1
|
Cilla S, Deodato F, Romano C, Macchia G, Buwenge M, Boccardi M, Pezzulla D, Pierro A, Zamagni A, Morganti AG. Risk evaluation of secondary malignancies after radiotherapy of breast cancer in light of the continuous development of planning techniques. Med Dosim 2023; 48:279-285. [PMID: 37659968 DOI: 10.1016/j.meddos.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/12/2023] [Accepted: 07/26/2023] [Indexed: 09/04/2023]
Abstract
Secondary cancer risk is a significant concern for women treated with breast radiation therapy due to improved long-term survival rates. We evaluated the potential of new advanced automated planning algorithms together with hybrid techniques to minimize the excess absolute risk (EAR) for secondary cancer in various organs after radiation treatment for early staged breast cancer. Using CT data set of 25 patients, we generated 4 different radiation treatment plans of different complexity, including 3-dimensional conformal radiotherapy (3D-CRT), field-in-field (FinF), hybrid-IMRT (HMRT) and automated hybrid-VMAT (HVMAT) techniques. The organ-equivalent dose (OED) was calculated from differential dose-volume histograms on the basis of the "linear-exponential," "plateau," and "full mechanistic" dose-response models and was used to evaluate the EAR for secondary cancer in the contralateral breast (CB), contralateral lung (CL), and ipsilateral lung (IL). Statistical comparisons of data were performed by a Kruskal-Wallis analysis of variance. The planning objectives were fulfilled with all the planning techniques for both target coverage and organs-at-risk sparing. The differences in EAR for CB, CL and IL secondary tumor induction were not significant among the 4 techniques. For the CB and CL, the mean absolute difference did not reach 1 case of 10000 patient-years. For the IL, the mean absolute difference was up to 5 cases of 10,000 patient-years. In conclusion, the automated HVMAT technique allows an EAR reduction at the level of well-consolidated tangential 3D-CRT or FinF techniques, keeping all the HVMAT dosimetric improvements unchanged. On the basis of this analysis, the adoption of the HVMAT technique poses no increase in EAR and could be considered safe also for younger patients.
Collapse
Affiliation(s)
- Savino Cilla
- Medical Physics Unit, Gemelli Molise Hospital, Campobasso, Italy.
| | - Francesco Deodato
- Radiation Oncology Unit, Gemelli Molise Hospital, Campobasso, Italy; Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Carmela Romano
- Medical Physics Unit, Gemelli Molise Hospital, Campobasso, Italy
| | | | - Milly Buwenge
- Radiation Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Donato Pezzulla
- Radiation Oncology Unit, Gemelli Molise Hospital, Campobasso, Italy
| | - Antonio Pierro
- Radiology Unit, Gemelli Molise Hospital, Campobasso, Italy
| | - Alice Zamagni
- Radiation Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessio Giuseppe Morganti
- Radiation Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Experimental, Diagnostic, and Specialty Medicine-DIMES, Alma Mater Studiorum, Università di Bologna, Italy
| |
Collapse
|
2
|
van Marlen P, van de Water S, Dahele M, Slotman BJ, Verbakel WFAR. Single Ultra-High Dose Rate Proton Transmission Beam for Whole Breast FLASH-Irradiation: Quantification of FLASH-Dose and Relation with Beam Parameters. Cancers (Basel) 2023; 15:cancers15092579. [PMID: 37174045 PMCID: PMC10177419 DOI: 10.3390/cancers15092579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Healthy tissue-sparing effects of FLASH (≥40 Gy/s, ≥4-8 Gy/fraction) radiotherapy (RT) make it potentially useful for whole breast irradiation (WBI), since there is often a lot of normal tissue within the planning target volume (PTV). We investigated WBI plan quality and determined FLASH-dose for various machine settings using ultra-high dose rate (UHDR) proton transmission beams (TBs). While five-fraction WBI is commonplace, a potential FLASH-effect might facilitate shorter treatments, so hypothetical 2- and 1-fraction schedules were also analyzed. Using one tangential 250 MeV TB delivering 5 × 5.7 Gy, 2 × 9.74 Gy or 1 × 14.32 Gy, we evaluated: (1) spots with equal monitor units (MUs) in a uniform square grid with variable spacing; (2) spot MUs optimized with a minimum MU-threshold; and (3) splitting the optimized TB into two sub-beams: one delivering spots above an MU-threshold, i.e., at UHDRs; the other delivering the remaining spots necessary to improve plan quality. Scenarios 1-3 were planned for a test case, and scenario 3 was also planned for three other patients. Dose rates were calculated using the pencil beam scanning dose rate and the sliding-window dose rate. Various machine parameters were considered: minimum spot irradiation time (minST): 2 ms/1 ms/0.5 ms; maximum nozzle current (maxN): 200 nA/400 nA/800 nA; two gantry-current (GC) techniques: energy-layer and spot-based. For the test case (PTV = 819 cc) we found: (1) a 7 mm grid achieved the best balance between plan quality and FLASH-dose for equal-MU spots; (2) near the target boundary, lower-MU spots are necessary for homogeneity but decrease FLASH-dose; (3) the non-split beam achieved >95% FLASH for favorable (not clinically available) machine parameters (SB GC, low minST, high maxN), but <5% for clinically available settings (EB GC, minST = 2 ms, maxN = 200 nA); and (4) splitting gave better plan quality and higher FLASH-dose (~50%) for available settings. The clinical cases achieved ~50% (PTV = 1047 cc) or >95% (PTV = 477/677 cc) FLASH after splitting. A single UHDR-TB for WBI can achieve acceptable plan quality. Current machine parameters limit FLASH-dose, which can be partially overcome using beam-splitting. WBI FLASH-RT is technically feasible.
Collapse
Affiliation(s)
- Patricia van Marlen
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands
| | - Steven van de Water
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands
| | - Berend J Slotman
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands
| | - Wilko F A R Verbakel
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
3
|
Peripheral and surface dose assessment using diode and Gafchromic EBT3 films dosimeters for different radiotherapy techniques. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Sharma M, C. L. Chow J. Skin dose enhancement from the application of skin-care creams using FF and FFF photon beams in radiotherapy: A Monte Carlo phantom evaluation. AIMS BIOENGINEERING 2020. [DOI: 10.3934/bioeng.2020008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Tyran M, Tallet A, Resbeut M, Ferre M, Favrel V, Fau P, Moureau-Zabotto L, Darreon J, Gonzague L, Benkemouche A, Varela-Cagetti L, Salem N, Farnault B, Acquaviva MA, Mailleux H. Safety and benefit of using a virtual bolus during treatment planning for breast cancer treated with arc therapy. J Appl Clin Med Phys 2018; 19:463-472. [PMID: 29959819 PMCID: PMC6123145 DOI: 10.1002/acm2.12398] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 12/19/2022] Open
Abstract
Purpose This study evaluates the benefit of a virtual bolus method for volumetric modulated arc therapy (VMAT) plan optimization to compensate breast modifications that may occur during breast treatment. Methods Ten files were replanned with VMAT giving 50 Gy to the breast and 47 Gy to the nodes within 25 fractions. The planning process used a virtual bolus for the first optimization, then the monitors units were reoptimized without bolus, after fixing the segments shapes. Structures and treatment planning were exported on a second scanner (CT) performed during treatment as a consequence to modifications in patient's anatomy. The comparative end‐point was clinical target volume's coverage. The first analysis compared the VMAT plans made using the virtual bolus method (VB‐VMAT) to the plans without using it (NoVB‐VMAT) on the first simulation CT. Then, the same analysis was performed on the second CT. Finally, the level of degradation of target volume coverage between the two CT using VB‐VMAT was compared to results using a standard technique of forward‐planned multisegment technique (Tan‐IMRT). Results Using a virtual bolus for VMAT does not degrade dosimetric results on the first CT. No significant result in favor of the NoVB‐VMAT plans was noted. The VB‐VMAT method led to significant better dose distribution on a second CT with modified anatomies compared to NoVB‐VMAT. The clinical target volume's coverage by 95% (V95%) of the prescribed dose was 98.9% [96.1–99.6] on the second CT for VB‐VMAT compared to 92.6% [85.2–97.7] for NoVB‐VMAT (P = 0.0002). The degradation of the target volume coverage for VB‐VMAT is not worse than for Tan‐IMRT: the median differential of V95% between the two CT was 0.9% for VMAT and 0.7% for Tan‐IMRT (P = 1). Conclusion This study confirms the safety and benefit of using a virtual bolus during the VMAT planning process to compensate potential breast shape modifications.
Collapse
Affiliation(s)
- Marguerite Tyran
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Agnes Tallet
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Michel Resbeut
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Marjorie Ferre
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Veronique Favrel
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Pierre Fau
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | | | - Julien Darreon
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Laurence Gonzague
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Ahcene Benkemouche
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | | | - Naji Salem
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Bertrand Farnault
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | | | - Hugues Mailleux
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
6
|
Assessment of the accuracy of dose calculation in the build-up region of the tangential field of the breast for a radiotherapy treatment planning system. Contemp Oncol (Pozn) 2017; 21:232-239. [PMID: 29180932 PMCID: PMC5701585 DOI: 10.5114/wo.2017.70114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 06/02/2017] [Indexed: 12/13/2022] Open
Abstract
Aim of the study Our objective was to quantify the accuracy of dose calculation in the build-up region of the tangential field of the breast for a TiGRT treatment planning system (TPS). Material and methods Thermoluminescent dosimeter (TLD) chips were arranged in a RANDO phantom for the dose measurement. TiGRT TPS was also used for the dose calculation. Finally, confidence limit values were obtained to quantify the accuracy of the dose calculation of the TPS at the build-up region. Results In the open field, for gantry angles of 15°, 30°, and 60°, the confidence limit values were 17.68, 19.97, and 34.62 at a depth of 5 mm, and 24.01, 19.07, and 15.74 at a depth of 15 mm, respectively. In the wedge field, for gantry angles of 15°, 30°, and 60°, the confidence limit values were 21.64, 26.80, and 34.87 at a depth of 5 mm, and 27.92, 22.04, and 20.03 at a depth of 15 mm, respectively. Additionally, the findings showed that at a depth of 5 mm, the confidence limit values increased with increasing gantry angle while at a depth of 15 mm, the confidence limit values decreased with increasing gantry angle. Conclusions Overall, TiGRT TPS overestimated doses compared to TLD measurements, and the confidence limit values were greater for the wedge field than for the open fields. Our findings suggest that the assessment of dose distributions in large-dose gradient regions (i.e. build-up region) should not entirely rely on TPS calculations.
Collapse
|
7
|
In vivo skin dose measurement using MOSkin detectors in tangential breast radiotherapy. Phys Med 2016; 32:1466-1474. [PMID: 27842982 DOI: 10.1016/j.ejmp.2016.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study is to measure patient skin dose in tangential breast radiotherapy. Treatment planning dose calculation algorithm such as Pencil Beam Convolution (PBC) and in vivo dosimetry techniques such as radiochromic film can be used to accurately monitor radiation doses at tissue depths, but they are inaccurate for skin dose measurement. A MOSFET-based (MOSkin) detector was used to measure skin dose in this study. Tangential breast radiotherapies ("bolus" and "no bolus") were simulated on an anthropomorphic phantom and the skin doses were measured. Skin doses were also measured in 13 patients undergoing each of the techniques. In the patient study, the EBT2 measurements and PBC calculation tended to over-estimate the skin dose compared with the MOSkin detector (p<0.05) in the "no bolus radiotherapy". No significant differences were observed in the "bolus radiotherapy" (p>0.05). The results from patients were similar to that of the phantom study. This shows that the EBT2 measurement and PBC calculation, while able to predict accurate doses at tissue depths, are inaccurate in predicting doses at build-up regions. The clinical application of the MOSkin detectors showed that the average total skin doses received by patients were 1662±129cGy (medial) and 1893±199cGy (lateral) during "no bolus radiotherapy". The average total skin doses were 4030±72cGy (medial) and 4004±91cGy (lateral) for "bolus radiotherapy". In some cases, patient skin doses were shown to exceed the dose toxicity level for skin erythema. Hence, a suitable device for in vivo dosimetry is necessary to accurately determine skin dose.
Collapse
|
8
|
Rucci A, Carletti C, Cravero W, Strbac B. Use of IAEA’s phase-space files for virtual source model implementation: Extension to large fields. Phys Med 2016; 32:1030-3. [DOI: 10.1016/j.ejmp.2016.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/07/2016] [Accepted: 07/10/2016] [Indexed: 11/15/2022] Open
|
9
|
Chow JCL, Owrangi AM. A surface energy spectral study on the bone heterogeneity and beam obliquity using the flattened and unflattened photon beams. Rep Pract Oncol Radiother 2015; 21:63-70. [PMID: 26900360 DOI: 10.1016/j.rpor.2015.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/30/2015] [Accepted: 11/05/2015] [Indexed: 11/28/2022] Open
Abstract
AIM Using flattened and unflattened photon beams, this study investigated the spectral variations of surface photon energy and energy fluence in the bone heterogeneity and beam obliquity. BACKGROUND Surface dose enhancement is a dosimetric concern when using unflattened photon beam in radiotherapy. It is because the unflattened photon beam contains more low-energy photons which are removed by the flattening filter of the flattened photon beam. MATERIALS AND METHODS We used a water and bone heterogeneity phantom to study the distributions of energy, energy fluence and mean energy of the 6 MV flattened and unflattened photon beams (field size = 10 cm × 10 cm) produced by a Varian TrueBEAM linear accelerator. These elements were calculated at the phantom surfaces using Monte Carlo simulations. The photon energy and energy fluence calculations were repeated with the beam angle turned from 0° to 15°, 30° and 45° in the water and bone phantom. RESULTS Spectral results at the phantom surfaces showed that the unflattened photon beams contained more photons concentrated mainly in the low-energy range (0-2 MeV) than the flattened beams associated with a flattening filter. With a bone layer of 1 cm under the phantom surface and within the build-up region of the 6 MV photon beam, it is found that both the flattened and unflattened beams had slightly less photons in the energy range <0.4 MeV compared to the water phantom. This shows that the presence of the bone decreased the low-energy photon backscatters to the phantom surface. When both the flattened and unflattened photon beams were rotated from 0° to 45°, the number of photon and mean photon energy increased. This indicates that both photon beams became more hardened or penetrate when the beam angle increased. In the presence of bone, the mean energies of both photon beams increased. This is due to the absorption of low-energy photons by the bone, resulting in more beam hardening. CONCLUSIONS This study explores the spectral relationships of surface photon energy and energy fluence with bone heterogeneity and beam obliquity for the flattened and unflattened photon beams. The photon spectral information is important in studies on the patient's surface dose enhancement using unflattened photon beams in radiotherapy.
Collapse
Affiliation(s)
- James C L Chow
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5G 2M9, Canada; Radiation Medicine Program, Princess Margaret Caner Center, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Amir M Owrangi
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5G 2M9, Canada; Department of Medical Physics, Sunnybrook Health Sciences Center, Toronto ON M4N 3M5, Canada
| |
Collapse
|
10
|
Ward MC, Pham YD, Kotecha R, Zakem SJ, Murray E, Greskovich JF. Clinical and dosimetric implications of intensity-modulated radiotherapy for early-stage glottic carcinoma. Med Dosim 2015; 41:64-9. [PMID: 26553472 DOI: 10.1016/j.meddos.2015.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 06/19/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022]
Abstract
Conventional parallel-opposed radiotherapy (PORT) is the established standard technique for early-stage glottic carcinoma. However, case reports have reported the utility of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) with or without image guidance (image-guided radiotherapy, IGRT) in select patients. The proposed advantages of IMRT/VMAT include sparing of the carotid artery, thyroid gland, and the remaining functional larynx, although these benefits remain unclear. The following case study presents a patient with multiple vascular comorbidities treated with VMAT for early-stage glottic carcinoma. A detailed explanation of the corresponding treatment details, dose-volume histogram (DVH) analysis, and a review of the relevant literature are provided. Conventional PORT remains the standard of care for early-stage glottic carcinoma. IMRT or VMAT may be beneficial for select patients, although great care is necessary to avoid a geographical miss. Clinical data supporting the benefit of CRT are lacking. Therefore, these techniques should be used with caution and only in selected patients.
Collapse
Affiliation(s)
| | - Yvonne D Pham
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland, OH
| | - Rupesh Kotecha
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland, OH
| | - Sara J Zakem
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland, OH
| | - Eric Murray
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland, OH
| | - John F Greskovich
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland, OH
| |
Collapse
|
11
|
Alhakeem EA, AlShaikh S, Rosenfeld AB, Zavgorodni SF. Comparative evaluation of modern dosimetry techniques near low- and high-density heterogeneities. J Appl Clin Med Phys 2015; 16:142–158. [PMID: 26699322 PMCID: PMC5690181 DOI: 10.1120/jacmp.v16i5.5589] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/19/2015] [Accepted: 05/18/2015] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study is to compare performance of several dosimetric methods in heterogeneous phantoms irradiated by 6 and 18 MV beams. Monte Carlo (MC) calculations were used, along with two versions of Acuros XB, anisotropic analytical algorithm (AAA), EBT2 film, and MOSkin dosimeters. Percent depth doses (PDD) were calculated and measured in three heterogeneous phantoms. The first two phantoms were a 30×30×30 cm3 solid‐water slab that had an air‐gap of 20×2.5×2.35 cm3. The third phantom consisted of 30×30×5 cm3 solid water slabs, two 30×30×5 cm3 slabs of lung, and one 30×30×1 cm3 solid water slab. Acuros XB, AAA, and MC calculations were within 1% in the regions with particle equilibrium. At media interfaces and buildup regions, differences between Acuros XB and MC were in the range of +4.4% to −12.8%. MOSkin and EBT2 measurements agreed to MC calculations within ∼2.5%, except for the first centimeter of buildup where differences of 4.5% were observed. AAA did not predict the backscatter dose from the high‐density heterogeneity. For the third, multilayer lung phantom, 6 MV beam PDDs calculated by all TPS algorithms were within 2% of MC. 18 MV PDDs calculated by two versions of Acuros XB and AAA differed from MC by up to 2.8%, 3.2%, and 6.8%, respectively. MOSkin and EBT2 each differed from MC by up to 2.9% and 2.5% for the 6 MV, and by −3.1% and ∼2% for the 18 MV beams. All dosimetric techniques, except AAA, agreed within 3% in the regions with particle equilibrium. Differences between the dosimetric techniques were larger for the 18 MV than the 6 MV beam. MOSkin and EBT2 measurements were in a better agreement with MC than Acuros XB calculations at the interfaces, and they were in a better agreement to each other than to MC. The latter is due to their thinner detection layers compared to MC voxel sizes. PACS numbers: 87.55.K‐, 87.55.kd, 87.55.km, 87.53.Bn, 87.55.k
Collapse
Affiliation(s)
- Eyad A Alhakeem
- University of Victoria, British Columbia Cancer Agency-Vancouver Island Centre; Ministry of Education.
| | | | | | | |
Collapse
|
12
|
Chow JC, Owrangi AM. Dosimetric dependences of bone heterogeneity and beam angle on the unflattened and flattened photon beams: A Monte Carlo comparison. Radiat Phys Chem Oxf Engl 1993 2014. [DOI: 10.1016/j.radphyschem.2014.03.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Cilla S, Digesù C, Macchia G, Deodato F, Sallustio G, Piermattei A, Morganti A. Clinical implications of different calculation algorithms in breast radiotherapy: A comparison between pencil beam and collapsed cone convolution. Phys Med 2014; 30:473-81. [DOI: 10.1016/j.ejmp.2014.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 11/30/2022] Open
|
14
|
Comparison of CCC and ETAR dose calculation algorithms in pituitary adenoma radiation treatment planning; Monte Carlo evaluation. JOURNAL OF RADIOTHERAPY IN PRACTICE 2014. [DOI: 10.1017/s1460396914000211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAimsTo verify the accuracy of two common absorbed dose calculation algorithms in comparison to Monte Carlo (MC) simulation for the planning of the pituitary adenoma radiation treatment.Materials and methodsAfter validation of Linac's head modelling by MC in water phantom, it was verified in Rando phantom as a heterogeneous medium for pituitary gland irradiation. Then, equivalent tissue-air ratio (ETAR) and collapsed cone convolution (CCC) algorithms were compared for a conventional three small non-coplanar field technique. This technique uses 30 degree physical wedge and 18 MV photon beams.ResultsDose distribution findings showed significant difference between ETAR and CCC of delivered dose in pituitary irradiation. The differences between MC and dose calculation algorithms were 6.40 ± 3.44% for CCC and 10.36 ± 4.37% for ETAR. None of the algorithms could predict actual dose in air cavity areas in comparison to the MC method.ConclusionsDifference between calculation and true dose value affects radiation treatment outcome and normal tissue complication probability. It is of prime concern to select appropriate treatment planning system according to our clinical situation. It is further emphasised that MC can be the method of choice for clinical dose calculation algorithms verification.
Collapse
|
15
|
Javedan K, Feygelman V, Zhang RR, Moros EG, Correa CR, Trotti A, Li W, Zhang GG. Monte Carlo comparison of superficial dose between flattening filter free and flattened beams. Phys Med 2014; 30:503-8. [PMID: 24662096 DOI: 10.1016/j.ejmp.2014.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/27/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022] Open
Abstract
This study investigates the superficial dose from FFF beams in comparison with the conventional flattened ones using a Monte Carlo (MC) method. Published phase-space files which incorporated real geometry of a TrueBeam accelerator were used for the dose calculation in phantom and clinical cases. The photon fluence on the central axis is 3 times that of a flattened beam for a 6 MV FFF beam and 5 times for a 10 MV beam. The mean energy across the field in air at the phantom surface is 0.92-0.95 MeV for the 6 MV FFF beam and 1.18-1.30 MeV for the corresponding flattened beam. At 10 MV, the values are 1.52-1.72 and 2.15-2.87 MeV for the FFF and flattened beams, respectively. The phantom dose at the depth of 1 mm in the 6 MV FFF beam is 6% ± 2.5% (of the maximum dose) higher compared to the flattened beam for a 25 × 25 cm(2) field and 14.6% ± 1.9% for the 2 × 2 cm(2) field. For the 10 MV beam, the corresponding differences are 3.4% ± 1.5% and 10.7% ± 0.6%. The skin dose difference at selected points on the patient's surface between the plans using FFF and flattened beams in the head-and-neck case was 6.5% ± 2.3% (1SD), and for the breast case it was 6.4% ± 2.3%. The Monte Carlo simulations showed that due to the lower mean energy in the FFF beam, the clinical superficial dose is higher without the flattening filter compared to the flattened beam.
Collapse
Affiliation(s)
- Khosrow Javedan
- Radiation Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Ray R Zhang
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Eduardo G Moros
- Radiation Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Candace R Correa
- Radiation Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Andy Trotti
- Radiation Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Weiqi Li
- Radiation Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Geoffrey G Zhang
- Radiation Oncology Department, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
16
|
Chow JCL, Jiang R, Owrangi AM. Dosimetry of small bone joint calculated by the analytical anisotropic algorithm: a Monte Carlo evaluation using the EGSnrc. J Appl Clin Med Phys 2013; 15:4588. [PMID: 24423828 PMCID: PMC5711239 DOI: 10.1120/jacmp.v15i1.4588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/18/2013] [Accepted: 08/16/2013] [Indexed: 11/23/2022] Open
Abstract
This study compared a small bone joint dosimetry calculated by the anisotropic analytical algorithm (AAA) and Monte Carlo simulation using megavoltage (MV) photon beams. The performance of the AAA in the joint dose calculation was evaluated using Monte Carlo simulation, and dependences of joint dose on its width and beam angle were investigated. Small bone joint phantoms containing a vertical water layer (0.5‐2 mm) sandwiched by two bones (2×2×2cm3) were irradiated by the 6 and 15 MV photon beams with field size equal to 4×4 cm2. Depth doses along the central beam axis in a joint (cartilage) were calculated with and without a bolus (thickness=1.5cm) added on top of the phantoms. Different beam angles (0°‐15°) were used with the isocenter set to the center of the bone joint for dose calculations using the AAA (Eclipse treatment planning system) and Monte Carlo simulation (the EGSnrc code). For dosimetry comparison and normalization, dose calculations were repeated in homogeneous water phantoms with the bone substituted by water. Comparing the calculated dosimetry between the AAA and Monte Carlo simulation, the AAA underestimated joint doses varying with its widths by about 6%‐12% for 6 MV and 12%‐23% for 15 MV without bolus, and by 7% for 6 MV and 13%‐17% for 15 MV with bolus. Moreover, joint doses calculated by the AAA did not vary with the joint width and beam angle. From Monte Carlo results, there was a decrease in the calculated joint dose as the joint width increased, and a slight decrease as the beam angle increased. When bolus was added to the phantom, it was found that variations of joint dose with its width and beam angle became less significant for the 6 MV photon beams. In conclusion, dosimetry deviation in small bone joint calculated by the AAA and Monte Carlo simulation was studied using the 6 and 15 MV photon beam. The AAA could not predict variations of joint dose with its width and beam angle, which were predicted by the Monte Carlo simulations. PACS numbers: 87.55.K‐; 87.53.Bn; 87.53.‐j
Collapse
|
17
|
Akino Y, Das IJ, Bartlett GK, Zhang H, Thompson E, Zook JE. Evaluation of superficial dosimetry between treatment planning system and measurement for several breast cancer treatment techniques. Med Phys 2012; 40:011714. [PMID: 23298084 DOI: 10.1118/1.4770285] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yuichi Akino
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Chakarova R, Gustafsson M, Bäck A, Drugge N, Palm Å, Lindberg A, Berglund M. Superficial dose distribution in breast for tangential radiation treatment, Monte Carlo evaluation of Eclipse algorithms in case of phantom and patient geometries. Radiother Oncol 2012; 102:102-7. [DOI: 10.1016/j.radonc.2011.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 06/08/2011] [Accepted: 06/12/2011] [Indexed: 10/18/2022]
|