1
|
Xiao F, Radonic D, Kriechbaum M, Wahl N, Neishabouri A, Delopoulos N, Parodi K, Corradini S, Belka C, Kurz C, Landry G, Dedes G. Prompt gamma emission prediction using a long short-term memory network. Phys Med Biol 2024; 69:235003. [PMID: 39488071 DOI: 10.1088/1361-6560/ad8e2a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/01/2024] [Indexed: 11/04/2024]
Abstract
Objective: To present a long short-term memory (LSTM)-based prompt gamma (PG) emission prediction method for proton therapy.Approach: Computed tomography (CT) scans of 33 patients with a prostate tumor were included in the dataset. A set of 107histories proton pencil beam (PB)s was generated for Monte Carlo (MC) dose and PG simulation. For training (20 patients) and validation (3 patients), over 6000 PBs at 150, 175 and 200 MeV were simulated. 3D relative stopping power (RSP), PG and dose cuboids that included the PB were extracted. Three models were trained, validated and tested based on an LSTM-based network: (1) input RSP and output PG, (2) input RSP with dose and output PG (single-energy), and (3) input RSP/dose and output PG (multi-energy). 540 PBs at each of the four energy levels (150, 175, 200, and 125-210 MeV) were simulated across 10 patients to test the three models. The gamma passing rate (2%/2 mm) and PG range shift were evaluated and compared among the three models.Results: The model with input RSP/dose and output PG (multi-energy) showed the best performance in terms of gamma passing rate and range shift metrics. Its mean gamma passing rate of testing PBs of 125-210 MeV was 98.5% and the worst case was 92.8%. Its mean absolute range shift between predicted and MC PGs was 0.15 mm, where the maximum shift was 1.1 mm. The prediction time of our models was within 130 ms per PB.Significance: We developed a sub-second LSTM-based PG emission prediction method. Its accuracy in prostate patients has been confirmed across an extensive range of proton energies.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Domagoj Radonic
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Medical Physics, LMU Munich, Munich, Germany
| | | | - Niklas Wahl
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Ahmad Neishabouri
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolaos Delopoulos
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Katia Parodi
- Department of Medical Physics, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - George Dedes
- Department of Medical Physics, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Yamamoto S, Yamashita T, Kobashi Y, Yabe T, Nakanishi K, Akagi T, Yamaguchi M, Kawachi N, Kamada K, Yoshikawa A, Kataoka J. Development of a GAGG gamma camera for the imaging of prompt gammas during proton beam irradiation. Phys Med 2024; 127:104847. [PMID: 39467468 DOI: 10.1016/j.ejmp.2024.104847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Prompt gammas imaging (PGI) is a promising method for observing a beam's shape and estimating the range of the beam from outside a subject. However 2-dimensional images of prompt gammas (PGs) during irradiation of protons were still difficult to measure. To achieve PGI, we developed a new gamma camera and imaged PGs while irradiating a phantom by proton beams. We also simultaneously measured prompt X-ray (PX) images with an X-ray camera from opposed direction and compared the images. The developed gamma camera uses a 10 mm thick GAGG block optically coupled to a flat panel photomultiplier tube (FP-PMT), and it is contained in a 20 mm thick tungsten container with a pinhole collimator attached. A poly-methyl-methacrylate (PMMA) block was irradiated by proton beams with total number of the protons similar to the clinical level, and the gamma camera imaged PGs and X-ray camera imaged PXs simultaneously. For all of the tested beams, we could measure the beam shapes of the PGs and the PXs and the ranges could also be estimated from the images. For both PG and PX images, time sequential images and accumulated images could be derived. We confirmed that the PGI using our developed gamma camera, as well as PXI, is promising for beam imaging and range estimation in proton therapy.
Collapse
Affiliation(s)
| | | | | | - Takuya Yabe
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Japan
| | | | | | - Mitsutaka Yamaguchi
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Japan
| | - Naoki Kawachi
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Japan
| | - Kei Kamada
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Japan
| | - Akira Yoshikawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Japan
| | - Jun Kataoka
- Faculty of Science and Engineering, Waseda University, Japan
| |
Collapse
|
3
|
Yamamoto S, Yabe T, Akagi T, Yamaguchi M, Kawachi N, Kamada K, Yoshikawa A, Kataoka J. Prompt X-ray imaging during irradiation with spread-out Bragg peak (SOBP) beams of carbon ions. Phys Med 2023; 109:102592. [PMID: 37084677 DOI: 10.1016/j.ejmp.2023.102592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
Prompt secondary electron bremsstrahlung X-ray (prompt X-ray) imaging using a low-energy X-ray camera is a promising method for observing a beam shape from outside the subject. However, such imaging has so far been conducted only for pencil beams without a multi-leaf collimator (MLC). The use of spread-out Bragg peak (SOBP) with an MLC may increase the scattered prompt gamma photons and decrease the contrast of the images of prompt X-rays. Consequently, we performed prompt X-ray imaging of SOBP beams formed with an MLC. This imaging was carried out in list mode during irradiation of SOBP beams to a water phantom. An X-ray camera with a 1.5-mm diameter as well as 4-mm-diameter pinhole collimators was used for the imaging. List mode data were sorted to obtain the SOBP beam images as well as energy spectra and time count rate curves. Due to the high background counts from the scattered prompt gamma photons penetrating the tungsten shield of the X-ray camera, the SOBP beam shapes were difficult to observe with a 1.5-mm-diameter pinhole collimator. With the 4-mm-diameter pinhole collimators, images of SOBP beam shapes at clinical dose levels could be obtained with the X-ray camera. The use of a 4-mm-diameter pinhole collimator attached to the X-ray camera is effective for prompt X-ray imaging with high sensitivity and low background counts. This approach makes it possible to image SOBP beams with an MLC when the counts are low and the background levels are high.
Collapse
Affiliation(s)
| | - Takuya Yabe
- Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), Japan
| | | | - Mitsutaka Yamaguchi
- Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), Japan
| | - Naoki Kawachi
- Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), Japan
| | - Kei Kamada
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Japan
| | - Akira Yoshikawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Japan
| | - Jun Kataoka
- Faculty of Science and Engineering, Waseda University, Japan
| |
Collapse
|
4
|
España S, Sánchez-Parcerisa D, Bragado P, Gutiérrez-Uzquiza Á, Porras A, Gutiérrez-Neira C, Espinosa A, Onecha VV, Ibáñez P, Sánchez-Tembleque V, Udías JM, Fraile LM. In vivo production of fluorine-18 in a chicken egg tumor model of breast cancer for proton therapy range verification. Sci Rep 2022; 12:7075. [PMID: 35490180 PMCID: PMC9056503 DOI: 10.1038/s41598-022-11037-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/18/2022] [Indexed: 01/02/2023] Open
Abstract
Range verification of clinical protontherapy systems via positron-emission tomography (PET) is not a mature technology, suffering from two major issues: insufficient signal from low-energy protons in the Bragg peak area and biological washout of PET emitters. The use of contrast agents including 18O, 68Zn or 63Cu, isotopes with a high cross section for low-energy protons in nuclear reactions producing PET emitters, has been proposed to enhance the PET signal in the last millimeters of the proton path. However, it remains a challenge to achieve sufficient concentrations of these isotopes in the target volume. Here we investigate the possibilities of 18O-enriched water (18-W), a potential contrast agent that could be incorporated in large proportions in live tissues by replacing regular water. We hypothesize that 18-W could also mitigate the problem of biological washout, as PET (18F) isotopes created inside live cells would remain trapped in the form of fluoride anions (F-), allowing its signal to be detected even hours after irradiation. To test our hypothesis, we designed an experiment with two main goals: first, prove that 18-W can incorporate enough 18O into a living organism to produce a detectable signal from 18F after proton irradiation, and second, determine the amount of activity that remains trapped inside the cells. The experiment was performed on a chicken embryo chorioallantoic membrane tumor model of head and neck cancer. Seven eggs with visible tumors were infused with 18-W and irradiated with 8-MeV protons (range in water: 0.74 mm), equivalent to clinical protons at the end of particle range. The activity produced after irradiation was detected and quantified in a small-animal PET-CT scanner, and further studied by placing ex-vivo tumours in a gamma radiation detector. In the acquired images, specific activity of 18F (originating from 18-W) could be detected in the tumour area of the alive chicken embryo up to 9 h after irradiation, which confirms that low-energy protons can indeed produce a detectable PET signal if a suitable contrast agent is employed. Moreover, dynamic PET studies in two of the eggs evidenced a minimal effect of biological washout, with 68% retained specific 18F activity at 8 h after irradiation. Furthermore, ex-vivo analysis of 4 irradiated tumours showed that up to 3% of oxygen atoms in the targets were replaced by 18O from infused 18-W, and evidenced an entrapment of 59% for specific activity of 18F after washing, supporting our hypothesis that F- ions remain trapped within the cells. An infusion of 18-W can incorporate 18O in animal tissues by replacing regular water inside cells, producing a PET signal when irradiated with low-energy protons that could be used for range verification in protontherapy. 18F produced inside cells remains entrapped and suffers from minimal biological washout, allowing for a sharper localization with longer PET acquisitions. Further studies must evaluate the feasibility of this technique in dosimetric conditions closer to clinical practice, in order to define potential protocols for its use in patients.
Collapse
Affiliation(s)
- Samuel España
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain. .,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain. .,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| | - Daniel Sánchez-Parcerisa
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain.,Sedecal Molecular Imaging, Algete, Madrid, Spain
| | - Paloma Bragado
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Álvaro Gutiérrez-Uzquiza
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Porras
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Carolina Gutiérrez-Neira
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain.,Centro de Microanálisis de Materiales, CMAM-UAM, Madrid, Spain
| | - Andrea Espinosa
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain
| | - Víctor V Onecha
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain
| | - Paula Ibáñez
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain
| | - Víctor Sánchez-Tembleque
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain
| | - José M Udías
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain
| | - Luis M Fraile
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
5
|
Krishnamoorthy S, Teo BKK, Zou W, McDonough J, Karp JS, Surti S. A proof-of-concept study of an in-situ partial-ring time-of-flight PET scanner for proton beam verification. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:694-702. [PMID: 34746539 DOI: 10.1109/trpms.2020.3044326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Development of a PET system capable of in-situ imaging requires a design that can accommodate the proton treatment beam nozzle. Among the several PET instrumentation approaches developed thus far, the dual-panel PET scanner is often used as it is simpler to develop and integrate within the proton therapy gantry. Partial-angle coverage of these systems can however lead to limited-angle artefacts in the reconstructed PET image. We have previously demonstrated via simulations that time-of-flight (TOF) reconstruction reduces the artifacts accompanying limited-angle data, and permits proton range measurement with 1-2 mm accuracy and precision. In this work we show measured results from a small proof-of-concept dual-panel PET system that uses TOF information to reconstruct PET data acquired after proton irradiation. The PET scanner comprises of two detector modules, each comprised of an array of 4×4×30 mm3 lanthanum bromide scintillator. Measurements are performed with an oxygen-rich gel-water, an adipose tissue equivalent material, and in vitro tissue phantoms. For each phantom measurement, 2 Gy dose was deposited using 54 - 100 MeV proton beams. For each phantom, a Monte Carlo simulation generating the expected distribution of PET isotope from the corresponding proton irradiation was also performed. Proton range was calculated by drawing multiple depth-profiles over a central region encompassing the proton dose deposition. For each profile, proton range was calculated using two techniques (a) 50% pick-off from the distal edge of the profile, and (b) comparing the measured and Monte Carlo profile to minimize the absolute sum of differences over the entire profile. A 10 min PET acquisition acquired with minimal delay post proton-irradiation is compared with a 10 min PET scan acquired after a 20 min delay. Measurements show that PET acquisition with minimal delay is necessary to collect 15O signal, and maximize 11C signal collection with a short PET acquisition. In comparison with the 50% pick-off technique, the shift technique is more robust and offers better precision in measuring the proton range for the different phantoms. Range measurements from PET images acquired with minimal delay, and the shift technique demonstrate the ability to achieve <1.5 mm accuracy and precision in estimating proton range.
Collapse
Affiliation(s)
| | - Boon-Keng K Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - James McDonough
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Joel S Karp
- Departments of Radiology and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
6
|
España S, Sánchez-Parcerisa D, Ibáñez P, Sánchez-Tembleque V, Udías JM, Onecha VV, Gutierrez-Uzquiza A, Bäcker CM, Bäumer C, Herrmann K, Fragoso Costa P, Timmermann B, Fraile LM. Direct proton range verification using oxygen-18 enriched water as a contrast agent. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Sun L, Hu W, Lai S, Shi L, Chen J. In Vivo 3-D Dose Verification Using PET/CT Images After Carbon-Ion Radiation Therapy. Front Oncol 2021; 11:621394. [PMID: 33791210 PMCID: PMC8006088 DOI: 10.3389/fonc.2021.621394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/26/2021] [Indexed: 11/29/2022] Open
Abstract
Objective To investigate the usefulness of positron emission tomography (PET) images obtained after carbon-ion irradiation for dose verification in carbon-ion radiotherapy. Methods and Materials An anthropomorphic head phantom was used in this study. Three cubes with volumes of 1, 4, and 10 ml were contoured as targets in the phantom CT through a treatment planning system. Treatment plans with six prescriptions from 2.5 to 10 Gy (2.5, 3, 5, 6, 8, and 10 Gy effective dose) were designed and delivered by 90° fixed carbon-ion beams, respectively. After irradiation of the phantom, a PET/CT scan was performed to fuse the treatment-planning CT image with the PET/CT image. The relationship between target volume and the standard uptake value (SUV) in PET/CT was evaluated for corresponding plan prescription. The MIM Maestro software was used for the image fusion and data analysis. Results SUV in the target had an approximate linear relationship with the effective dose. The same effective dose could generate a roughly equal SUV for different target volumes (p < 0.05). Conclusions It is feasible to verify the actual 3-D dose distribution of carbon-ion radiotherapy by the approach in this study.
Collapse
Affiliation(s)
- Lining Sun
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weigang Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Songtao Lai
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Leijun Shi
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Junchao Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Yamamoto S, Yamaguchi M, Akagi T, Kitano M, Kawachi N. Sensitivity improvement of YAP(Ce) cameras for imaging of secondary electron bremsstrahlung x-rays emitted during carbon-ion irradiation: problem and solution. Phys Med Biol 2020; 65:105008. [PMID: 32101809 DOI: 10.1088/1361-6560/ab7a6e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Low-energy x-ray imaging of secondary electron bremsstrahlung x-rays emitted during carbon-ion irradiation is a promising method for range estimation and could be used for imaging with almost clinical dose levels of carbon ion. However, the number of counts in images with clinical dose levels is relatively small, making it difficult to obtain precise range estimations. Since improving the sensitivity of the x-ray camera may solve this issue, we developed two new types of x-ray cameras. One uses a 1 mm thick, 40 mm × 40 mm cerium-doped yttrium aluminum perovskite (YA1O3: YAP(Ce)) scintillator plate combined with a 2 inch square flat panel photomultiplier tube (FP-PMT) contained in a 2 cm thick tungsten shield with a pinhole collimator positioned 50 mm from the scintillator; the other uses a 0.5 mm thick, 20 mm × 20 mm YAP(Ce) scintillator plate combined with a 1 inch square position sensitive photomultiplier tube (PSPMT) contained in the same tungsten shield with a pinhole collimator, but with the scintillator positioned closer (30 mm) to the pinhole collimator to obtain a similar field of view. For both cameras, we used a wider angle (∼55°) pinhole collimator to measure the phantom closer to improve sensitivity. Although the 40 mm × 40 mm YAP(Ce) camera had high system spatial resolution, the background count fractions were high and produced a high count area at the center of the images due to the pulse pileup of the signals. With the 20 mm × 20 mm YAP(Ce) camera, we obtained x-ray images with low background counts without a high count area at the image center. By smoothing the measured images, we were able to estimate the ranges even for clinical dose levels. We therefore confirmed that one of our newly developed YAP(Ce) cameras had high sensitivity and is promising for the imaging of secondary electron bremsstrahlung x-rays during irradiation of carbon ions in clinical conditions.
Collapse
Affiliation(s)
- Seiichi Yamamoto
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673, Japan
| | | | | | | | | |
Collapse
|
9
|
Yamaguchi M, Liu CC, Huang HM, Yabe T, Akagi T, Kawachi N, Yamamoto S. Dose image prediction for range and width verifications from carbon ion-induced secondary electron bremsstrahlung x-rays using deep learning workflow. Med Phys 2020; 47:3520-3532. [PMID: 32335924 DOI: 10.1002/mp.14205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Imaging of the secondary electron bremsstrahlung (SEB) x rays emitted during particle-ion irradiation is a promising method for beam range estimation. However, the SEB x-ray images are not directly correlated to the dose images. In addition, limited spatial resolution of the x-ray camera and low-count situation may impede correctly estimating the beam range and width in SEB x-ray images. To overcome these limitations of the SEB x-ray images measured by the x-ray camera, a deep learning (DL) approach was proposed in this work to predict the dose images for estimating the range and width of the carbon ion beam on the measured SEB x-ray images. METHODS To prepare enough data for the DL training efficiently, 10,000 simulated SEB x-ray and dose image pairs were generated by our in-house developed model function for different carbon ion beam energies and doses. The proposed DL neural network consists of two U-nets for SEB x ray to dose image conversion and super resolution. After the network being trained with these simulated x-ray and dose image pairs, the dose images were predicted from simulated and measured SEB x-ray testing images for performance evaluation. RESULTS For the 500 simulated testing images, the average mean squared error (MSE) was 2.5 × 10-5 and average structural similarity index (SSIM) was 0.997 while the error of both beam range and width was within 1 mm FWHM. For the three measured SEB x-ray images, the MSE was no worse than 5.5 × 10-3 and SSIM was no worse than 0.980 while the error of the beam range and width was 2 mm and 5 mm FWHM, respectively. CONCLUSIONS We have demonstrated the advantages of predicting dose images from not only simulated data but also measured data using our deep learning approach.
Collapse
Affiliation(s)
- Mitsutaka Yamaguchi
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science (QST), Takasaki, Japan
| | - Chih-Chieh Liu
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Hsuan-Ming Huang
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Takuya Yabe
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Naoki Kawachi
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science (QST), Takasaki, Japan
| | - Seiichi Yamamoto
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Vogel J, Carmona R, Ainsley CG, Lustig RA. The Promise of Proton Therapy for Central Nervous System Malignancies. Neurosurgery 2020; 84:1000-1010. [PMID: 30476191 DOI: 10.1093/neuros/nyy454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/28/2018] [Indexed: 11/15/2022] Open
Abstract
Radiation therapy plays a significant role in management of benign and malignant diseases of the central nervous system. Patients may be at risk of acute and late toxicity from radiation therapy due to dose deposition in critical normal structures. In contrast to conventional photon delivery techniques, proton therapy is characterized by Bragg peak dose deposition which results in decreased exit dose beyond the target and greater sparing of normal structure which may reduce the rate of late toxicities from treatment. Dosimetric studies have demonstrated reduced dose to normal structures using proton therapy as compared to photon therapy. In addition, clinical studies are being reported demonstrating safety, feasibility, and low rates of acute toxicity. Technical challenges in proton therapy remain, including full understanding of depth of proton penetration and the biological activity in the distal Bragg peak. In addition, longer clinical follow-up is required to demonstrate reduction in late toxicities as compared to conventional photon-based radiation techniques. In this review, we summarize the current clinical literature and areas of active investigation in proton therapy for adult central nervous system malignancies.
Collapse
Affiliation(s)
- Jennifer Vogel
- Department of Rad-iation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ruben Carmona
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania
| | - Christopher G Ainsley
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania
| | - Robert A Lustig
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
11
|
Sitarz M, Cussonneau JP, Matulewicz T, Haddad F. Radionuclide candidates for β+γ coincidence PET: An overview. Appl Radiat Isot 2020; 155:108898. [DOI: 10.1016/j.apradiso.2019.108898] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
|
12
|
Yamamoto S, Yamaguchi M, Akagi T, Sasano M, Kawachi N. Development of a YAP(Ce) camera for the imaging of secondary electron bremsstrahlung x-ray emitted during carbon-ion irradiation toward the use of clinical conditions. Phys Med Biol 2019; 64:135019. [PMID: 31071695 DOI: 10.1088/1361-6560/ab2072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Low-energy x-ray imaging of the secondary electron bremsstrahlung (SEB) x-ray emitted during carbon-ion irradiation is a promising method for range estimation. However, it remains unclear whether the method can be used for imaging with the clinical dose levels of carbon-ion and whether the bremsstrahlung x-ray can be detected from the deeper part of the body. To clarify these points, we developed a new high resolution low-energy x-ray camera and conducted imaging of the SEB x-ray during the irradiation of carbon-ions of different energies and intensities. Imaging was also tried with an x-ray camera using a human-head-sized, 17 cm diameter cylindrical phantom. To develop a high resolution imaging detector for a low-energy x-ray, we used a 20 × 20 × 0.5 mm thick cerium-doped yttrium aluminum perovskite, YA1O3 (YAP(Ce)) scintillator plate, which was optically coupled to a 25 mm square high quantum efficiency (HQE) type position sensitive photomultiplier tube (PSPMT). The imaging detector was encased in a 2 cm thick tungsten container and a pinhole collimator was attached to its camera head. After evaluating the camera's performance, SEB x-ray imaging was tried during irradiation of the carbon-ion and compared the results with a Monte Carlo simulation. We imaged the beam tracks by the SEB x-ray in real-time during irradiation of the carbon-ion and imaging and range estimation were possible even with near clinical dose level of 7.5 × 108 particles of carbon-ion. Clear images of a SEB x-ray were also obtained for a 17 cm diameter cylindrical phantom. The measured images were good agreement with the Monte Carlo simulation. We confirmed that our developed YAP(Ce) camera is promising for imaging SEB x-rays during irradiation of carbon-ions even near clinical conditions.
Collapse
Affiliation(s)
- Seiichi Yamamoto
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan. These two authors equally contributed to this paper. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
13
|
Apport du guidage par l’image pour le repositionnement au cours de la radiothérapie des tumeurs encéphaliques. Cancer Radiother 2018; 22:593-601. [DOI: 10.1016/j.canrad.2018.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022]
|
14
|
Abstract
Proton therapy is a promising but challenging treatment modality for the management of lung cancer. The technical challenges are due to respiratory motion, low dose tolerance of adjacent normal tissue and tissue density heterogeneity. Different imaging modalities are applied at various steps of lung proton therapy to provide information on target definition, target motion, proton range, patient setup and treatment outcome assessment. Imaging data is used to guide treatment design, treatment delivery, and treatment adaptation to ensure the treatment goal is achieved. This review article will summarize and compare various imaging techniques that can be used in every step of lung proton therapy to address these challenges.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Boon-Keng Kevin Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Binet S, Bongrand A, Busato E, Force P, Guicheney C, Insa C, Lambert D, Magne M, Martin F, Perrin H, Podlyski F, Rozes A, Montarou G. Construction and First Tests of an in-beam PET Demonstrator Dedicated to the Ballistic Control of Hadrontherapy Treatments With 65 MeV Protons. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2017.2780447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Ando K, Yamaguchi M, Yamamoto S, Toshito T, Kawachi N. Development of a low-energy x-ray camera for the imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation for range estimation. Phys Med Biol 2017; 62:5006-5020. [PMID: 28531093 DOI: 10.1088/1361-6560/aa7166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation is a possible method for measurement of the proton beam distribution in phantom. However, it is not clear that the method is used for range estimation of protons. For this purpose, we developed a low-energy x-ray camera and conducted imaging of the bremsstrahlung x-ray produced during irradiation of proton beams. We used a 20 mm × 20 mm × 1 mm finely grooved GAGG scintillator that was optically coupled to a one-inch square high quantum efficiency (HQE)-type position-sensitive photomultiplier tube to form an imaging detector. The imaging detector was encased in a 2 cm-thick tungsten container, and a pinhole collimator was attached to its camera head. After performance of the camera was evaluated, secondary electron bremsstrahlung x-ray imaging was conducted during irradiation of the proton beams for three different proton energies, and the results were compared with Monte Carlo simulation as well as calculated value. The system spatial resolution and sensitivity of the developed x-ray camera with 1.5 mm-diameter pinhole collimator were estimated to be 32 mm FWHM and 5.2 × 10-7 for ~35 keV x-ray photons at 100 cm from the collimator surface, respectively. We could image the proton beam tracks by measuring the secondary electron bremsstrahlung x-ray during irradiation of the proton beams, and the ranges for different proton energies could be estimated from the images. The measured ranges from the images were well matched with the Monte Carlo simulation, and slightly smaller than the calculated values. We confirmed that the imaging of the secondary electron bremsstrahlung x-ray emitted during proton irradiation with the developed x-ray camera has the potential to be a new tool for proton range estimations.
Collapse
Affiliation(s)
- Koki Ando
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | |
Collapse
|
17
|
Cho J, Grogg K, Min CH, Zhu X, Paganetti H, Lee HC, El Fakhri G. Feasibility study of using fall-off gradients of early and late PET scans for proton range verification. Med Phys 2017; 44:1734-1746. [PMID: 28273345 DOI: 10.1002/mp.12191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE While positron emission tomography (PET) allows for the imaging of tissues activated by proton beams in terms of monitoring the therapy administered, most endogenous tissue elements are activated by relatively high-energy protons. Therefore, a relatively large distance off-set exists between the dose fall-off and activity fall-off. However, 16 O(p,2p,2n)13 N has a relatively low energy threshold which peaks around 12 MeV and also a residual proton range that is approximately 1 to 2 mm. In this phantom study, we tested the feasibility of utilizing the 13 N production peak as well as the differences in activity fall-off between early and late PET scans for proton range verification. One of the main purposes for this research was developing a proton range verification methodology that would not require Monte Carlo simulations. METHODS AND MATERIALS Both monoenergetic and spread-out Bragg peak beams were delivered to two phantoms - a water-like gel and a tissue-like gel where the proton ranges came to be approximately 9.9 and 9.1 cm, respectively. After 1 min of postirradiation delay, the phantoms were scanned for a period of 30 min using an in-room PET. Two separate (Early and Late) PET images were reconstructed using two different postirradiation delays and acquisition times; Early PET: 1 min delay and 3 min acquisition, Late PET: 21 min delay and 10 min acquisition. The depth gradients of the PET signals were then normalized and plotted as functions of depth. The normalized gradient of the early PET images was subtracted from that of the late PET images, to observe the 13 N activity distribution in relation to depth. Monte Carlo simulations were also conducted with the same set-up as the measurements stated previously. RESULTS The subtracted gradients show peaks at 9.4 and 8.6 cm in water-gel and tissue-gel respectively for both pristine and SOBP beams. These peaks are created in connection with the sudden change of 13 N signals with depth and consistently occur 2 mm upstream to where 13 N signals were most abundantly created (9.6 and 8.8 cm in water-gel and tissue-gel, respectively). Monte Carlo simulations provided similar results as the measurements. CONCLUSIONS The subtracted PET signal gradient peaks and the proton ranges for water-gel and tissue-gel show distance off-sets of 4 to 5 mm. This off-set may potentially be used for proton range verification using only the PET measured data without Monte Carlo simulations. More studies are necessary to overcome various limitations, such as perfusion-driven washout, for the feasibility of this technique in living patients.
Collapse
Affiliation(s)
- Jongmin Cho
- Department of Physics, Oklahoma State University, Stillwater, 74078, OK, USA
| | - Kira Grogg
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Chul Hee Min
- Department of Radiological Science, College of Health Science, Yonsei University, Wonju, Kangwon-Do, Republic of Korea
| | - Xuping Zhu
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Hyun Cheol Lee
- Department of Radiological Science, College of Health Science, Yonsei University, Wonju, Kangwon-Do, Republic of Korea
| | - Georges El Fakhri
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| |
Collapse
|
18
|
Walrand S, Hesse M, Jamar F. Update on novel trends in PET/CT technology and its clinical applications. Br J Radiol 2016; 91:20160534. [PMID: 27730823 DOI: 10.1259/bjr.20160534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
After a brief history of the major evolutions of positron emission tomography since its introduction in 1972, this article reviews the recent improvements and novel trends in positron emission tomography with a special focus on the time of flight that is currently the major research topic. Novel emerging acquisition modalities, such as dual tracer acquisition, inline hadron therapy dose imaging and yttrium-90 imaging are reviewed.
Collapse
Affiliation(s)
- Stephan Walrand
- Nuclear Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Michel Hesse
- Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| | - François Jamar
- Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
19
|
Cho J, Campbell P, Wang M, Alqathami M, Mawlawi O, Kerr M, Cho SH. Feasibility of hydrogel fiducial markers forin vivoproton range verification using PET. Phys Med Biol 2016; 61:2162-76. [DOI: 10.1088/0031-9155/61/5/2162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Polf JC, Avery S, Mackin DS, Beddar S. Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification. Phys Med Biol 2015; 60:7085-99. [DOI: 10.1088/0031-9155/60/18/7085] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Yamamoto S, Okumura S, Watabe T, Ikeda H, Kanai Y, Toshito T, Komori M, Ogata Y, Kato K, Hatazawa J. Development of a prototype Open-close positron emission tomography system. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:084301. [PMID: 26329212 DOI: 10.1063/1.4929329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We developed a prototype positron emission tomography (PET) system based on a new concept called Open-close PET, which has two modes: open and close-modes. In the open-mode, the detector ring is separated into two halved rings and subject is imaged with the open space and projection image is formed. In the close-mode, the detector ring is closed to be a regular circular ring, and the subject can be imaged without an open space, and so reconstructed images can be made without artifacts. The block detector of the Open-close PET system consists of two scintillator blocks that use two types of gadolinium orthosilicate (GSO) scintillators with different decay times, angled optical fiber-based image guides, and a flat panel photomultiplier tube. The GSO pixel size was 1.6 × 2.4 × 7 mm and 8 mm for fast (35 ns) and slow (60 ns) GSOs, respectively. These GSOs were arranged into an 11 × 15 matrix and optically coupled in the depth direction to form a depth-of-interaction detector. The angled optical fiber-based image guides were used to arrange the two scintillator blocks at 22.5° so that they can be arranged in a hexadecagonal shape with eight block detectors to simplify the reconstruction algorithm. The detector ring was divided into two halves to realize the open-mode and set on a mechanical stand with which the distance between the two parts can be manually changed. The spatial resolution in the close-mode was 2.4-mm FWHM, and the sensitivity was 1.7% at the center of the field-of-view. In both the close- and open-modes, we made sagittal (y-z plane) projection images between the two halved detector rings. We obtained reconstructed and projection images of (18)F-NaF rat studies and proton-irradiated phantom images. These results indicate that our developed Open-close PET is useful for some applications such as proton therapy as well as other applications such as molecular imaging.
Collapse
Affiliation(s)
- Seiichi Yamamoto
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Okumura
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Watabe
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hayato Ikeda
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasukazu Kanai
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Masataka Komori
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshimune Ogata
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhiko Kato
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Hatazawa
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
22
|
Yamamoto S, Toshito T, Fujii K, Morishita Y, Okumura S, Komori M. High resolution Cerenkov light imaging of induced positron distribution in proton therapy. Med Phys 2015; 41:111913. [PMID: 25370646 DOI: 10.1118/1.4898592] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. METHODS First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a (22)Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm(3)) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. RESULTS The Cerenkov light's spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. CONCLUSIONS High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors conclude that Cerenkov light imaging of proton-induced positron is promising for proton therapy.
Collapse
Affiliation(s)
- Seiichi Yamamoto
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673, Japan
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508, Japan
| | - Kento Fujii
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673, Japan
| | - Yuki Morishita
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673, Japan
| | - Satoshi Okumura
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673, Japan
| | - Masataka Komori
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673, Japan
| |
Collapse
|
23
|
Yamamoto S, Toshito T, Komori M, Morishita Y, Okumura S, Yamaguchi M, Saito Y, Kawachi N, Fujimaki S. Monitoring of positron using high-energy gamma camera for proton therapy. Ann Nucl Med 2014; 29:268-75. [DOI: 10.1007/s12149-014-0936-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/25/2014] [Indexed: 11/25/2022]
|
24
|
Verburg JM, Seco J. Proton range verification through prompt gamma-ray spectroscopy. Phys Med Biol 2014; 59:7089-106. [DOI: 10.1088/0031-9155/59/23/7089] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Min CH, Zhu X, Grogg K, El Fakhri G, Winey B, Paganetti H. A Recommendation on How to Analyze In-Room PET for In Vivo Proton Range Verification Using a Distal PET Surface Method. Technol Cancer Res Treat 2014; 14:320-5. [PMID: 25246517 DOI: 10.1177/1533034614547457] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 07/03/2014] [Indexed: 11/17/2022] Open
Abstract
We describe the rationale and implementation of a method for analyzing in-room positron emission tomography (PET) data to verify the proton beam range. The method is based on analyzing distal PET surfaces after passive scattering proton beam delivery. Typically in vivo range verification is done by comparing measured and predicted PET distribution for a single activity level at a selected activity line along the beam passage. In the method presented here, we suggest using a middle point method based on dual PET activity levels to minimize the uncertainty due to local variations in the PET activity. Furthermore, we introduce 2-dimensional (2D) PET activity level surfaces based on 3-dimensional maps of the PET activities along the beam passage. This allows determining not only average range differences but also range difference distributions as well as root mean square deviations (RMSDs) for a more comprehensive range analysis. The method is demonstrated using data from 8 patients who were scanned with an in-room PET scanner. For each of the 8 patients, the average range difference was less than 5 mm and the RMSD was 4 to 11 mm between the measured and simulated PET activity level surfaces for single-field treatments. An ongoing protocol at our institution allows the use of a single field for patients being imaged for the PET range verification study at 1 fraction during their treatment course. Visualizing the range difference distributions using the PET surfaces offers a convenient visual verification of range uncertainties in 2D. Using the distal activity level surfaces of simulated and measured PET distributions at the middle of 25% and 50% activity level is a robust method for in vivo range verification.
Collapse
Affiliation(s)
- Chul Hee Min
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Kangwon, Republic of Korea
| | - Xuping Zhu
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kira Grogg
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian Winey
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Miyatake A, Nishio T. Application of activity pencil beam algorithm using measured distribution data of positron emitter nuclei for therapeutic SOBP proton beam. Med Phys 2014; 40:091709. [PMID: 24007142 DOI: 10.1118/1.4818057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Recently, much research on imaging the clinical proton-irradiated volume using positron emitter nuclei based on target nuclear fragment reaction has been carried out. The purpose of this study is to develop an activity pencil beam (APB) algorithm for a simulation system for proton-activated positron-emitting imaging in clinical proton therapy using spread-out Bragg peak (SOBP) beams. METHODS The target nuclei of activity distribution calculations are (12)C nuclei, (16)O nuclei, and (40)Ca nuclei, which are the main elements in a human body. Depth activity distributions with SOBP beam irradiations were obtained from the material information of ridge filter (RF) and depth activity distributions of compounds of the three target nuclei measured by BOLPs-RGp (beam ON-LINE PET system mounted on a rotating gantry port) with mono-energetic Bragg peak (MONO) beam irradiations. The calculated data of depth activity distributions with SOBP beam irradiations were sorted in terms of kind of nucleus, energy of proton beam, SOBP width, and thickness of fine degrader (FD), which were verified. The calculated depth activity distributions with SOBP beam irradiations were compared with the measured ones. APB kernels were made from the calculated depth activity distributions with SOBP beam irradiations to construct a simulation system using the APB algorithm for SOBP beams. RESULTS The depth activity distributions were prepared using the material information of RF and the measured depth activity distributions with MONO beam irradiations for clinical therapy using SOBP beams. With the SOBP width widening, the distal fall-offs of depth activity distributions and the difference from the depth dose distributions were large. The shapes of the calculated depth activity distributions nearly agreed with those of the measured ones upon comparison between the two. The APB kernels of SOBP beams were prepared by making use of the data on depth activity distributions with SOBP beam irradiations that were made from the depth activity distributions with MONO beam irradiations and sorted in terms of energy, SOBP width, and thickness of FD. The data on APB kernels of SOBP beams were determined as installment data for the simulation system using the APB algorithm for SOBP beam irradiations. CONCLUSIONS A method of obtaining the depth activity distributions and the APB algorithm for clinical use of SOBP beams have been developed. It is suggested that the simulation system for imaging the clinical irradiated volume with the APB algorithm can be used in clinical proton therapy using SOBP beams by preparing and investigating the data on APB kernels of SOBP beams.
Collapse
Affiliation(s)
- Aya Miyatake
- Keen Medical Physics Co. Ltd., 901-4-4-4 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan.
| | | |
Collapse
|
27
|
Experimental study for the production cross sections of positron emitters induced from 12C and 16O nuclei by low-energy proton beams. RADIAT MEAS 2013. [DOI: 10.1016/j.radmeas.2013.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Cho J, Ibbott G, Gillin M, Gonzalez-Lepera C, Titt U, Paganetti H, Kerr M, Mawlawi O. Feasibility of proton-activated implantable markers for proton range verification using PET. Phys Med Biol 2013; 58:7497-512. [PMID: 24099853 DOI: 10.1088/0031-9155/58/21/7497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Proton beam range verification using positron emission tomography (PET) currently relies on proton activation of tissue, the products of which decay with a short half-life and necessitate an on-site PET scanner. Tissue activation is, however, negligible near the distal dose fall-off region of the proton beam range due to their high interaction energy thresholds. Therefore Monte Carlo simulation is often supplemented for comparison with measurement; however, this also may be associated with systematic and statistical uncertainties. Therefore, we sought to test the feasibility of using long-lived proton-activated external materials that are inserted or infused into the target volume for more accurate proton beam range verification that could be performed at an off-site PET scanner. We irradiated samples of ≥98% (18)O-enriched water, natural Cu foils, and >97% (68)Zn-enriched foils as candidate materials, along with samples of tissue-equivalent materials including (16)O water, heptane (C7H16), and polycarbonate (C16H14O3)n, at four depths (ranging from 100% to 3% of center of modulation (COM) dose) along the distal fall-off of a modulated 160 MeV proton beam. Samples were irradiated either directly or after being embedded in Plastic Water® or balsa wood. We then measured the activity of the samples using PET imaging for 20 or 30 min after various delay times. Measured activities of candidate materials were up to 100 times greater than those of the tissue-equivalent materials at the four distal dose fall-off depths. The differences between candidate materials and tissue-equivalent materials became more apparent after longer delays between irradiation and PET imaging, due to the longer half-lives of the candidate materials. Furthermore, the activation of the candidate materials closely mimicked the distal dose fall-off with offsets of 1 to 2 mm. Also, signals from the foils were clearly visible compared to the background from the activated Plastic Water® and balsa wood phantoms. These results indicate that markers made from these candidate materials could be used for in vivo proton range verification using an off-site PET scanner.
Collapse
Affiliation(s)
- Jongmin Cho
- Graduate School of Biomedical Sciences at Houston, The University of Texas, Houston, TX 77030, USA. Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Protons are an interesting modality for radiotherapy because of their well defined range and favourable depth dose characteristics. On the other hand, these same characteristics lead to added uncertainties in their delivery. This is particularly the case at the distal end of proton dose distributions, where the dose gradient can be extremely steep. In practice however, this gradient is rarely used to spare critical normal tissues due to such worries about its exact position in the patient. Reasons for this uncertainty are inaccuracies and non-uniqueness of the calibration from CT Hounsfield units to proton stopping powers, imaging artefacts (e.g. due to metal implants) and anatomical changes of the patient during treatment. In order to improve the precision of proton therapy therefore, it would be extremely desirable to verify proton range in vivo, either prior to, during, or after therapy. In this review, we describe and compare state-of-the art in vivo proton range verification methods currently being proposed, developed or clinically implemented.
Collapse
|
30
|
Cho J, Ibbott G, Gillin M, Gonzalez-Lepera C, Min CH, Zhu X, El Fakhri G, Paganetti H, Mawlawi O. Determination of elemental tissue composition following proton treatment using positron emission tomography. Phys Med Biol 2013; 58:3815-35. [PMID: 23681070 DOI: 10.1088/0031-9155/58/11/3815] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Positron emission tomography (PET) has been suggested as an imaging technique for in vivo proton dose and range verification after proton induced-tissue activation. During proton treatment, irradiated tissue is activated and decays while emitting positrons. In this paper, we assessed the feasibility of using PET imaging after proton treatment to determine tissue elemental composition by evaluating the resultant composite decay curve of activated tissue. A phantom consisting of sections composed of different combinations of (1)H, (12)C, (14)N, and (16)O was irradiated using a pristine Bragg peak and a 6 cm spread-out Bragg-peak (SOBP) proton beam. The beam ranges defined at 90% distal dose were 10 cm; the delivered dose was 1.6 Gy for the near monoenergetic beam and 2 Gy for the SOBP beam. After irradiation, activated phantom decay was measured using an in-room PET scanner for 30 min in list mode. Decay curves from the activated (12)C and (16)O sections were first decomposed into multiple simple exponential decay curves, each curve corresponding to a constituent radioisotope, using a least-squares method. The relative radioisotope fractions from each section were determined. These fractions were used to guide the decay curve decomposition from the section consisting mainly of (12)C + (16)O and calculate the relative elemental composition of (12)C and (16)O. A Monte Carlo simulation was also used to determine the elemental composition of the (12)C + (16)O section. The calculated compositions of the (12)C + (16)O section using both approaches (PET and Monte Carlo) were compared with the true known phantom composition. Finally, two patients were imaged using an in-room PET scanner after proton therapy of the head. Their PET data and the technique described above were used to construct elemental composition ((12)C and (16)O) maps that corresponded to the proton-activated regions. We compared the (12)C and (16)O compositions of seven ROIs that corresponded to the vitreous humor, adipose/face mask, adipose tissue, and brain tissue with ICRU 46 elemental composition data. The (12)C and (16)O compositions of the (12)C + (16)O phantom section were estimated to within a maximum difference of 3.6% for the near monoenergetic and SOBP beams over an 8 cm depth range. On the other hand, the Monte Carlo simulation estimated the corresponding (12)C and (16)O compositions in the (12)C + (16)O section to within a maximum difference of 3.4%. For the patients, the (12)C and (16)O compositions in the seven ROIs agreed with the ICRU elemental composition data, with a mean (maximum) difference of 9.4% (15.2%). The (12)C and (16)O compositions of the phantom and patients were estimated with relatively small differences. PET imaging may be useful for determining the tissue elemental composition and thereby improving proton treatment planning and verification.
Collapse
Affiliation(s)
- Jongmin Cho
- The University of Texas Graduate School of Biomedical Sciences at Houston; The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bauer J, Unholtz D, Sommerer F, Kurz C, Haberer T, Herfarth K, Welzel T, Combs SE, Debus J, Parodi K. Implementation and initial clinical experience of offline PET/CT-based verification of scanned carbon ion treatment. Radiother Oncol 2013; 107:218-26. [DOI: 10.1016/j.radonc.2013.02.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 02/01/2013] [Accepted: 02/09/2013] [Indexed: 10/26/2022]
|
32
|
Mori S, Zenklusen S, Knopf AC. Current status and future prospects of multi-dimensional image-guided particle therapy. Radiol Phys Technol 2013; 6:249-72. [DOI: 10.1007/s12194-013-0199-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 12/25/2022]
|
33
|
Abstract
The main advantages of proton therapy are the reduced total energy deposited in the patient as compared to photon techniques and the finite range of the proton beam. The latter adds an additional degree of freedom to treatment planning. The range in tissue is associated with considerable uncertainties caused by imaging, patient setup, beam delivery and dose calculation. Reducing the uncertainties would allow a reduction of the treatment volume and thus allow a better utilization of the advantages of protons. This paper summarizes the role of Monte Carlo simulations when aiming at a reduction of range uncertainties in proton therapy. Differences in dose calculation when comparing Monte Carlo with analytical algorithms are analyzed as well as range uncertainties due to material constants and CT conversion. Range uncertainties due to biological effects and the role of Monte Carlo for in vivo range verification are discussed. Furthermore, the current range uncertainty recipes used at several proton therapy facilities are revisited. We conclude that a significant impact of Monte Carlo dose calculation can be expected in complex geometries where local range uncertainties due to multiple Coulomb scattering will reduce the accuracy of analytical algorithms. In these cases Monte Carlo techniques might reduce the range uncertainty by several mm.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
34
|
Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol 2012. [PMID: 22571913 DOI: 10.1088/0031‐9155/57/11/r99] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The main advantages of proton therapy are the reduced total energy deposited in the patient as compared to photon techniques and the finite range of the proton beam. The latter adds an additional degree of freedom to treatment planning. The range in tissue is associated with considerable uncertainties caused by imaging, patient setup, beam delivery and dose calculation. Reducing the uncertainties would allow a reduction of the treatment volume and thus allow a better utilization of the advantages of protons. This paper summarizes the role of Monte Carlo simulations when aiming at a reduction of range uncertainties in proton therapy. Differences in dose calculation when comparing Monte Carlo with analytical algorithms are analyzed as well as range uncertainties due to material constants and CT conversion. Range uncertainties due to biological effects and the role of Monte Carlo for in vivo range verification are discussed. Furthermore, the current range uncertainty recipes used at several proton therapy facilities are revisited. We conclude that a significant impact of Monte Carlo dose calculation can be expected in complex geometries where local range uncertainties due to multiple Coulomb scattering will reduce the accuracy of analytical algorithms. In these cases Monte Carlo techniques might reduce the range uncertainty by several mm.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
35
|
Yamaguchi M, Torikai K, Kawachi N, Shimada H, Satoh T, Nagao Y, Fujimaki S, Kokubun M, Watanabe S, Takahashi T, Arakawa K, Kamiya T, Nakano T. Beam range estimation by measuring bremsstrahlung. Phys Med Biol 2012; 57:2843-56. [DOI: 10.1088/0031-9155/57/10/2843] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
In Vivo Dose Verification. ACTA ACUST UNITED AC 2012. [DOI: 10.1201/b11448-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
|
38
|
Miyatake A, Nishio T, Ogino T. Development of activity pencil beam algorithm using measured distribution data of positron emitter nuclei generated by proton irradiation of targets containing (12)C, (16)O, and (40)Ca nuclei in preparation of clinical application. Med Phys 2011; 38:5818-29. [PMID: 21992396 DOI: 10.1118/1.3641829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of this study is to develop a new calculation algorithm that is satisfactory in terms of the requirements for both accuracy and calculation time for a simulation of imaging of the proton-irradiated volume in a patient body in clinical proton therapy. METHODS The activity pencil beam algorithm (APB algorithm), which is a new technique to apply the pencil beam algorithm generally used for proton dose calculations in proton therapy to the calculation of activity distributions, was developed as a calculation algorithm of the activity distributions formed by positron emitter nuclei generated from target nuclear fragment reactions. In the APB algorithm, activity distributions are calculated using an activity pencil beam kernel. In addition, the activity pencil beam kernel is constructed using measured activity distributions in the depth direction and calculations in the lateral direction. (12)C, (16)O, and (40)Ca nuclei were determined as the major target nuclei that constitute a human body that are of relevance for calculation of activity distributions. In this study, "virtual positron emitter nuclei" was defined as the integral yield of various positron emitter nuclei generated from each target nucleus by target nuclear fragment reactions with irradiated proton beam. Compounds, namely, polyethylene, water (including some gelatin) and calcium oxide, which contain plenty of the target nuclei, were irradiated using a proton beam. In addition, depth activity distributions of virtual positron emitter nuclei generated in each compound from target nuclear fragment reactions were measured using a beam ON-LINE PET system mounted a rotating gantry port (BOLPs-RGp). The measured activity distributions depend on depth or, in other words, energy. The irradiated proton beam energies were 138, 179, and 223 MeV, and measurement time was about 5 h until the measured activity reached the background level. Furthermore, the activity pencil beam data were made using the activity pencil beam kernel, which was composed of the measured depth data and the lateral data including multiple Coulomb scattering approximated by the Gaussian function, and were used for calculating activity distributions. RESULTS The data of measured depth activity distributions for every target nucleus by proton beam energy were obtained using BOLPs-RGp. The form of the depth activity distribution was verified, and the data were made in consideration of the time-dependent change of the form. Time dependence of an activity distribution form could be represented by two half-lives. Gaussian form of the lateral distribution of the activity pencil beam kernel was decided by the effect of multiple Coulomb scattering. Thus, the data of activity pencil beam involving time dependence could be obtained in this study. CONCLUSIONS The simulation of imaging of the proton-irradiated volume in a patient body using target nuclear fragment reactions was feasible with the developed APB algorithm taking time dependence into account. With the use of the APB algorithm, it was suggested that a system of simulation of activity distributions that has levels of both accuracy and calculation time appropriate for clinical use can be constructed.
Collapse
|
39
|
Remmele S, Hesser J, Paganetti H, Bortfeld T. A deconvolution approach for PET-based dose reconstruction in proton radiotherapy. Phys Med Biol 2011; 56:7601-19. [PMID: 22086216 DOI: 10.1088/0031-9155/56/23/017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Lopatiuk-Tirpak O, Su Z, Li Z, Hsi W, Meeks S, Zeidan O. Spatial correlation of proton irradiation-induced activity and dose in polymer gel phantoms for PET/CT delivery verification studies. Med Phys 2011; 38:6483-8. [DOI: 10.1118/1.3651467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
41
|
Surti S, Zou W, Daube-Witherspoon ME, McDonough J, Karp JS. Design study of an in situ PET scanner for use in proton beam therapy. Phys Med Biol 2011; 56:2667-85. [PMID: 21464528 DOI: 10.1088/0031-9155/56/9/002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proton beam therapy can deliver a high radiation dose to a tumor without significant damage to surrounding healthy tissue or organs. One way of verifying the delivered dose distribution is to image the short-lived positron emitters produced by the proton beam as it travels through the patient. A potential solution to the limitations of PET imaging in proton beam therapy is the development of a high sensitivity, in situ PET scanner that starts PET imaging almost immediately after patient irradiation while the patient is still lying on the treatment bed. A partial ring PET design is needed for this application in order to avoid interference between the PET detectors and the proton beam, as well as restrictions on patient positioning on the couch. A partial ring also allows us to optimize the detector separation (and hence the sensitivity) for different patient sizes. Our goal in this investigation is to evaluate an in situ PET scanner design for use in proton therapy that provides tomographic imaging in a partial ring scanner design using time-of-flight (TOF) information and an iterative reconstruction algorithm. GEANT4 simulation of an incident proton beam was used to produce a positron emitter distribution, which was parameterized and then used as the source distribution inside a water-filled cylinder for EGS4 simulations of a PET system. Design optimization studies were performed as a function of crystal type and size, system timing resolution, scanner angular coverage and number of positron emitter decays. Data analysis was performed to measure the accuracy of the reconstructed positron emitter distribution as well as the range of the positron emitter distribution. We simulated scanners with varying crystal sizes (2-4 mm) and type (LYSO and LaBr(3)) and our results indicate that 4 mm wide LYSO or LaBr(3) crystals (resulting in 4-5 mm spatial resolution) are adequate; for a full-ring, non-TOF scanner we predict a low bias (<0.6 mm) and a good precision (<1 mm) in the estimated range relative to the simulated positron distribution. We then varied the angular acceptance of the scanner ranging from 1/2 to 2/3 of 2π; a partial ring TOF imaging with good timing resolution (≤600 ps) is necessary to produce accurate tomographic images. A two-third ring scanner with 300 ps timing resolution leads to a bias of 1.0 mm and a precision of 1.4 mm in the range estimate. With a timing resolution of 600 ps, the bias increases to 2.0 mm while the precision in the range estimate is similar. For a half-ring scanner design, more distortions are present in the image, which is characterized by the increased error in the profile difference estimate. We varied the number of positron decays imaged by the PET scanner by an order of magnitude and we observe some decrease in the precision of the range estimate for lower number of decays, but all partial ring scanner designs studied have a precision ≤1.5 mm. The largest number tested, 150 M total positron decays, is considered realistic for a clinical fraction of delivered dose, while the range of positron decays investigated in this work covers a variable number of situations corresponding to delays in scan start time and the total scan time. Thus, we conclude that for partial ring systems, an angular acceptance of at least 1/2 (of 2π) together with timing resolution of 300 ps is needed to achieve accurate and precise range estimates. With 600 ps timing resolution an angular acceptance of 2/3 (of 2π) is required to achieve satisfactory range estimates. These results indicate that it would be feasible to develop a partial-ring dedicated PET scanner based on either LaBr(3) or LYSO to accurately characterize the proton dose for therapy planning.
Collapse
Affiliation(s)
- S Surti
- Department of Radiology, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
42
|
España S, Zhu X, Daartz J, El Fakhri G, Bortfeld T, Paganetti H. The reliability of proton-nuclear interaction cross-section data to predict proton-induced PET images in proton therapy. Phys Med Biol 2011; 56:2687-98. [PMID: 21464534 DOI: 10.1088/0031-9155/56/9/003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In vivo PET range verification relies on the comparison of measured and simulated activity distributions. The accuracy of the simulated distribution depends on the accuracy of the Monte Carlo code, which is in turn dependent on the accuracy of the available cross-section data for β(+) isotope production. We have explored different cross-section data available in the literature for the main reaction channels ((16)O(p,pn)(15)O, (12)C(p,pn)(11)C and (16)O(p,3p3n)(11)C) contributing to the production of β(+) isotopes by proton beams in patients. Available experimental and theoretical values were implemented in the simulation and compared with measured PET images obtained with a high-resolution PET scanner. Each reaction channel was studied independently. A phantom with three different materials was built, two of them with high carbon or oxygen concentration and a third one with average soft tissue composition. Monoenergetic and SOBP field irradiations of the phantom were accomplished and measured PET images were compared with simulation results. Different cross-section values for the tissue-equivalent material lead to range differences below 1 mm when a 5 min scan time was employed and close to 5 mm differences for a 30 min scan time with 15 min delay between irradiation and scan (a typical off-line protocol). The results presented here emphasize the need of more accurate measurement of the cross-section values of the reaction channels contributing to the production of PET isotopes by proton beams before this in vivo range verification method can achieve mm accuracy.
Collapse
Affiliation(s)
- S España
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, 02114 MA, USA
| | | | | | | | | | | |
Collapse
|
43
|
Shakirin G, Braess H, Fiedler F, Kunath D, Laube K, Parodi K, Priegnitz M, Enghardt W. Implementation and workflow for PET monitoring of therapeutic ion irradiation: a comparison of in-beam, in-room, and off-line techniques. Phys Med Biol 2011; 56:1281-98. [PMID: 21285487 DOI: 10.1088/0031-9155/56/5/004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Böhlen TT, Cerutti F, Dosanjh M, Ferrari A, Gudowska I, Mairani A, Quesada JM. Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy. Phys Med Biol 2010; 55:5833-47. [PMID: 20844337 DOI: 10.1088/0031-9155/55/19/014] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As carbon ions, at therapeutic energies, penetrate tissue, they undergo inelastic nuclear reactions and give rise to significant yields of secondary fragment fluences. Therefore, an accurate prediction of these fluences resulting from the primary carbon interactions is necessary in the patient's body in order to precisely simulate the spatial dose distribution and the resulting biological effect. In this paper, the performance of nuclear fragmentation models of the Monte Carlo transport codes, FLUKA and GEANT4, in tissue-like media and for an energy regime relevant for therapeutic carbon ions is investigated. The ability of these Monte Carlo codes to reproduce experimental data of charge-changing cross sections and integral and differential yields of secondary charged fragments is evaluated. For the fragment yields, the main focus is on the consideration of experimental approximations and uncertainties such as the energy measurement by time-of-flight. For GEANT4, the hadronic models G4BinaryLightIonReaction and G4QMD are benchmarked together with some recently enhanced de-excitation models. For non-differential quantities, discrepancies of some tens of percent are found for both codes. For differential quantities, even larger deviations are found. Implications of these findings for the therapeutic use of carbon ions are discussed.
Collapse
Affiliation(s)
- T T Böhlen
- European Organization for Nuclear Research CERN, CH-1211, Geneva 23, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
45
|
Miyatake A, Nishio T, Ogino T, Saijo N, Esumi H, Uesaka M. Measurement and verification of positron emitter nuclei generated at each treatment site by target nuclear fragment reactions in proton therapy. Med Phys 2010; 37:4445-55. [DOI: 10.1118/1.3462559] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
46
|
Studenski MT, Xiao Y. Proton therapy dosimetry using positron emission tomography. World J Radiol 2010; 2:135-42. [PMID: 21160579 PMCID: PMC2998812 DOI: 10.4329/wjr.v2.i4.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/01/2010] [Accepted: 04/12/2010] [Indexed: 02/06/2023] Open
Abstract
Protons deposit most of their kinetic energy at the end of their path with no energy deposition beyond the range, making proton therapy a valuable option for treating tumors while sparing surrounding tissues. It is imperative to know the location of the dose deposition to ensure the tumor, and not healthy tissue, is being irradiated. To be able to extract this information in a clinical situation, an accurate dosimetry measurement system is required. There are currently two in vivo methods that are being used for proton therapy dosimetry: (1) online or in-beam monitoring and (2) offline monitoring, both using positron emission tomography (PET) systems. The theory behind using PET is that protons experience inelastic collisions with atoms in tissues resulting in nuclear reactions creating positron emitters. By acquiring a PET image following treatment, the location of the positron emitters in the patient, and therefore the path of the proton beam, can be determined. Coupling the information from the PET image with the patient’s anatomy, it is possible to monitor the location of the tumor and the location of the dose deposition. This review summarizes current research investigating both of these methods with promising results and reviews the limitations along with the advantages of each method.
Collapse
|
47
|
Nishio T, Miyatake A, Ogino T, Nakagawa K, Saijo N, Esumi H. The development and clinical use of a beam ON-LINE PET system mounted on a rotating gantry port in proton therapy. Int J Radiat Oncol Biol Phys 2010; 76:277-86. [PMID: 20005459 DOI: 10.1016/j.ijrobp.2009.05.065] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 05/28/2009] [Accepted: 05/29/2009] [Indexed: 11/27/2022]
Abstract
PURPOSE To verify the usefulness of our developed beam ON-LINE positron emission tomography (PET) system mounted on a rotating gantry port (BOLPs-RGp) for dose-volume delivery-guided proton therapy (DGPT). METHODS AND MATERIALS In the proton treatment room at our facility, a BOLPs-RGp was constructed so that a planar PET apparatus could be mounted with its field of view covering the iso-center of the beam irradiation system. Activity measurements were performed in 48 patients with tumors of the head and neck, liver, lungs, prostate, and brain. The position and intensity of the activity were measured using the BOLPs-RGp during the 200 s immediately after the proton irradiation. RESULTS The daily measured activity images acquired by the BOLPs-RGp showed the proton irradiation volume in each patient. Changes in the proton-irradiated volume were indicated by differences between a reference activity image (taken at the first treatment) and the daily activity-images. In the case of head-and-neck treatment, the activity distribution changed in the areas where partial tumor reduction was observed. In the case of liver treatment, it was observed that the washout effect in necrotic tumor cells was slower than in non-necrotic tumor cells. CONCLUSIONS The BOLPs-RGp was developed for the DGPT. The accuracy of proton treatment was evaluated by measuring changes of daily measured activity. Information about the positron-emitting nuclei generated during proton irradiation can be used as a basis for ensuring the high accuracy of irradiation in proton treatment.
Collapse
Affiliation(s)
- Teiji Nishio
- Particle Therapy Division, Research Center for Innovative Oncology, National Cancer Center, Kashiwa.
| | | | | | | | | | | |
Collapse
|
48
|
Polf JC, Peterson S, McCleskey M, Roeder BT, Spiridon A, Beddar S, Trache L. Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation. Phys Med Biol 2009; 54:N519-27. [DOI: 10.1088/0031-9155/54/22/n02] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Physiologic reactions after proton beam therapy in patients with prostate cancer: significance of urinary autoactivation. Int J Radiat Oncol Biol Phys 2009; 75:580-6. [PMID: 19735884 DOI: 10.1016/j.ijrobp.2009.02.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 02/16/2009] [Accepted: 02/27/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE Proton therapy is a sophisticated treatment modality for prostate cancer. We investigated how physiologic factors affected the distribution of autoactivation as detected by positron emission tomography (PET) after proton beam therapy. METHODS AND MATERIALS Autoactivation was evaluated in 59 patients treated with a 210-MeV proton beam. Data acquisition for autoactivation by PET started 5 minutes after proton irradiation to assess activation. In the first 29 patients, five regions of interest were evaluated: planning target volume (PTV) center, urinary bladder inside the PTV, urinary bladder outside the PTV, rectum (outside the PTV), and contralateral femoral bone head (outside the PTV). In the remaining 30 patients, urine activity was measured directly. In a phantom study autoactivation and its diffusion after proton beam irradiation were evaluated with water or an ice block. RESULTS Mean activities calculated by use of PET were 629.3 Bq in the PTV center, 555.6 Bq in the urinary bladder inside the PTV, 332.5 Bq in the urinary bladder outside the PTV, 88.4 Bq in the rectum, and 23.7 Bq in the femoral bone head (p < 0.001). Mean urine activity was 679.4 Bq, recorded 10 minutes after therapy completion, and the half-life for urine autoactivation was 4.5 minutes. CONCLUSIONS Urine is a major diffusion mediator of autoactivation after proton beam therapy. Our results indicate that physiologic factors can influence PET images of autoactivation in the context of proton beam therapy verification.
Collapse
|
50
|
Hsi WC, Indelicato DJ, Vargas C, Duvvuri S, Li Z, Palta J. In vivo
verification of proton beam path by using post-treatment PET/CT imaging. Med Phys 2009; 36:4136-46. [PMID: 19810487 DOI: 10.1118/1.3193677] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Wen C Hsi
- Proton Therapy Institute, University of Florida, Jacksonville, Florida 32206, USA.
| | | | | | | | | | | |
Collapse
|