1
|
Angelou C, Patallo IS, Doherty D, Romano F, Schettino G. A review of diamond dosimeters in advanced radiotherapy techniques. Med Phys 2024; 51:9230-9249. [PMID: 39221583 PMCID: PMC11656300 DOI: 10.1002/mp.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/08/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
This review article synthesizes key findings from studies on the use of diamond dosimeters in advanced radiotherapy techniques, showcasing their applications, challenges, and contributions to enhancing dosimetric accuracy. The article explores various dosimeters, highlighting synthetic diamond dosimeters as potential candidates especially due to their high spatial resolution and negligible ion recombination effect. The clinically validated commercial dosimeter, PTW microDiamond (mD), faces limitations in small fields, proton and hadron therapy and ultra-high dose per pulse (UHDPP) conditions. Variability in reported values for field sizes < $<$ 2 × $\times$ 2cm 2 ${\rm cm}^2$ is noted, reflecting the competition between volume averaging and density perturbation effects. PTW's introduction of flashDiamond (fD) holds promise for dosimetric measurements in UHDPP conditions and is reliable for commissioning ultra-high dose rate (UHDR) electron beam systems, pending the clinical validation of the device. Other advancements in diamond detectors, such as in 3D configurations and real-time dose per pulse x-ray detectors, are considered valuable in overcoming challenges posed by modern radiotherapy techniques, alongside relative dosimetry and pre-treatment verifications. The studies discussed collectively provide a comprehensive overview of the evolving landscape of diamond dosimetry in the field of radiotherapy, and offer insights into future directions for research and development in the field.
Collapse
Affiliation(s)
- Christina Angelou
- Department of PhysicsUniversity of SurreyGuildfordUK
- Radiotherapy and Radiation DosimetryNational Physical Laboratory (NPL)TeddingtonUK
| | | | | | - Francesco Romano
- Istituto Nazionale di Fisica Nucleare (INFN)Sezione di CataniaCataniaItaly
| | - Giuseppe Schettino
- Radiotherapy and Radiation DosimetryNational Physical Laboratory (NPL)TeddingtonUK
| |
Collapse
|
2
|
Slama LA, Mahmood T, Mckernan B. Curvature correction factors for the independent verification of monitor units of electron treatment plans calculated in Eclipse. Phys Eng Sci Med 2024; 47:981-988. [PMID: 38805105 DOI: 10.1007/s13246-024-01421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/01/2024] [Indexed: 05/29/2024]
Abstract
Electron beam dosimetry is sensitive to the surface contour of the patient. Over 10% difference between Treatment Planning System (TPS) and independent monitor-unit (IMU) calculations have been reported in the literature. Similar results were observed in our clinic between Radformation ClearCalc IMU and Eclipse TPS electron Monte Carlo (eMC) algorithm (v.16.1). This paper presents data measured under 3D printed spherical and cylindrical phantoms to validate the eMC algorithm in the presence of curved geometries. Measurements were performed with multiple detectors and compared to calculations made in Eclipse for the 6, 9 and 12 MeV electron energies. This data is used to create curvature correction factors (CCFs), defined as the ratio of the detector reading with the curved-surface phantom to a flat phantom at the same depth. The mean difference between the TPS calculated and measured CCFs using the NACP, Diode E, microSilicon, and microDiamond detectors were 1.3, 0.9, 0.7 and 0.7% respectively, with maximum differences of 4.5, 2.3, 1.9, and 1.8% respectively. Applying CCFs to previous failing patient IMU calculations improved agreement to the TPS. CCFs were implemented in our clinic for patient-specific IMU calculations with the assistance of a ESAPI script.
Collapse
Affiliation(s)
- Luke A Slama
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, B Block, Hospital Ave, Nedlands, WA, 6009, Australia.
| | - Talat Mahmood
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, B Block, Hospital Ave, Nedlands, WA, 6009, Australia
| | - Brendan Mckernan
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, B Block, Hospital Ave, Nedlands, WA, 6009, Australia
| |
Collapse
|
3
|
Siddique S, Ruda HE, Chow JCL. FLASH Radiotherapy and the Use of Radiation Dosimeters. Cancers (Basel) 2023; 15:3883. [PMID: 37568699 PMCID: PMC10417829 DOI: 10.3390/cancers15153883] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Radiotherapy (RT) using ultra-high dose rate (UHDR) radiation, known as FLASH RT, has shown promising results in reducing normal tissue toxicity while maintaining tumor control. However, implementing FLASH RT in clinical settings presents technical challenges, including limited depth penetration and complex treatment planning. Monte Carlo (MC) simulation is a valuable tool for dose calculation in RT and has been investigated for optimizing FLASH RT. Various MC codes, such as EGSnrc, DOSXYZnrc, and Geant4, have been used to simulate dose distributions and optimize treatment plans. Accurate dosimetry is essential for FLASH RT, and radiation detectors play a crucial role in measuring dose delivery. Solid-state detectors, including diamond detectors such as microDiamond, have demonstrated linear responses and good agreement with reference detectors in UHDR and ultra-high dose per pulse (UHDPP) ranges. Ionization chambers are commonly used for dose measurement, and advancements have been made to address their response nonlinearities at UHDPP. Studies have proposed new calculation methods and empirical models for ion recombination in ionization chambers to improve their accuracy in FLASH RT. Additionally, strip-segmented ionization chamber arrays have shown potential for the experimental measurement of dose rate distribution in proton pencil beam scanning. Radiochromic films, such as GafchromicTM EBT3, have been used for absolute dose measurement and to validate MC simulation results in high-energy X-rays, triggering the FLASH effect. These films have been utilized to characterize ionization chambers and measure off-axis and depth dose distributions in FLASH RT. In conclusion, MC simulation provides accurate dose calculation and optimization for FLASH RT, while radiation detectors, including diamond detectors, ionization chambers, and radiochromic films, offer valuable tools for dosimetry in UHDR environments. Further research is needed to refine treatment planning techniques and improve detector performance to facilitate the widespread implementation of FLASH RT, potentially revolutionizing cancer treatment.
Collapse
Affiliation(s)
- Sarkar Siddique
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada;
| | - Harry E. Ruda
- Centre of Advance Nanotechnology, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada;
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
4
|
Small field output factor measurement and verification for CyberKnife robotic radiotherapy and radiosurgery system using 3D polymer gel, ionization chamber, diode, diamond and scintillator detectors, Gafchromic film and Monte Carlo simulation. Appl Radiat Isot 2023; 192:110576. [PMID: 36473319 DOI: 10.1016/j.apradiso.2022.110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
The dosimetry of small fields has become tremendously important with the advent of intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery, where small field segments or very small fields are used to treat tumors. With high dose gradients in the stereotactic radiosurgery or radiotherapy treatment, small field dosimetry becomes challenging due to the lack of lateral electronic equilibrium in the field, x-ray source occlusion, and detector volume averaging. Small volume and tissue-equivalent detectors are recommended to overcome the challenges. With the lack of a perfect radiation detector, studies on available detectors are ongoing with reasonable disagreement and uncertainties. The joint IAEA and AAPM international code of practice (CoP) for small field dosimetry, TRS 483 (Alfonso et al., 2017) provides guidelines and recommendations for the dosimetry of small static fields in external beam radiotherapy. The CoP provides a methodology for field output factor (FOF) measurements and use of field output correction factors for a series of small field detectors and strongly recommends additional measurements, data collection and verification for CyberKnife (CK) robotic stereotactic radiotherapy/radiosurgery system using the listed detectors and more new detectors so that the FOFs can be implemented clinically. The present investigation is focused on using 3D gel along with some other commercially available detectors for the measurement and verification of field output factors (FOFs) for the small fields available in the CK system. The FOF verification was performed through a comparison with published data and Monte Carlo simulation. The results of this study have proved the suitability of an in-house developed 3D polymer gel dosimeter, several commercially available detectors, and Gafchromic films as a part of small field dosimetric measurements for the CK system.
Collapse
|
5
|
Pettinato S, Girolami M, Stravato A, Serpente V, Musio D, Rossi MC, Trucchi DM, Olivieri R, Salvatori S. A Highly Versatile X-ray and Electron Beam Diamond Dosimeter for Radiation Therapy and Protection. MATERIALS (BASEL, SWITZERLAND) 2023; 16:824. [PMID: 36676560 PMCID: PMC9861322 DOI: 10.3390/ma16020824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Radiotherapy is now recognized as a pillar in the fight against cancer. Two different types are currently used in clinical practice: (1) external beam radiotherapy, using high-energy X-rays or electron beams, both in the MeV-range, and (2) intraoperative radiotherapy, using low-energy X-rays (up to 50 keV) and MeV-range electron beams. Versatile detectors able to measure the radiation dose independently from the radiation nature and energy are therefore extremely appealing to medical physicists. In this work, a dosimeter based on a high-quality single-crystal synthetic diamond sample was designed, fabricated and characterized under low-energy X-rays, as well as under high-energy pulsed X-rays and electron beams, demonstrating excellent linearity with radiation dose and dose-rate. Detector sensitivity was measured to be 0.299 ± 0.002 µC/Gy under 6 MeV X-ray photons, and 0.298 ± 0.004 µC/Gy under 6 MeV electrons, highlighting that the response of the diamond dosimeter is independent of the radiation nature. Moreover, in the case of low-energy X-rays, an extremely low limit of detection (23 nGy/s) was evaluated, pointing out the suitability of the device to radiation protection dosimetry.
Collapse
Affiliation(s)
- Sara Pettinato
- Engineering Faculty, Niccolò Cusano University, Via Don Carlo Gnocchi 3, 00166 Rome, Italy
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), DiaTHEMA Lab, Strada Provinciale 35D, 9, Montelibretti, 00010 Rome, Italy
| | - Marco Girolami
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), DiaTHEMA Lab, Strada Provinciale 35D, 9, Montelibretti, 00010 Rome, Italy
| | - Antonella Stravato
- Azienda Ospedaliera “San Giovanni–Addolorata”, Via dell’Amba Aradam, 8, 00184 Rome, Italy
| | - Valerio Serpente
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), DiaTHEMA Lab, Strada Provinciale 35D, 9, Montelibretti, 00010 Rome, Italy
| | - Daniela Musio
- Azienda Ospedaliera “San Giovanni–Addolorata”, Via dell’Amba Aradam, 8, 00184 Rome, Italy
| | - Maria C. Rossi
- Department of Industrial, Electronic and Mechanical Engineering, Università degli Studi Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy
| | - Daniele M. Trucchi
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), DiaTHEMA Lab, Strada Provinciale 35D, 9, Montelibretti, 00010 Rome, Italy
| | - Riccardo Olivieri
- Azienda Ospedaliera “San Giovanni–Addolorata”, Via dell’Amba Aradam, 8, 00184 Rome, Italy
| | - Stefano Salvatori
- Engineering Faculty, Niccolò Cusano University, Via Don Carlo Gnocchi 3, 00166 Rome, Italy
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), DiaTHEMA Lab, Strada Provinciale 35D, 9, Montelibretti, 00010 Rome, Italy
| |
Collapse
|
6
|
Dong X, Tian Y, Wang F, Chen C, Wang Y, Ma J. Gold-Nanoparticle-Enhanced Radio-Fluorogenic Hydrogel Sensor for Low Radiation Doses in Clinical Radiotherapy. Polymers (Basel) 2022; 14:4841. [PMID: 36432968 PMCID: PMC9694710 DOI: 10.3390/polym14224841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Radio-fluorogenic hydrogel dosimeters are urgently needed in radiotherapy for 3D dose verification. However, few hydrogel sensors have been reported at low absorbed doses under 2 Gy which meets the requirements of clinical practice. Here, we report a new type of gold-nanoparticle-enhanced radio-fluorogenic agarose hydrogel with coumarin as the dose-responsive material. An optimal composition of 3 wt% of agarose, 0.1 mM of gold nanoparticles, and 0.5 mM coumarin was selected. The addition of gold nanoparticles enhanced the hydroxyl radicals generated from the radiolysis of water, which can react with coumarin and generate fluorescent 7-hydroxy-coumarin and, eventually, achieve low-dose verification of 0-2.4 Gy with a high linear correlation coefficient. These findings provide an effective method for 3D dose verification, and will inspire the development of other radio-fluorogenic sensing hydrogels as well.
Collapse
Affiliation(s)
| | | | | | | | - Yunlong Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jun Ma
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
7
|
Experimental determination of the effective point of measurement for cylindrical ionization chambers in megavoltage photon beams. Radiol Phys Technol 2022; 15:291-297. [PMID: 35932415 DOI: 10.1007/s12194-022-00669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 10/15/2022]
Abstract
Current dosimetry protocols specify an effective point of measurement (EPOM) shift of 0.6r for a cylindrical ionization chamber in photon beams. However, prior studies have reported that this shift was excessively large. The objective of this study was to experimentally evaluate the EPOM shifts in photon beams for cylindrical ionization chambers, which are widely used in clinical practice, and thus determine the appropriate EPOM shift. A microdiamond detector, which is a semiconductor detector with a small sensitive volume, was used as a reference detector, and the EPOM shifts of 11 types of cylindrical ionization chambers were evaluated at 6 MV and 10 MV. The depth shift from the percent depth dose (PDD) of the reference detector to that of the evaluated chamber was calculated using the least-squares method and was defined as the EPOM shift. The EPOM shift of the 10 MV condition was slightly larger than that of the 6 MV condition. However, because this trend was not observed for all chambers, the results of the two energies were averaged, and the EPOM shifts were determined to be 0.33r-0.43r (± 0.05) for 10 types of ionization chambers, and 0.03r (± 0.03) for the A1SL chamber. The shifts for all ionization chambers were smaller than 0.6r, indicating that the recommended EPOM shifts were overestimated and the absorbed dose was underestimated at the calibration depth. Hence, the appropriate EPOM shift of the 10 types of ionization chambers was 0.4r (the geometric center of the A1SL chamber), with a dose uncertainty of 0.05%.
Collapse
|
8
|
A Diamond-Based Dose-per-Pulse X-ray Detector for Radiation Therapy. MATERIALS 2021; 14:ma14185203. [PMID: 34576426 PMCID: PMC8466252 DOI: 10.3390/ma14185203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022]
Abstract
One of the goals of modern dynamic radiotherapy treatments is to deliver high-dose values in the shortest irradiation time possible. In such a context, fast X-ray detectors and reliable front-end readout electronics for beam diagnostics are crucial to meet the necessary quality assurance requirements of care plans. This work describes a diamond-based detection system able to acquire and process the dose delivered by every single pulse sourced by a linear accelerator (LINAC) generating 6-MV X-ray beams. The proposed system is able to measure the intensity of X-ray pulses in a limited integration period around each pulse, thus reducing the inaccuracy induced by unnecessarily long acquisition times. Detector sensitivity under 6-MV X-photons in the 0.1–10 Gy dose range was measured to be 302.2 nC/Gy at a bias voltage of 10 V. Pulse-by-pulse measurements returned a charge-per-pulse value of 84.68 pC, in excellent agreement with the value estimated (but not directly measured) with a commercial electrometer operating in a continuous integration mode. Significantly, by intrinsically holding the acquired signal, the proposed system enables signal processing even in the millisecond period between two consecutive pulses, thus allowing for effective real-time dose-per-pulse monitoring.
Collapse
|
9
|
Lam S, Bradley D, Khandaker M. Small-field radiotherapy photon beam output evaluation: Detectors reviewed. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.108950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Khan AU, Culberson WS, DeWerd LA. Characterizing a PTW microDiamond detector in kilovoltage radiation beams. Med Phys 2020; 47:4553-4562. [DOI: 10.1002/mp.14330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/12/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ahtesham Ullah Khan
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin53705USA
| | - Wesley S. Culberson
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin53705USA
| | - Larry A. DeWerd
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin53705USA
| |
Collapse
|
11
|
Pushpavanam K, Inamdar S, Dutta S, Bista T, Sokolowski T, Boshoven E, Sapareto S, Rege K. Determination of topographical radiation dose profiles using gel nanosensors. SCIENCE ADVANCES 2019; 5:eaaw8704. [PMID: 31763446 PMCID: PMC6858262 DOI: 10.1126/sciadv.aaw8704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Despite the emergence of sophisticated technologies in treatment planning and administration, routine determination of delivered radiation doses remains a challenge due to limitations associated with conventional dosimeters. Here, we describe a gel-based nanosensor for the colorimetric detection and quantification of topographical radiation dose profiles in radiotherapy. Exposure to ionizing radiation results in the conversion of gold ions in the gel to gold nanoparticles, which render a visual change in color in the gel due to their plasmonic properties. The intensity of color formed in the gel was used as a quantitative reporter of ionizing radiation. The gel nanosensor was used to detect complex topographical dose patterns including those administered to an anthropomorphic phantom and live canine patients undergoing clinical radiotherapy. The ease of fabrication, operation, rapid readout, colorimetric detection, and relatively low cost illustrate the translational potential of this technology for topographical dose mapping in radiotherapy applications in the clinic.
Collapse
Affiliation(s)
- Karthik Pushpavanam
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Sahil Inamdar
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Subhadeep Dutta
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Tomasz Bista
- Banner MD Anderson Cancer Center, Gilbert, AZ 85234, USA
| | | | | | | | - Kaushal Rege
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
12
|
|
13
|
Xue J, McKay JD, Grimm J, Cheng CW, Berg R, Grimm SYL, Xu Q, Subedi G, Das IJ. Small field dose measurements using plastic scintillation detector in heterogeneous media. Med Phys 2017; 44:3815-3820. [PMID: 28398596 DOI: 10.1002/mp.12272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/28/2017] [Accepted: 03/26/2017] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate a plastic scintillation detector for the measurement of small field dosimetry and to verify the accuracy of measured dose in comparison with Monte Carlo calculation in a heterogeneous medium. METHODS The study is performed with CyberKnife planning and delivery system. The setup consists of a custom made solid lung phantom with the insert of an Exradin W1 scintillation detector or an Exradin A16 ion chamber. The measurement was done for a series of cone sizes from 5 mm to 60 mm, and the dose was calculated by Monte Carlo algorithm in MultiPlan workstation. The difference between measurement and calculation was reported. RESULTS Our preliminary results demonstrated the applicability of plastic scintillation detectors in the measurement of small field dosimetry in a heterogeneous medium. The difference between the calculated and measured output factors was less than 3% for all cone sizes from 60 mm down to 5 mm. Without any corrections, the measured dose from the scintillation detector calibrated to the ion chamber reading was also within 3% of the Monte Carlo calculation in the lung phantom for cone sizes 20 mm or larger. CONCLUSIONS Small field dosimetry is particularly relevant to stereotactic radiation treatment. The accuracy of dose calculation for small static beams is critical to dose planning so would potentially affect the treatment outcomes in a heterogeneous medium. Our results have shown good agreement with plastic scintillation detector in both homogeneous and heterogeneous medium.
Collapse
Affiliation(s)
- Jinyu Xue
- Department of Radiation Oncology, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Jesse D McKay
- Department of Radiation Oncology, Erlanger Health System, Chattanooga, TN, 37403, USA
| | - Jimm Grimm
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University Hospital, Baltimore, MD, 21231, USA
| | - Chee-Wai Cheng
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Ronald Berg
- Department of Radiation Oncology, Erlanger Health System, Chattanooga, TN, 37403, USA
| | - Shu-Ya Lisa Grimm
- Academic Urology/Fox Chase Cancer Center, King of Prussia, PA, 19406, USA
| | - Qianyi Xu
- Department of Radiation Oncology, MD Anderson Cancer Center at Cooper, Camden, NJ, 08103, USA
| | - Gopal Subedi
- Department of Radiation Oncology, Eastern Maine Medical Center, Bangor, ME, 04401, USA
| | - Indra J Das
- Department of Radiation Oncology, NYU Langone Medical Center, New York, NY, 10016, USA
| |
Collapse
|