested EPID images, (2) the possibility for facilities performing the audit in parallel, as there is no need to wait for a phantom, (3) simple and efficient credentialing for international facilities, (4) a large set of data points, and (5) a reduced impact on resources and environment as there is no need to transport heavy phantoms or audit staff. Limitations of the current implementation of VESPA for trials credentialing are that it does not provide absolute dosimetry, therefore a Level I audit is still required, and that it relies on correctly delivered open calibration fields, which are used for system calibration. The implemented EPID based IMRT and VMAT audit system promises to dramatically improve credentialing efficiency for clinical trials and wider applications.
Collapse
Affiliation(s)
- Narges Miri
- School of Mathematical and Physical Sciences, The University of Newcastle, Newcastle, Australia
| | | | | | | | | |
Collapse
|
12
|
Jolly D, Dunn L, Kenny J. A clinical database to assess action levels and tolerances for the ongoing use of Mobius3D. J Appl Clin Med Phys 2016; 18:59-65. [PMID: 28291923 PMCID: PMC5689886 DOI: 10.1002/acm2.12009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/22/2016] [Indexed: 11/13/2022] Open
Abstract
In radiation therapy, calculation of dose within the patient contains inherent uncertainties, inaccuracies, limitations, and the potential for random error. Thus, point dose‐independent verification of such calculations is a well‐established process, with published data to support the setting of both action levels and tolerances. Mobius3D takes this process one step further with a full independent calculation of patient dose and comparisons of clinical parameters such as mean target dose and voxel‐by‐voxel gamma analysis. There is currently no published data to directly inform tolerance levels for such parameters, and therefore this work presents a database of 1000 Mobius3D results to fill this gap. The data are tested for normality using a normal probability plot and found to fit this distribution for three sub groups of data; Eclipse,iPlan and the treatment site Lung. The mean (μ) and standard deviation (σ) of these sub groups is used to set action levels and tolerances at μ ± 2σ and μ ± 3σ, respectively. A global (3%, 3 mm) gamma tolerance is set at 88.5%. The mean target dose tolerance for Eclipse data is the narrowest at ± 3%, whilst iPlan and Lung have a range of −5.0 to 2.2% and −1.8 to 5.0%, respectively. With these limits in place, future results failing the action level or tolerance will fall within the worst 5% and 1% of historical results and an informed decision can be made regarding remedial action prior to treatment.
Collapse
Affiliation(s)
- David Jolly
- Epworth Radiation Oncology Research Centre, Epworth HealthCare, Melbourne, VIC, Australia
| | - Leon Dunn
- Epworth Radiation Oncology Research Centre, Epworth HealthCare, Melbourne, VIC, Australia
| | - John Kenny
- Epworth Radiation Oncology Research Centre, Epworth HealthCare, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Kron T, Lehmann J, Greer PB. Dosimetry of ionising radiation in modern radiation oncology. Phys Med Biol 2016; 61:R167-205. [DOI: 10.1088/0031-9155/61/14/r167] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Clark CH, Aird EGA, Bolton S, Miles EA, Nisbet A, Snaith JAD, Thomas RAS, Venables K, Thwaites DI. Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials. Br J Radiol 2015; 88:20150251. [PMID: 26329469 DOI: 10.1259/bjr.20150251] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Dosimetry audit plays an important role in the development and safety of radiotherapy. National and large scale audits are able to set, maintain and improve standards, as well as having the potential to identify issues which may cause harm to patients. They can support implementation of complex techniques and can facilitate awareness and understanding of any issues which may exist by benchmarking centres with similar equipment. This review examines the development of dosimetry audit in the UK over the past 30 years, including the involvement of the UK in international audits. A summary of audit results is given, with an overview of methodologies employed and lessons learnt. Recent and forthcoming more complex audits are considered, with a focus on future needs including the arrival of proton therapy in the UK and other advanced techniques such as four-dimensional radiotherapy delivery and verification, stereotactic radiotherapy and MR linear accelerators. The work of the main quality assurance and auditing bodies is discussed, including how they are working together to streamline audit and to ensure that all radiotherapy centres are involved. Undertaking regular external audit motivates centres to modernize and develop techniques and provides assurance, not only that radiotherapy is planned and delivered accurately but also that the patient dose delivered is as prescribed.
Collapse
Affiliation(s)
- Catharine H Clark
- 1 Department of Medical Physics, Royal Surrey County Hospital, Guildford, Surrey, UK.,2 Radiation Dosimetry Group, National Physical Laboratory, Teddington, Middlesex, UK
| | - Edwin G A Aird
- 3 RTTQA Group, Mount Vernon Hospital, Northwood, Middlesex, UK
| | - Steve Bolton
- 4 Medical Physics and Engineering Department, Christie Hospital NHS Foundation Trust, Manchester, UK.,5 Institute of Physics and Engineering in Medicine, York, UK
| | | | - Andrew Nisbet
- 1 Department of Medical Physics, Royal Surrey County Hospital, Guildford, Surrey, UK.,6 Department of Physics, University of Surrey, Guildford, UK
| | - Julia A D Snaith
- 2 Radiation Dosimetry Group, National Physical Laboratory, Teddington, Middlesex, UK
| | - Russell A S Thomas
- 2 Radiation Dosimetry Group, National Physical Laboratory, Teddington, Middlesex, UK
| | - Karen Venables
- 3 RTTQA Group, Mount Vernon Hospital, Northwood, Middlesex, UK
| | - David I Thwaites
- 7 Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
National dosimetric audit network finds discrepancies in AAA lung inhomogeneity corrections. Phys Med 2015; 31:435-41. [DOI: 10.1016/j.ejmp.2015.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 11/23/2022] Open
|
16
|
Mizuno H, Fukumura A, Fukahori M, Sakata S, Yamashita W, Takase N, Yajima K, Katayose T, Abe-Sakama K, Kusano Y, Shimbo M, Kanai T. Application of a radiophotoluminescent glass dosimeter to nonreference condition dosimetry in the postal dose audit system. Med Phys 2014; 41:112104. [DOI: 10.1118/1.4898596] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|