1
|
Brooks FMD, Glenn MC, Hernandez V, Saez J, Mehrens H, Pollard‐Larkin JM, Howell RM, Peterson CB, Nelson CL, Clark CH, Kry SF. A radiotherapy community data-driven approach to determine which complexity metrics best predict the impact of atypical TPS beam modeling on clinical dose calculation accuracy. J Appl Clin Med Phys 2024; 25:e14318. [PMID: 38427776 PMCID: PMC11087168 DOI: 10.1002/acm2.14318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/20/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024] Open
Abstract
PURPOSE To quantify the impact of treatment planning system beam model parameters, based on the actual spread in radiotherapy community data, on clinical treatment plans and determine which complexity metrics best describe the impact beam modeling errors have on dose accuracy. METHODS Ten beam modeling parameters for a Varian accelerator were modified in RayStation to match radiotherapy community data at the 2.5, 25, 50, 75, and 97.5 percentile levels. These modifications were evaluated on 25 patient cases, including prostate, non-small cell lung, H&N, brain, and mesothelioma, generating 1,000 plan perturbations. Differences in the mean planned dose to clinical target volumes (CTV) and organs at risk (OAR) were evaluated with respect to the planned dose using the reference (50th-percentile) parameter values. Correlation between CTV dose differences, and 18 different complexity metrics were evaluated using linear regression; R-squared values were used to determine the best metric. RESULTS Perturbations to MLC offset and transmission parameters demonstrated the greatest changes in dose: up to 5.7% in CTVs and 16.7% for OARs. More complex clinical plans showed greater dose perturbation with atypical beam model parameters. The mean MLC Gap and Tongue & Groove index (TGi) complexity metrics best described the impact of TPS beam modeling variations on clinical dose delivery across all anatomical sites; similar, though not identical, trends between complexity and dose perturbation were observed among all sites. CONCLUSION Extreme values for MLC offset and MLC transmission beam modeling parameters were found to most substantially impact the dose distribution of clinical plans and careful attention should be given to these beam modeling parameters. The mean MLC Gap and TGi complexity metrics were best suited to identifying clinical plans most sensitive to beam modeling errors; this could help provide focus for clinical QA in identifying unacceptable plans.
Collapse
Affiliation(s)
- Fre'Etta Mae Dayo Brooks
- University of Texas MD Anderson UTHealth Graduate School of Biomedical SciencesHoustonTexasUSA
- Department of Radiation PhysicsUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Mallory Carson Glenn
- University of Texas MD Anderson UTHealth Graduate School of Biomedical SciencesHoustonTexasUSA
- Department of Radiation PhysicsUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Victor Hernandez
- Department of Medical PhysicsHospital Sant Joan de Reus, IISPVTarragonaSpain
| | - Jordi Saez
- Department of Radiation OncologyHospital Clinic de BarcelonaBarcelonaSpain
| | - Hunter Mehrens
- University of Texas MD Anderson UTHealth Graduate School of Biomedical SciencesHoustonTexasUSA
- Department of Radiation PhysicsUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Julianne Marie Pollard‐Larkin
- University of Texas MD Anderson UTHealth Graduate School of Biomedical SciencesHoustonTexasUSA
- Department of Radiation PhysicsUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Rebecca Maureen Howell
- University of Texas MD Anderson UTHealth Graduate School of Biomedical SciencesHoustonTexasUSA
- Department of Radiation PhysicsUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Christine Burns Peterson
- University of Texas MD Anderson UTHealth Graduate School of Biomedical SciencesHoustonTexasUSA
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Christopher Lee Nelson
- University of Texas MD Anderson UTHealth Graduate School of Biomedical SciencesHoustonTexasUSA
- Department of Radiation PhysicsUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Catharine Helen Clark
- Department of Radiotherapy PhysicsUniversity College London Hospital LondonLondonUK
- Department of Medical Physics and BioengineeringUniversity College LondonLondonUK
- Medical Physics DepartmentNational Physical LaboratoryTeddingtonUK
| | - Stephen Frasier Kry
- University of Texas MD Anderson UTHealth Graduate School of Biomedical SciencesHoustonTexasUSA
- Department of Radiation PhysicsUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
2
|
Wang Z, Sun X, Wang W, Zhang T, Chen L, Duan J, Feng S, Chen Y, Wei Z, Zang J, Xiao F, Zhao L. Characterization and commissioning of a new collaborative multi-modality radiotherapy platform. Phys Eng Sci Med 2023; 46:981-994. [PMID: 37378823 PMCID: PMC10480288 DOI: 10.1007/s13246-023-01255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/31/2023] [Indexed: 06/29/2023]
Abstract
TaiChi, a new multi-modality radiotherapy platform that integrates a linear accelerator, a focusing gamma system, and a kV imaging system within an enclosed O-ring gantry, was introduced into clinical application. This work aims to assess the technological characteristics and commissioning results of the TaiChi platform. The acceptance testing and commissioning were performed following the manufacturer's customer acceptance tests (CAT) and several AAPM Task Group (TG) reports/guidelines. Regarding the linear accelerator (linac), all applicable validation measurements recommended by the MPPG 5.a (basic photon beam model validation, intensity-modulated radiotherapy (IMRT)/volumetric-modulated arc therapy (VMAT) validation, end-to-end(E2E) tests, and patient-specific quality assurance (QA)) were performed. For the focusing gamma system, the absorbed doses were measured using a PTW31014 ion chamber (IC) and PTW60016 diode detector. EBT3 films and a PTW60016 diode detector were employed to measure the relative output factors (ROFs). The E2E tests were performed using PTW31014 IC and EBT3 films. The coincidences between the imaging isocenter and the linac/gamma mechanical isocenter were investigated using EBT3 films. The image quality was evaluated regarding the contrast-to-noise ratio (CNR), spatial resolution, and uniformity. All tests included in the CAT met the manufacturer's specifications. All MPPG 5.a measurements complied with the tolerances. The confidence limits for IMRT/VMAT point dose and dose distribution measurements were achieved according to TG-119. The point dose differences were below 1.68% and gamma passing rates (3%/2 mm) were above 95.1% for the linac E2E tests. All plans of patient-specific QA had point dose differences below 1.79% and gamma passing rates above 96.1% using the 3%/2 mm criterion suggested by TG-218. For the focusing gamma system, the differences between the calculated and measured absorbed doses were below 1.86%. The ROFs calculated by the TPS were independently confirmed within 2% using EBT3 films and a PTW60016 detector. The point dose differences were below 2.57% and gamma passing rates were above 95.3% using the 2%/1 mm criterion for the E2E tests. The coincidences between the imaging isocenter and the linac/gamma mechanical isocenter were within 0.5 mm. The image quality parameters fully complied with the manufacturer's specifications regarding the CNR, spatial resolution, and uniformity. The multi-modality radiotherapy platform complies with the CAT and AAPM commissioning criteria. The commissioning results demonstrate that this platform performs well in mechanical and dosimetry accuracy.
Collapse
Affiliation(s)
- Zhongfei Wang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Xiaohuan Sun
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Wei Wang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Te Zhang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Liting Chen
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Jie Duan
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Siqi Feng
- Our United Corporation, 710018, Xi'an, Shaanxi Province, P.R. China
| | - Yinzhu Chen
- Our United Corporation, 710018, Xi'an, Shaanxi Province, P.R. China
| | - Zhiwei Wei
- Our United Corporation, 710018, Xi'an, Shaanxi Province, P.R. China
| | - Jian Zang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China
| | - Feng Xiao
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China.
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, P.R. China.
| |
Collapse
|
3
|
Adam DP, Bednarz BP, Frigo SP. Static MLC transmission simulation using two-dimensional ray tracing. J Appl Clin Med Phys 2022; 23:e13646. [PMID: 35596533 PMCID: PMC9359033 DOI: 10.1002/acm2.13646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose We investigated the hypothesis that the transmission function of rounded end linearly traveling multileaf collimators (MLCs) is constant with position. This assumption is made by some MLC models used in clinical treatment planning systems (TPSs) and in the Varian MLC calibration convention. If not constant, this would have implications for treatment plan QA results. Methods A two‐dimensional ray‐tracing tool to generate transmission curves as a function of leaf position was created and validated. The curves for clinically available leaf tip positions (−20 to 20 cm) were analyzed to determine the location of the beam edge (half‐attenuation X‐ray [XR]) location, the beam edge broadening (BEB, 80%–20% width), as well as the leaf tip zone width. More generalized scenarios were then simulated to elucidate trends as a function of leaf tip radius. Results In the analysis of the Varian high‐definition MLC, two regions were identified: a quasi‐static inner region centered about central axis (CAX), and an outer one, in which large deviations were observed. A phenomenon was identified where the half‐attenuation ray position, relative to that of the tip or tangential ray, increases dramatically at definitive points from CAX. Similar behavior is seen for BEB. An analysis shows that as the leaf radius parameter value is made smaller, the size of the quasi‐static region is greater (and vice versa). Conclusion The MLC transmission curve properties determined by this study have implications both for MLC position calibrations and modeling within TPSs. Two‐dimensional ray tracing can be utilized to identify where simple behaviors hold, and where they deviate. These results can help clinical physicists engage with vendors to improve MLC models, subsequent fluence calculations, and hence dose calculation accuracy.
Collapse
Affiliation(s)
- David P Adam
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Bryan P Bednarz
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Sean P Frigo
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Hong J, Han JH, Luo HL, Song YQ. Optimization of Minimum Segment Width Parameter in the Intensity-Modulated Radiotherapy Plan for Esophageal Cancer. Int J Gen Med 2021; 14:9913-9921. [PMID: 34938110 PMCID: PMC8687524 DOI: 10.2147/ijgm.s336269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose This study was designed to explore the optimal minimum segment width (MSW) in the intensity-modulated radiotherapy (IMRT) plan for esophageal cancer. Patients and Methods The imaging data of 20 esophageal cancer patients were selected for this study. Four IMRT plans were designed for each patient with MSWs of 0.5, 1.0, 1.5, and 2.0 cm. The conformity index (CI) and homogeneity index (HI) of the planning target volumes (PTV), organs at risk (OARs), control points (CP), monitor units (MU), plan delivery time (DT), and gamma passing rates (GPR) were collected and compared to appraise the treatment plan quality and delivery efficiency. Results Lower-MSW plans had larger CI and smaller HI values, and lower dose parameters of OARs and PTVs. The HI, CI, and dose parameter of OARs in the 0.5 and 1.0 cm MSW groups were similar and much better than those of the 1.5 and 2.0 cm MSW groups. Meanwhile, the plan in the 0.5 cm MSW group had significantly higher MUs, CPs, and DTs, and a significantly lower relative dose of GPR with a 3% dose difference and 3 mm distance to agreement criteria than the other three groups. Conclusion The 0.5 and 1 cm MSW groups had better dosimetric parameters and IMRT plan quality than the other groups. However, plans with 0.5 cm MSW had worse delivery accuracy and efficiency than the other three groups. Thus, MSW of 1.0 cm was the optimal choice to ensure good quality, delivery accuracy, and treatment efficiency in IMRT plans for esophageal cancer.
Collapse
Affiliation(s)
- Jun Hong
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Jiangsu, Huai'an, 223300, People's Republic of China
| | - Ji-Hua Han
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Jiangsu, Huai'an, 223300, People's Republic of China
| | - Hong-Lei Luo
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Jiangsu, Huai'an, 223300, People's Republic of China
| | - Ya-Qi Song
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Jiangsu, Huai'an, 223300, People's Republic of China
| |
Collapse
|
5
|
Salari E, Parsai EI, Shvydka D, Sperling NN. Evaluation of parameters affecting gamma passing rate in patient-specific QAs for multiple brain lesions IMRS treatments using ray-station treatment planning system. J Appl Clin Med Phys 2021; 23:e13467. [PMID: 34792850 PMCID: PMC8803291 DOI: 10.1002/acm2.13467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose Using intensity‐modulated radiosurgery (IMRS) with single isocenter for the treatment of multiple brain lesions has gained acceptance in recent years. One of the challenges of this technique is conducting a patient‐specific quality assurance (QA), involving accurate gamma passing rate (GPR) calculations for small and wide spread‐out targets. We evaluated effects of parameters such as dose grid and energy on GPR using our clinical IMRS plans. Methods Ten patients with total of 40 volumetric modulated arc therapy (VMAT) plans were created in Raystation (V.8A) treatment planning system (TPS) for the Varian Edge Linac using 6 and 10 flattening filter‐free (FFF) beams and planned dose grids of 1 mm and 2 mm resulting in four plans with 6–10 targets per patient. All parameters and objectives except dose grid and energy were kept the same in all plans. Next, patient‐specific QAs were measured evaluating GPR with 10% threshold, 3%/3 mm objective, and an acceptance criterion of 95%. Modulation factors (MF) and confidence intervals were calculated. Two modes of measurements, standard density (SD) and high density (HD), were used. Results Generally, plans computed with 1 mm dose grid have higher GPRs than those with 2 mm dose grid for both energies used. The GPRs of 6 FFF plans were higher than those of 10 FFF plans. GPR showed no noticeable difference between HD and SD measurements. Negative correlation between MF and GPR was observed. The HD pass rates fall within the confidence interval of SD. Conclusion Calculated dose grid should be less than or equal to one‐third of distance to agreement, thus 1 mm planned dose grid is recommended to reduce artifacts in gamma calculation. GPR of SD and HD measurement modes is almost the same, which indicates that SD mode is clinically preferable for performing patient‐specific QAs. According to our results, using 6 FFF beams with 1 mm planned dose grid is more accurate and reliable for dose calculation of IMRS plans.
Collapse
Affiliation(s)
- Elahheh Salari
- Department of Radiation Oncology, University of Toledo Medical Center, Toledo, Ohio, USA
| | - E Ishmael Parsai
- Department of Radiation Oncology, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Diana Shvydka
- Department of Radiation Oncology, University of Toledo Medical Center, Toledo, Ohio, USA
| | | |
Collapse
|
6
|
Frigo SP, Ohrt J, Suh Y, Balter P. Interinstitutional beam model portability study in a mixed vendor environment. J Appl Clin Med Phys 2021; 22:37-50. [PMID: 34643323 PMCID: PMC8664150 DOI: 10.1002/acm2.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/19/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
A 6 MV flattened beam model for a Varian TrueBeamSTx c‐arm treatment delivery system in RayStation, developed and validated at one institution, was implemented and validated at another institution. The only parameter value adjustments were to accommodate machine output at the second institution. Validation followed MPPG 5.a. recommendations, with particular attention paid to IMRT and VMAT deliveries. With this minimal adjustment, the model passed validation across a broad spectrum of treatment plans, measurement devices, and staff who created the test plans and executed the measurements. This work demonstrates the possibility of using a single template model in the same treatment planning system with matched machines in a mixed vendor environment.
Collapse
Affiliation(s)
- Sean P Frigo
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jared Ohrt
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yelin Suh
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Balter
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
7
|
Das IJ, Francescon P, Moran JM, Ahnesjö A, Aspradakis MM, Cheng CW, Ding GX, Fenwick JD, Saiful Huq M, Oldham M, Reft CS, Sauer OA. Report of AAPM Task Group 155: Megavoltage photon beam dosimetry in small fields and non-equilibrium conditions. Med Phys 2021; 48:e886-e921. [PMID: 34101836 DOI: 10.1002/mp.15030] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Small-field dosimetry used in advance treatment technologies poses challenges due to loss of lateral charged particle equilibrium (LCPE), occlusion of the primary photon source, and the limited choice of suitable radiation detectors. These challenges greatly influence dosimetric accuracy. Many high-profile radiation incidents have demonstrated a poor understanding of appropriate methodology for small-field dosimetry. These incidents are a cause for concern because the use of small fields in various specialized radiation treatment techniques continues to grow rapidly. Reference and relative dosimetry in small and composite fields are the subject of the International Atomic Energy Agency (IAEA) dosimetry code of practice that has been published as TRS-483 and an AAPM summary publication (IAEA TRS 483; Dosimetry of small static fields used in external beam radiotherapy: An IAEA/AAPM International Code of Practice for reference and relative dose determination, Technical Report Series No. 483; Palmans et al., Med Phys 45(11):e1123, 2018). The charge of AAPM task group 155 (TG-155) is to summarize current knowledge on small-field dosimetry and to provide recommendations of best practices for relative dose determination in small megavoltage photon beams. An overview of the issue of LCPE and the changes in photon beam perturbations with decreasing field size is provided. Recommendations are included on appropriate detector systems and measurement methodologies. Existing published data on dosimetric parameters in small photon fields (e.g., percentage depth dose, tissue phantom ratio/tissue maximum ratio, off-axis ratios, and field output factors) together with the necessary perturbation corrections for various detectors are reviewed. A discussion on errors and an uncertainty analysis in measurements is provided. The design of beam models in treatment planning systems to simulate small fields necessitates special attention on the influence of the primary beam source and collimating devices in the computation of energy fluence and dose. The general requirements for fluence and dose calculation engines suitable for modeling dose in small fields are reviewed. Implementations in commercial treatment planning systems vary widely, and the aims of this report are to provide insight for the medical physicist and guidance to developers of beams models for radiotherapy treatment planning systems.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paolo Francescon
- Department of Radiation Oncology, Ospedale Di Vicenza, Vicenza, Italy
| | - Jean M Moran
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anders Ahnesjö
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria M Aspradakis
- Institute of Radiation Oncology, Cantonal Hospital of Graubünden, Chur, Switzerland
| | - Chee-Wai Cheng
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John D Fenwick
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh, School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Chester S Reft
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Otto A Sauer
- Department of Radiation Oncology, Klinik fur Strahlentherapie, University of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Hansen JB, Frigo SP. Evaluation of candidate template beam models for a matched TrueBeam treatment delivery system. J Appl Clin Med Phys 2021; 22:92-103. [PMID: 34036726 PMCID: PMC8200503 DOI: 10.1002/acm2.13278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To explore candidate RayStation beam models to serve as a class-specific template for a TrueBeam treatment delivery system. METHODS Established validation techniques were used to evaluate three photon beam models: a clinically optimized model from the authors' institution, the built-in RayStation template, and a hybrid consisting of the RayStation template except substituting average MLC parameter values from a recent IROC survey. Comparisons were made for output factors, dose profiles from open fields, as well as representative VMAT test plans. RESULTS For jaw-defined output factors, each beam model was within 1.6% of expected published values. Similarly, the majority (57-66%) of jaw-defined dose curves from each model had a gamma pass rate >95% (2% / 3 mm, 20% threshold) when compared to TrueBeam representative beam data. For dose curves from MPPG 5.a MLC-defined fields, average gamma pass rates (1% / 1 mm, 20% threshold) were 92.9%, 85.1%, and 86.0% for the clinical, template, and hybrid models, respectively. For VMAT test plans measured with a diode array detector, median dose differences were 0.6%, 1.3%, and 1.1% for the clinical, template, and hybrid models, respectively. For in-phantom ionization chamber measurements with the same VMAT test plans, the average percent difference was -0.3%, -1.4%, and -1.0% for the clinical, template, and hybrid models, respectively. CONCLUSION Beam model templates taken from the vendor and aggregate results within the community were both reasonable starting points, but neither approach was as optimal as a clinically tuned model, the latter producing better agreement with all validation measurements. Given these results, the clinically optimized model represents a better candidate as a consensus template. This can benefit the community by reducing commissioning time and improving dose calculation accuracy for matched TrueBeam treatment delivery systems.
Collapse
Affiliation(s)
- Jon B. Hansen
- Department of Human OncologySchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
| | - Sean P. Frigo
- Department of Human OncologySchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
| |
Collapse
|
9
|
Saini A, Tichacek C, Johansson W, Redler G, Zhang G, Moros EG, Qayyum M, Feygelman V. Unlocking a closed system: dosimetric commissioning of a ring gantry linear accelerator in a multivendor environment. J Appl Clin Med Phys 2021; 22:21-34. [PMID: 33452738 PMCID: PMC7882119 DOI: 10.1002/acm2.13116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/10/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023] Open
Abstract
The Halcyon™ platform is self‐contained, combining a treatment planning (Eclipse) system TPS) with information management and radiation delivery components. The standard TPS beam model is configured and locked down by the vendor. A portal dosimetry‐based system for patient‐specific QA (PSQA) is also included. While ensuring consistency across the user base, this closed model may not be optimal for every department. We set out to commission independent TPS (RayStation 9B, RaySearch Laboratories) and PSQA (PerFraction, Sun Nuclear Corp.) systems for use with the Halcyon linac. The output factors and PDDs for very small fields (0.5 × 0.5 cm2) were collected to augment the standard Varian dataset. The MLC leaf‐end parameters were estimated based on the various static and dynamic tests with simple model fields and honed by minimizing the mean and standard deviation of dose difference between the ion chamber measurements and RayStation Monte Carlo calculations for 15 VMAT and IMRT test plans. Two chamber measurements were taken per plan, in the high (isocenter) and lower dose regions. The ratio of low to high doses ranged from 0.4 to 0.8. All percent dose differences were expressed relative to the local dose. The mean error was 0.0 ± 1.1% (TG119‐style confidence limit ± 2%). Gamma analysis with the helical diode array using the standard 3%Global/2mm criteria resulted in the average passing rate of 99.3 ± 0.5% (confidence limit 98.3%–100%). The average local dose error for all detectors across all plans was 0.2% ± 5.3%. The ion chamber results compared favorably with our recalculation with Eclipse and PerFraction, as well as with several published Eclipse reports. Dose distribution gamma analysis comparisons between RayStation and PerFraction with 2%Local/2mm criteria yielded an average passing rate of 98.5% ± 0.8% (confidence limit 96.9%–100%). It is feasible to use the Halcyon accelerator with independent planning and verification systems without sacrificing dosimetric accuracy.
Collapse
Affiliation(s)
- Amarjit Saini
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Chris Tichacek
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - William Johansson
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Gage Redler
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Geoffrey Zhang
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | | |
Collapse
|
10
|
Tani K, Wakita A, Tohyama N, Fujita Y, Kito S, Miyasaka R, Mizuno N, Uehara R, Takakura T, Miyake S, Shinoda K, Oka Y, Saito Y, Kojima H, Hayashi N. Evaluation of differences and dosimetric influences of beam models using golden and multi-institutional measured beam datasets in radiation treatment planning systems. Med Phys 2020; 47:5852-5871. [PMID: 32969046 DOI: 10.1002/mp.14493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The beam model in radiation treatment planning systems (RTPSs) plays a crucial role in determining the accuracy of calculated dose distributions. The purpose of this study was to ascertain differences in beam models and their dosimetric influences when a golden beam dataset (GBD) and multi-institution measured beam datasets (MBDs) are used for beam modeling in RTPSs. METHODS The MBDs collected from 15 institutions, and the MBDs' beam models, were compared with a GBD, and the GBD's beam model, for Varian TrueBeam linear accelerator. The calculated dose distributions of the MBDs' beam models were compared with those of the GBD's beam model for simple geometries in a water phantom. Calculated dose distributions were similarly evaluated in volumetric modulated arc therapy (VMAT) plans for TG-119 C-shape and TG-244 head and neck, at several dose constraints of the planning target volumes (PTVs), and organs at risk. RESULTS The agreements of the MBDs with the GBD were almost all within ±1%. The calculated dose distributions for simple geometries in a water phantom also closely corresponded between the beam models of GBD and MBDs. Nevertheless, there were considerable differences between the beam models. The maximum differences between the mean energy of the energy spectra of GBD and MBDs were -0.12 MeV (-10.5%) in AcurosXB (AXB, Eclipse) and 0.11 MeV (7.7%) in collapsed cone convolution (CCC, RayStation). The differences in the VMAT calculated dose distributions varied for each dose region, plan, X-ray energy, and dose calculation algorithm. The ranges of the differences in the dose constraints were -5.6% to 3.0% for AXB and -24.1% to 2.8% for CCC. In several VMAT plans, the calculated dose distributions of GBD's beam model tended to be lower in high-dose regions and higher in low-dose regions than those of the MBDs' beam models. CONCLUSIONS We found that small differences in beam data have large impacts on the beam models, and on calculated dose distributions in clinical VMAT plan, even if beam data correspond within ±1%. GBD's beam model was not a representative beam model. The beam models of GBD and MBDs and their calculated dose distributions under clinical conditions were significantly different. These differences are most likely due to the extensive variation in the beam models, reflecting the characteristics of beam data. The energy spectrum and radial energy in the beam model varied in a wide range, even if the differences in the beam data were <±1%. To minimize the uncertainty of the calculated dose distributions in clinical plans, it was best to use the institutional MBD for beam modeling, or the beam model that ensures the accuracy of calculated dose distributions.
Collapse
Affiliation(s)
- Kensuke Tani
- Division of Medical Physics, EuroMediTech Co., LTD., Shinagawa, Tokyo, 141-0022, Japan
| | - Akihisa Wakita
- Division of Medical Physics, EuroMediTech Co., LTD., Shinagawa, Tokyo, 141-0022, Japan
| | - Naoki Tohyama
- Division of Medical Physics, Tokyo Bay Advanced Imaging and Radiation Oncology Makuhari Clinic, Chiba, Chiba, 261-0024, Japan
| | - Yukio Fujita
- Department of Health Sciences, Komazawa University, Setagaya, Tokyo, 154-8525, Japan
| | - Satoshi Kito
- Department of Radiotherapy, Tokyo Metropolitan Bokutoh Hospital, Sumida, Tokyo, 130-8575, Japan.,Division of Medical Physics, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, 606-8507, Japan
| | - Ryohei Miyasaka
- Department of Radiation Oncology, Chiba Cancer Center, Chiba, Chiba, 260-8717, Japan
| | - Norifumi Mizuno
- Department of Radiation Oncology, St. Luke's International Hospital, Chuo, Tokyo, 104-8560, Japan
| | - Ryuzo Uehara
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, 277-8577, Japan
| | - Toru Takakura
- Department of Radiation Oncology, Uji-Tokushukai Medical Center, Uji, Kyoto, 611-0041, Japan
| | - Shunsuke Miyake
- Department of Radiation Oncology, Yamato Takada Municipal Hospital, Yamatotakada, Nara, 635-8501, Japan
| | - Kazuya Shinoda
- Department of Radiation Oncology, Ibaraki Prefectural Central Hospital, Kasama, Ibaraki, 309-1793, Japan
| | - Yoshitaka Oka
- Department of Radiation Oncology, Fukushima Medical University Hospital, Fukushima, Fukushima, 960-1295, Japan
| | - Yasunori Saito
- Department of Radiology, Fujita Health University Hospital, Toyoake, Aichi, 470-1192, Japan
| | - Hideki Kojima
- Department of Radiation Oncology, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan
| | - Naoki Hayashi
- School of Medical Sciences, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
11
|
Koger B, Price R, Wang D, Toomeh D, Geneser S, Ford E. Impact of the MLC leaf-tip model in a commercial TPS: Dose calculation limitations and IROC-H phantom failures. J Appl Clin Med Phys 2020; 21:82-88. [PMID: 31961036 PMCID: PMC7021005 DOI: 10.1002/acm2.12819] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/05/2019] [Accepted: 12/18/2019] [Indexed: 11/12/2022] Open
Abstract
Purpose Treatment planning system (TPS) dose calculation is sensitive to multileaf collimator (MLC) modeling, especially when treating with intensity‐modulated radiation therapy (IMRT) or VMAT. This study investigates the dosimetric impact of the MLC leaf‐tip model in a commercial TPS (RayStation v.6.1). The detectability of modeling errors was assessed through both measurements with an anthropomorphic head‐and‐neck phantom and patient‐specific IMRT QA using a 3D diode array. Methods and Materials An Agility MLC (Elekta Inc.) was commissioned in RayStation. Nine IMRT and VMAT plans were optimized to treat the head‐and‐neck phantom from the Imaging and Radiation Oncology Core Houston branch (IROC‐H). Dose distributions for each plan were re‐calculated on 27 beam models, varying leaf‐tip width (2.0, 4.5, and 6.5 mm) and leaf‐tip offset (−2.0 to +2.0 mm) values. Doses were compared to phantom TLD measurements. Patient‐specific IMRT QA was performed, and receiver‐operating characteristic (ROC) analysis was performed to determine the detectability of modeling errors. Results Dose calculations were very sensitive to leaf‐tip offset values. Offsets of ±1.0 mm resulted in dose differences up to 10% and 15% in the PTV and spinal cord TLDs respectively. Offsets of ±2.0 mm caused dose deviations up to 50% in the spinal cord TLD. Patient‐specific IMRT QA could not reliably detect these deviations, with an ROC area under the curve (AUC) value of 0.537 for a ±1.0 mm change in leaf‐tip offset, corresponding to >7% dose deviation. Leaf‐tip width had a modest dosimetric impact with <2% and 5.6% differences in the PTV and spinal cord TLDs respectively. Conclusions Small changes in the MLC leaf‐tip offset in this TPS model can cause large changes in the calculated dose for IMRT and VMAT plans that are difficult to identify through either dose curves or standard patient‐specific IMRT QA. These results may, in part, explain the reported high failure rate of IROC‐H phantom tests.
Collapse
Affiliation(s)
- Brandon Koger
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ryan Price
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Da Wang
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Dolla Toomeh
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Sarah Geneser
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Eric Ford
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
12
|
Glenn MC, Peterson CB, Followill DS, Howell RM, Pollard-Larkin JM, Kry SF. Reference dataset of users' photon beam modeling parameters for the Eclipse, Pinnacle, and RayStation treatment planning systems. Med Phys 2019; 47:282-288. [PMID: 31667870 DOI: 10.1002/mp.13892] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The aim of this work was to provide a novel description of how the radiotherapy community configures treatment planning system (TPS) radiation beam models for clinically used treatment machines. Here we describe the results of a survey of self-reported TPS beam modeling parameter values across different C-arm linear accelerators, beam energies, and multileaf collimator (MLC) configurations. ACQUISITION AND VALIDATION METHODS Beam modeling data were acquired via electronic survey implemented through the Imaging and Radiation Oncology Core (IROC) Houston Quality Assurance Center's online facility questionnaire. The survey was open to participation from January 2018 through January 2019 for all institutions monitored by IROC. After quality control, 2818 beam models were collected from 642 institutions. This survey, designed for Eclipse, Pinnacle, and RayStation, instructed physicists to report parameter values used to model the radiation source and MLC for each treatment machine and beam energy used clinically for intensity-modulated radiation therapy. Parameters collected included the effective source/spot size, MLC transmission, dosimetric leaf gap, tongue and groove effect, and other nondosimetric parameters specific to each TPS. To facilitate survey participation, instructions were provided on how to identify requested beam modeling parameters within each TPS environment. DATA FORMAT AND USAGE NOTES Numeric values of the beam modeling parameters are compiled and tabulated according to TPS and calculation algorithm, linear accelerator model class, beam energy, and MLC configuration. Values are also presented as distributions, ranging from the 2.5th to the 97.5th percentile. POTENTIAL APPLICATIONS These data provide an independent guide describing how the radiotherapy community mathematically represents its clinical radiation beams. These distributions may be used by the community for comparison during the commissioning or verification of their TPS beam models. Ultimately, we hope that the current work will allow institutions to spot potentially suspicious parameter values and help ensure more accurate radiotherapy delivery.
Collapse
Affiliation(s)
- Mallory C Glenn
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Christine B Peterson
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.,Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David S Followill
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Rebecca M Howell
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Julianne M Pollard-Larkin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| |
Collapse
|
13
|
Vieillevigne L, Khamphan C, Saez J, Hernandez V. On the need for tuning the dosimetric leaf gap for stereotactic treatment plans in the Eclipse treatment planning system. J Appl Clin Med Phys 2019; 20:68-77. [PMID: 31225938 PMCID: PMC6612699 DOI: 10.1002/acm2.12656] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/03/2019] [Accepted: 05/13/2019] [Indexed: 11/09/2022] Open
Abstract
The dosimetric leaf gap (DLG) and tongue-and-groove (T&G) effects are critical aspects in the modeling of multileaf collimators (MLC) in the treatment planning system (TPS). In this study, we investigated the dosimetric impact of limitations associated with the T&G modeling in stereotactic plans and its relationship with the need for tuning the DLG in the Eclipse TPS. Measurements were carried out using Varian TrueBeam STx systems from two different institutions. Test fields presenting MLC patterns with several MLC gap sizes (meanGap) and different amounts of T&G effect (TGi) were first evaluated. Secondly, dynamic conformal arc (DCA) and volumetric modulated arc therapy (VMAT) deliveries of stereotactic cases were analyzed in terms of meanGap and TGi. Two DLG values were used in the TPS: the measured DLG (DLGmeas ) and an optimal DLG (DLGopt ). Measured and calculated doses were compared according to dose differences and gamma passing rates (GPR) with strict local gamma criteria of 2%/2 mm. The discrepancies were analyzed for DLGmeas and DLGopt , and their relationships with both TGi and meanGap were investigated. DCA arcs involved significantly lower TGi and larger meanGap than VMAT arcs (P < 0.0001). By using DLGmeas in the TPS, the dose discrepancies increased as TGi increased and meanGap decreased for both test fields and clinical plans. Dose discrepancies dramatically increased with the ratio TGi/meanGap. Adjusting the DLG value was then required to achieve acceptable calculations and configuring the TPS with DLGopt led to an excellent agreement with median GPRs (2%/2 mm) > 99% for both institutions. We also showed that DLGopt could be obtained from the results of the test fields. We demonstrated that the need for tuning the DLG is due to the limitations of the T&G modeling in the Eclipse TPS. A set of sweeping gap tests modified to incorporate T&G effects can be used to determine the optimal DLG value.
Collapse
Affiliation(s)
- Laure Vieillevigne
- Department of Medical PhysicsInstitut Claudius Regaud Institut Universitaire du Cancer de ToulouseToulouseFrance
- Centre de Recherches et de Cancérologie de Toulouse UMR1037 INSERM ‐ Université Toulouse 3 – ERL5294 CNRS OncopoleToulouseFrance
| | | | - Jordi Saez
- Department of Radiation Oncology, Hospital Clınic de BarcelonaBarcelonaSpain
| | - Victor Hernandez
- Department of Medical Physics HospitalSant Joan de ReusIISPVTarragonaSpain
| |
Collapse
|
14
|
Kaneko A, Sumida I, Mizuno H, Isohashi F, Suzuki O, Seo Y, Otani K, Tamari K, Ogawa K. Comparison of gamma index based on dosimetric error and clinically relevant dose-volume index based on three-dimensional dose prediction in breast intensity-modulated radiation therapy. Radiat Oncol 2019; 14:36. [PMID: 30808377 PMCID: PMC6390354 DOI: 10.1186/s13014-019-1233-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/27/2019] [Indexed: 12/04/2022] Open
Abstract
Background Measurement-guided dose reconstruction has lately attracted significant attention because it can predict the delivered patient dose distribution. Although the treatment planning system (TPS) uses sophisticated algorithm to calculate the dose distribution, the calculation accuracy depends on the particular TPS used. This study aimed to investigate the relationship between the gamma passing rate (GPR) and the clinically relevant dose–volume index based on the predicted 3D patient dose distribution derived from two TPSs (XiO, RayStation). Methods Twenty-one breast intensity-modulated radiation therapy plans were inversely optimized using XiO. With the same plans, both TPSs calculated the planned dose distribution. We conducted per-beam measurements on the coronal plane using a 2D array detector and analyzed the difference in 2D GPRs between the measured and planned doses by commercial software. Using in-house software, we calculated the predicted 3D patient dose distribution and derived the predicted 3D GPR, the predicted per-organ 3D GPR, and the predicted clinically relevant dose–volume indices [dose–volume histogram metrics and the value of the tumor-control probability/normal tissue complication probability of the planning target volume and organs at risk]. The results derived from XiO were compared with those from RayStation. Results While the mean 2D GPRs derived from both TPSs were 98.1% (XiO) and 100% (RayStation), the mean predicted 3D GPRs of ipsilateral lung (73.3% [XiO] and 85.9% [RayStation]; p < 0.001) had no correlation with 2D GPRs under the 3% global/3 mm criterion. Besides, this significant difference in terms of referenced TPS between XiO and RayStation could be explained by the fact that the error of predicted V5Gy of ipsilateral lung derived from XiO (29.6%) was significantly larger than that derived from RayStation (− 0.2%; p < 0.001). Conclusions GPR is useful as a patient quality assurance to detect dosimetric errors; however, it does not necessarily contain detailed information on errors. Using the predicted clinically relevant dose–volume indices, the clinical interpretation of dosimetric errors can be obtained. We conclude that a clinically relevant dose–volume index based on the predicted 3D patient dose distribution could add to the clinical and biological considerations in the GPR, if we can guarantee the dose calculation accuracy of referenced TPS.
Collapse
Affiliation(s)
- Akari Kaneko
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Osaka, Japan. .,Department of Radiology, Suita Tokushukai Hospital, 21-1 Senrioka-nishi, Suita, 565-0814, Osaka, Japan.
| | - Iori Sumida
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Osaka, Japan
| | - Hirokazu Mizuno
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Osaka, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Osaka, Japan
| | - Osamu Suzuki
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Osaka, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Osaka, Japan
| | - Keisuke Otani
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Osaka, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Osaka, Japan
| |
Collapse
|
15
|
Chen J, Morin O, Weethee B, Perez-Andujar A, Phillips J, Held M, Kearney V, Han DY, Cheung J, Chuang C, Valdes G, Sudhyadhom A, Solberg T. Optimizing beam models for dosimetric accuracy over a wide range of treatments. Phys Med 2019; 58:47-53. [PMID: 30824149 DOI: 10.1016/j.ejmp.2019.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 11/29/2022] Open
Abstract
This work presents a systematic approach for testing a dose calculation algorithm over a variety of conditions designed to span the possible range of clinical treatment plans. Using this method, a TrueBeam STx machine with high definition multi-leaf collimators (MLCs) was commissioned in the RayStation treatment planning system (TPS). The initial model parameters values were determined by comparing TPS calculations with standard measured depth dose and profile curves. The MLC leaf offset calibration was determined by comparing measured and calculated field edges utilizing a wide range of MLC retracted and over-travel positions. The radial fluence was adjusted using profiles through both the center and corners of the largest field size, and through measurements of small fields that were located at highly off-axis positions. The flattening filter source was adjusted to improve the TPS agreement for the output of MLC-defined fields with much larger jaw openings. The MLC leaf transmission and leaf end parameters were adjusted to optimize the TPS agreement for highly modulated intensity-modulated radiotherapy (IMRT) plans. The final model was validated for simple open fields, multiple field configurations, the TG 119 C-shape target test, and a battery of clinical IMRT and volumetric-modulated arc therapy (VMAT) plans. The commissioning process detected potential dosimetric errors of over 10% and resulted in a final model that provided in general 3% dosimetric accuracy. This study demonstrates the importance of using a variety of conditions to adjust a beam model and provides an effective framework for achieving high dosimetric accuracy.
Collapse
Affiliation(s)
- Josephine Chen
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94115, United States.
| | - Olivier Morin
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94115, United States
| | - Brandon Weethee
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94115, United States
| | - Angelica Perez-Andujar
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94115, United States
| | - Justin Phillips
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94115, United States
| | - Mareike Held
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94115, United States
| | - Vasant Kearney
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94115, United States
| | - Dae Yup Han
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94115, United States
| | - Joey Cheung
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94115, United States
| | - Cynthia Chuang
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94115, United States
| | - Gilmer Valdes
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94115, United States
| | - Atchar Sudhyadhom
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94115, United States
| | - Timothy Solberg
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94115, United States
| |
Collapse
|
16
|
Choi HJ, Park H, Shin WG, Kim JI, Min CH. Development of a Geant4-based independent patient dose validation system with an elaborate multileaf collimator simulation model. J Appl Clin Med Phys 2019; 20:94-106. [PMID: 30672648 PMCID: PMC6370989 DOI: 10.1002/acm2.12530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 11/11/2022] Open
Abstract
Despite the improvements in the dose calculation models of the commercial treatment planning systems (TPS), their ability to accurately predict patient dose is still limited. One of the limitations is caused by the simplified model of the multileaf collimator (MLC). The aim of this study was to develop a Monte Carlo (MC) method‐based independent patient dose validation system with an elaborate MLC model for more accurate dose evaluation. Varian Clinac 2300 IX was simulated using Geant4 toolkits, after which MC commissioning with measurements was performed to validate the simulation model. A DICOM‐RT interface was developed to obtain the beam delivery conditions including the hundreds of MLC motions. Finally, the TPS dose distributions were compared with the MC dose distributions for water phantom cases and a patient case. Our results show that the TPS overestimated the absolute abutting leakage dose in the closed MLC field, with about 20% more of the maximum dose than that of the MC calculation. For water phantom cases, the dose distributions inside the target region were almost identical with the dose difference of less than 2%, while the dose near the edge of the target shows difference about 10% between Geant4 and TPS due to geometrical differences in MLC model. For the patient analysis, the Geant4 and TPS doses of all organs were matched well within 1.4% of the prescribed dose. However, for organs located in areas with high ratio of leaf pairs with distances less than 10 mm leaf pair (LP(<10mm)), the maximum dose of TPS was overestimated by about 3% of the prescribed dose. These dose comparison results demonstrate that our system for calculating the patient dose is quite accurate. Furthermore, if the MLC sequences in treatment plan have a large ratio of LP(short), more than 3% dose difference in normal tissue could be seen.
Collapse
Affiliation(s)
- Hyun Joon Choi
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea
| | - Hyojun Park
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea
| | - Wook-Geun Shin
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea
| | - Jung-In Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul Hee Min
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
17
|
Hernandez V, Vera-Sánchez JA, Vieillevigne L, Khamphan C, Saez J. A new method for modelling the tongue-and-groove in treatment planning systems. Phys Med Biol 2018; 63:245005. [PMID: 30523940 DOI: 10.1088/1361-6560/aaf098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Commercial TPSs typically model the tongue-and-groove (TG) by extending the projections of the leaf sides by a certain constant width. However, this model may produce discrepancies of as much as 7%-10% in the calculated average doses, especially for the High Definition multi-leaf collimator (MLC) (Hernandez et al 2017 Phys. Med. Biol. 62 6688-707). The purpose of the present study is to introduce and validate a new method for modelling the TG that uses a non constant TG width. We provide the theoretical background and a detailed methodology to determine the optimal shape of this TG width from measurements and we fit an empirical function to the TG width that depended on two parameters [Formula: see text] and [Formula: see text]. Parameter [Formula: see text] represents the TG width and [Formula: see text] introduces a curvature correction in the width near the leaf tip end. The new TG model was implemented in MATLAB and when the curvature correction was zero ([Formula: see text]) it caused the same discrepancies as the constant width model used by the Eclipse TPS. On the other hand, when the experimentally determined [Formula: see text] was used the new model's calculations were in close agreement with measurements, with all differences in average doses [Formula: see text]1%. Additionally, film dosimetry was used to successfully validate the potential of the new TG model to recreate the fine spatial details associated to TG effects. We also showed that the parameters [Formula: see text], [Formula: see text] depend solely on the MLC design by evaluating three different linear accelerators for each MLC model considered, namely Varian's High Definition and Millennium120 MLCs. In conclusion, a new method was presented that greatly improves the TG modelling. The present method can be easily implemented in commercial TPSs and has the potential to further increase their accuracy, especially for MLCs with rounded leaf ends.
Collapse
Affiliation(s)
- Victor Hernandez
- Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, 43204 Tarragona, Spain
| | | | | | | | | |
Collapse
|
18
|
Tani K, Fujita Y, Wakita A, Miyasaka R, Uehara R, Kodama T, Suzuki Y, Aikawa A, Mizuno N, Kawamori J, Saitoh H. Density scaling of phantom materials for a 3D dose verification system. J Appl Clin Med Phys 2018; 19:103-113. [PMID: 29785725 PMCID: PMC6036349 DOI: 10.1002/acm2.12357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/21/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022] Open
Abstract
In this study, the optimum density scaling factors of phantom materials for a commercially available three‐dimensional (3D) dose verification system (Delta4) were investigated in order to improve the accuracy of the calculated dose distributions in the phantom materials. At field sizes of 10 × 10 and 5 × 5 cm2 with the same geometry, tissue‐phantom ratios (TPRs) in water, polymethyl methacrylate (PMMA), and Plastic Water Diagnostic Therapy (PWDT) were measured, and TPRs in various density scaling factors of water were calculated by Monte Carlo simulation, Adaptive Convolve (AdC, Pinnacle3), Collapsed Cone Convolution (CCC, RayStation), and AcurosXB (AXB, Eclipse). Effective linear attenuation coefficients (μeff) were obtained from the TPRs. The ratios of μeff in phantom and water ((μeff)pl,water) were compared between the measurements and calculations. For each phantom material, the density scaling factor proposed in this study (DSF) was set to be the value providing a match between the calculated and measured (μeff)pl,water. The optimum density scaling factor was verified through the comparison of the dose distributions measured by Delta4 and calculated with three different density scaling factors: the nominal physical density (PD), nominal relative electron density (ED), and DSF. Three plans were used for the verifications: a static field of 10 × 10 cm2 and two intensity modulated radiation therapy (IMRT) treatment plans. DSF were determined to be 1.13 for PMMA and 0.98 for PWDT. DSF for PMMA showed good agreement for AdC and CCC with 6 MV x ray, and AdC for 10 MV x ray. DSF for PWDT showed good agreement regardless of the dose calculation algorithms and x‐ray energy. DSF can be considered one of the references for the density scaling factor of Delta4 phantom materials and may help improve the accuracy of the IMRT dose verification using Delta4.
Collapse
Affiliation(s)
- Kensuke Tani
- Department of Radiological Sciences, Graduate School of Tokyo Metropolitan University, Arakawa, Japan
| | - Yukio Fujita
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Akihisa Wakita
- Department of Radiation Oncology, National Cancer Center Hospital, Tsukiji, Japan
| | - Ryohei Miyasaka
- Department of Radiation Oncology, Chiba Cancer Center, Chiba, Japan
| | - Ryuzo Uehara
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takumi Kodama
- Department of Radiation Oncology, Saitama Cancer Center, Ina, Japan
| | - Yuya Suzuki
- Department of Radiation Oncology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | - Ako Aikawa
- Department of Radiation Oncology, National Cancer Center Hospital, Tsukiji, Japan
| | - Norifumi Mizuno
- Department of Radiation Oncology, St. Luke's International Hospital, Tokyo, Japan
| | - Jiro Kawamori
- Department of Radiation Oncology, St. Luke's International Hospital, Tokyo, Japan
| | - Hidetoshi Saitoh
- Department of Radiological Sciences, Graduate School of Tokyo Metropolitan University, Arakawa, Japan
| |
Collapse
|
19
|
Hernandez V, Vera-Sánchez JA, Vieillevigne L, Saez J. Commissioning of the tongue-and-groove modelling in treatment planning systems: from static fields to VMAT treatments. Phys Med Biol 2017. [PMID: 28639942 DOI: 10.1088/1361-6560/aa7b1a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adequate modelling of the multi-leaf collimator (MLC) by treatment planning systems (TPS) is essential for accurate dose calculations in intensity-modulated radiation-therapy. For this reason modern TPSs incorporate MLC characteristics such as the leaf end curvature, MLC transmission and the tongue-and-groove. However, the modelling of the tongue-and-groove is often neglected during TPS commissioning and it is not known how accurate it is. This study evaluates the dosimetric consequences of the tongue-and-groove effect for two different MLC models using both film dosimetry and ionisation chambers. A set of comprehensive tests are presented that evaluate the ability of TPSs to accurately model this effect in (a) static fields, (b) sliding window beams and (c) VMAT arcs. The tests proposed are useful for the commissioning of TPSs and for the validation of major upgrades. With the ECLIPSE TPS, relevant differences were found between calculations and measurements for beams with dynamic MLCs in the presence of the TG effect, especially for the High Definition MLC, small gap sizes and the 1 mm calculation grid. For this combination, dose differences as high as 10% and 7% were obtained for dynamic MLC gaps of 5 mm and 10 mm, respectively. These differences indicate inadequate modelling of the tongue-and-groove effect, which might not be identified without the proposed tests. In particular, the TPS tended to underestimate the calculated dose, which may require tuning of other configuration parameters in the TPS (such as the dosimetric leaf gap) in order to maximise the agreement between calculations and measurements in clinical plans. In conclusion, a need for better modelling of the MLC by TPSs is demonstrated, one of the relevant aspects being the tongue-and-groove effect. This would improve the accuracy of TPS calculations, especially for plans using small MLC gaps, such as plans with small target volumes or high complexities. Improved modelling of the MLC would also reduce the need for tuning parameters in the TPS, facilitating a more comprehensive configuration and commissioning of TPSs.
Collapse
Affiliation(s)
- Victor Hernandez
- Department of Medical Physics, Hospital Universitari Sant Joan de Reus, IISPV, 43204 Tarragona, Spain
| | | | | | | |
Collapse
|