1
|
Tahmasbi M, Capela M, Santos T, Mateus J, Ventura T, do Carmo Lopes M. Particular issues to be considered in small field dosimetry for TrueBeam STx commissioning. Appl Radiat Isot 2023; 202:111066. [PMID: 37865066 DOI: 10.1016/j.apradiso.2023.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
This study aims to report the relevant issues concerning small fields in the commissioning of a TrueBeam STx for photon energies of 6MV, 10MV, 6FFF, and 10FFF. Percent depth doses, profiles, and field output factors were measured according to the beam model configuration of the treatment planning system. Multiple detectors were used based on the IAEA TRS-483 protocol as well as EBT3 radiochromic film. Analytical Anisotropic and Acuros XB algorithms, were configured and validated through basic dosimetry comparisons and end-to-end clinical tests.
Collapse
Affiliation(s)
- Marziyeh Tahmasbi
- Radiologic Technology Department, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal.
| | - Miguel Capela
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| | - Tania Santos
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| | - Josefina Mateus
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| | - Tiago Ventura
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| | - Maria do Carmo Lopes
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| |
Collapse
|
2
|
Renil Mon P, Meena-Devi V, Bhasi S. Monte Carlo modelling and validation of the elekta synergy medical linear accelerator equipped with radiosurgical cones. Heliyon 2023; 9:e15328. [PMID: 37123913 PMCID: PMC10130217 DOI: 10.1016/j.heliyon.2023.e15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Monte Carlo simulations of medical linear accelerator heads help in visualizing the energy spectrum and angular spread of photons and electrons, energy deposition, and scattering from each of the head components. Hence, the purpose of this study was to validate the Monte Carlo model of the Elekta synergy medical linear accelerator equipped with stereotactic radio surgical connical collimators. For this, the Elekta synergy medical linear accelerator was modelled using the EGSnrc Monte Carlo code. The model results were validated using the measured data. The primary electron beam parameters, beam size, and energy were tuned to match the measured data; a dose profile with a field size of 40 × 40 cm2 and percentage depth dose with a field size of 10 × 10 cm2 were matched during tuning. The validation of the modelled data with the measurement results was performed using gamma analysis, point dose, and field size comparisons. For small radiation fields, relative output factors were also compared. The gamma analysis revealed good agreement between the Monte Carlo modeling results and the measured data. A gamma pass rate of more than 95% was obtained for field sizes of 40 × 40 cm2 to 2 × 2 cm2 with gamma criteria of 1% and 1 mm for the dose difference (DD) and distance to agreement (DTA), respectively; this gamma pass rate was more than 98% for the corresponding values of 2% and 2 mm for the DD and DTA, respectively. A gamma pass rate of more than 99% was obtained for a percentage depth dose with 1 mm and 1% criteria. The field size was also in good agreement with the measurement results, and the maximum deviation observed was 1.1%. The stereotactic cone field also passed this analysis with a gamma pass rate of more than 98% for dose profiles and 99% for the percentage depth dose. The small field output factor exhibited a deviation of 4.3%, 3.4%, and 1.9% for field sizes of 5 mm, 7.5 mm, and 10 mm, respectively. Thus, the Monte Carlo model of the Elekta Linear accelerator was successfully validated. The validation of radio surgical cones passed the analysis in terms of the dose profiles and percentage depth dose. The small field relative output factors exhibited deviations of up to 4.3%, and to resolve this, detector-specific and field-specific correction factors must be derived.
Collapse
Affiliation(s)
- P.S. Renil Mon
- Department of Physics, Noorul Islam Centre for Higher Education, Kumarakoil, Kanyakumari District, Tamilnadu, India
- Corresponding author.
| | - V.N. Meena-Devi
- Department of Physics, Noorul Islam Centre for Higher Education, Kumarakoil, Kanyakumari District, Tamilnadu, India
| | - Saju Bhasi
- Department of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| |
Collapse
|
3
|
Zhang X, Zhou F, Liu B, Xiong T, Bai X, Wu Q. Does radiation therapy need more than two photon energies from Linac? Front Oncol 2022; 12:1009553. [DOI: 10.3389/fonc.2022.1009553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
PurposeModern Linacs are equipped with multiple photon energies for radiation therapy, and proper energy is chosen for each case based on tumor characteristics and patient anatomy. The aim of this study is to investigate whether it is necessary to have more than two photons energies.MethodsThe principle of photon energy synthesis is presented. It is shown that a photon beam of any intermediate energy (Esyn) can be synthesized from a linear combination of a low energy (Elow) and a high energy (Ehigh). The principle is validated on a wide range of scenarios: different intermediate photon energies on the same Linac; between Linacs from the same manufacturer or different manufacturers; open and wedge beams; and extensive photon energies available from published reference data. In addition, 3D dose distributions in water phantom are compared using Gamma analysis. The method is further demonstrated in clinical cases of various tumor sites and multiple treatment modalities. Experimental measurements are performed for IMRT plans and they are analyzed using the standard clinical protocol.ResultsThe synthesis coefficients vary with energy and field size. The root mean square error (RMSE) is within 1.1% for open and wedge fields. Excellent agreement was observed for British Journal of Radiology (BJR) data with an average RMSE of 0.11%. The 3D Gamma analysis shows a good match for all field sizes in the water phantom and all treatment modalities for the five clinical cases. The minimum gamma passing rate of 95.7% was achieved at 1%/1mm criteria for two measured dose distributions of IMRT plans.ConclusionA Linac with two photon energies is capable of producing dosimetrically equivalent plans of any energy in-between through the photon energy synthesis, supporting the notion that there is no need to equip more than two photon energies on each Linac. This can significantly reduce the cost of equipment for radiation therapy.
Collapse
|
4
|
Dwivedi S, Kansal S, Dangwal VK, Bharati A, Shukla J. Dosimetry of a 6 MV flattening filter-free small photon beam using various detectors. Biomed Phys Eng Express 2021; 7. [PMID: 33930875 DOI: 10.1088/2057-1976/abfd80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/30/2021] [Indexed: 11/12/2022]
Abstract
The present study aimed to dosimetrically evaluate the small-fields of a 6 MV flattening filter-free (FFF) photon beam using different detectors.The 6 MV FFF photon beam was used for measurement of output factor, depth dose, and beam profile of small-fields of sizes 0.6 cm × 0.6 cm to 6.0 cm × 6.0 cm. The five detectors used were SNC125c, PinPoint, EDGE, EBT3, and TLD-100. All measurements were performed as per the International Atomic Energy Agency TRS 483 protocol. Output factors measured using different detectors as direct reading ratios showed significant variation for the smallest fields, whereas after correcting them according to TRS 483, all sets of output factors were nearly compatible with each other when measurement uncertainty was also considered. The beam profile measured using SNC125c showed the largest penumbra for all field sizes, whereas the smallest was recorded with EDGE. Compared with that of EBT3, the surface dose was found to be much higher for all the other detectors. PinPoint, EBT3, TLD-100, and EDGE were found to be the detector of choice for small-field output factor measurements; however, PinPoint needs special attention when used for the smallest field size (0.6 cm × 0.6 cm). EDGE and EBT3 are optimal for measuring beam profiles. EBT3, PinPoint, and EDGE can be selected for depth dose measurements, and EBT3 is suitable for surface dose estimation.
Collapse
Affiliation(s)
- Shekhar Dwivedi
- Department of Medical Physics, Tata Memorial Centre, Homi Bhabha Cancer Hospital and Research Centre, Mullanpur, Mohali, Punjab, 140901, India.,Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Sandeep Kansal
- Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Vinod Kumar Dangwal
- Department of Radiotherapy, Government Medical College, Patiala, Punjab, 147001, India
| | - Avinav Bharati
- Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226010, India
| | - Jooli Shukla
- Department of Physics, Dr Bhimrao Ambedkar University, Agra, Uttar Pradesh, 282004, India
| |
Collapse
|
5
|
Lam S, Bradley D, Khandaker M. Small-field radiotherapy photon beam output evaluation: Detectors reviewed. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.108950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
S A P, A A, D S S. A Monte Carlo Study of Photon Beam Characteristics on Various Linear Accelerator Filters. J Biomed Phys Eng 2020; 10:613-622. [PMID: 33134221 PMCID: PMC7557471 DOI: 10.31661/jbpe.v0i0.1192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022]
Abstract
Background: Intensity Modulated Radiation Therapy (IMRT) technique is an advanced method of radiotherapy leading into the development of Flattening Filter-Free (FFF) medical linear accelerators (Linacs). Monte Carlo simulation has been a standard method for calculation of particle transport due to precise geometry and material specifications. Objective: This study is to obtain the design optimization of Flattening Filter Free (FFF) for 6 MV Linac machine Material and Methods: In this simulating study, EGSnrc user code was used to simulate particles emitted from head of linac 6MV Varian to achieve the most suitable
filter in FFF linac design. Monte Carlo simulation results of the PDD and profile, on the 10 × 10 cm2 field, were compared with the measurements. Differences in small profile beams from Monte Carlo simulation were also evaluated between FF and FFF linac. Results: The spectrum on Monte Carlo simulation in isocenter was compared with Treatment Planning System (TPS) for each filter variation.
The slight differences of average spectrum are simulated using 2 mm copper filter and FakeBeam with -1.52 ± 3.82% and -3.13 ± 3.61%.
Whereas, for PDD and profiles, each variation has an average difference of 7.10 ± 0.70% and -5.99 ± 1.39%. Conclusion: FakeBeam filter is a proper filter for the use of linac design 6MV Varian. It is necessary to decrease the kinetic energy of electrons to perform MC simulations on FFF linac.
Collapse
Affiliation(s)
- Pawiro S A
- PhD, Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
| | - Azzi A
- MSc, Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
| | - Soejoko D S
- PhD, Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
| |
Collapse
|
7
|
Rosenfeld AB, Biasi G, Petasecca M, Lerch MLF, Villani G, Feygelman V. Semiconductor dosimetry in modern external-beam radiation therapy. Phys Med Biol 2020; 65:16TR01. [PMID: 32604077 DOI: 10.1088/1361-6560/aba163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Brace OJ, Alhujaili SF, Paino JR, Butler DJ, Wilkinson D, Oborn BM, Rosenfeld AB, Lerch MLF, Petasecca M, Davis JA. Evaluation of the PTW microDiamond in edge-on orientation for dosimetry in small fields. J Appl Clin Med Phys 2020; 21:278-288. [PMID: 32441884 PMCID: PMC7484886 DOI: 10.1002/acm2.12906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/16/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose The PTW microDiamond has an enhanced spatial resolution when operated in an edge‐on orientation but is not typically utilized in this orientation due to the specifications of the IAEA TRS‐483 code of practice for small field dosimetry. In this work the suitability of an edge‐on orientation and advantages over the recommended face‐on orientation will be presented. Methods The PTW microDiamond in both orientations was compared on a Varian TrueBeam linac for: machine output factor (OF), percentage depth dose (PDD), and beam profile measurements from 10 × 10 cm2 to a 0.5 × 0.5 cm2 field size for 6X and 6FFF beam energies in a water tank. A quantification of the stem effect was performed in edge‐on orientation along with tissue to phantom ratio (TPR) measurements. An extensive angular dependence study for the two orientations was also undertaken within two custom PMMA plastic cylindrical phantoms. Results The OF of the PTW microDiamond in both orientations agrees within 1% down to the 2 × 2 cm2 field size. The edge‐on orientation overresponds in the build‐up region but provides improved penumbra and has a maximum observed stem effect of 1%. In the edge‐on orientation there is an angular independent response with a maximum of 2% variation down to a 2 × 2 cm2 field. The PTW microDiamond in edge‐on orientation for TPR measurements agreed to the CC01 ionization chamber within 1% for all field sizes. Conclusions The microDiamond was shown to be suitable for small field dosimetry when operated in edge‐on orientation. When edge‐on, a significantly reduced angular dependence is observed with no significant stem effect, making it a more versatile QA instrument for rotational delivery techniques.
Collapse
Affiliation(s)
- Owen J Brace
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Sultan F Alhujaili
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Jason R Paino
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Duncan J Butler
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, VIC, UK
| | - Dean Wilkinson
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Cancer Care Centre Wollongong Hospital Wollongong, Wollongong, NSW, Australia
| | - Brad M Oborn
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Cancer Care Centre Wollongong Hospital Wollongong, Wollongong, NSW, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Michael L F Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy A Davis
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
9
|
Lechner W, Primeßnig A, Nenoff L, Wesolowska P, Izewska J, Georg D. The influence of errors in small field dosimetry on the dosimetric accuracy of treatment plans. Acta Oncol 2020; 59:511-517. [PMID: 31694438 DOI: 10.1080/0284186x.2019.1685127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Dosimetric effects of inaccuracies of output factors (OFs) implemented in treatment planning systems (TPSs) were investigated.Materials and methods: Modified beam models (MBM) for which the OFs of small fields (down to 1 × 1 cm2) were increased by up to 12% compared to the original beam models (OBM) were created for two TPSs. These beam models were used to recalculate treatment plans of different complexity. Treatment plans using stereotactic 3D-conformal (s3D-CRT) for brain metastasis as well as VMAT plans for head and neck and prostate cancer patients were generated. Dose distributions calculated with the MBM and the OBM were compared to measured dose distributions acquired using film dosimetry and a 2D-detector-array. For the s3D-CRT plans the calculated and measured dose at the isocenter was evaluated. For VMAT, gamma pass rates (GPRs) were calculated using global gamma index with 3%/3 mm, 2%/3 mm, 1%/3 mm and 2%/2 mm with a 20% threshold. Contribution of small fields to the total fluence was expressed as the ratio (F) of fluence trough leaf openings smaller than 2 cm to the total fluence.Results: Using film dosimetry for the s3D-CRT plans, the average of the ratio of calculated dose to measured dose at the isocenter was 1.01 and 1.06 for the OBM and MBM model, respectively. A significantly lower GPR of the MBM compared to the OBM was only found for the localized prostate cases (F = 12.4%) measured with the 2D-detector-array and an acceptance criterion of 1%/3 mm.Conclusion: The effects of uncertainties in small field OFs implemented in TPSs are most pronounced for s3D-CRT cases and can be clearly identified using patient specific quality assurance. For VMAT these effects mainly remain undetected using standard patient specific quality assurance. Using tighter acceptance criteria combined with an analysis of the fluence generated by small fields can help identifying inaccuracies of OFs implemented in TPSs.
Collapse
Affiliation(s)
- Wolfgang Lechner
- Department of Radiation Oncology, Division Medical Physics, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Alexander Primeßnig
- Department of Radiation Oncology, Division Medical Physics, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Lena Nenoff
- Department of Radiation Oncology, Division Medical Physics, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Paulina Wesolowska
- International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Joanna Izewska
- International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Division Medical Physics, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Casar B, Gershkevitsh E, Mendez I, Jurković S, Saiful Huq M. Output correction factors for small static fields in megavoltage photon beams for seven ionization chambers in two orientations - perpendicular and parallel. Med Phys 2020; 47:242-259. [PMID: 31677278 PMCID: PMC7003763 DOI: 10.1002/mp.13894] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/03/2022] Open
Abstract
PURPOSE The goal of the present work was to provide a large set of detector-specific output correction factors for seven small volume ionization chambers on two linear accelerators in four megavoltage photon beams utilizing perpendicular and parallel orientation of ionization chambers in the beam for nominal field sizes ranging from 0.5 cm2 × 0.5 cm2 to 10 cm2 × 10 cm2 . The present study is the second part of an extensive research conducted by our group. METHODS Output correction factors k Q clin , Q ref f clin , f ref were experimentally determined on two linacs, Elekta Versa HD and Varian TrueBeam for 6 and 10 MV beams with and without flattening filter for nine square fields ranging from 0.5 cm2 × 0.5 cm2 to 10 cm2 × 10 cm2 , for seven mini and micro ionization chambers, IBA CC04, IBA Razor, PTW 31016 3D PinPoint, PTW 31021 3D Semiflex, PTW 31022 3D PinPoint, PTW 31023 PinPoint, and SI Exradin A16. An Exradin W1 plastic scintillator and EBT3 radiochromic films were used as the reference detectors. RESULTS For all ionization chambers, values of output correction factors k Q clin , Q ref f clin , f ref were lower for parallel orientation compared to those obtained in the perpendicular orientation. Five ionization chambers from our study set, IBA Razor, PTW 31016 3D PinPoint, PTW 31022 3D PinPoint, PTW 31023 PinPoint, and SI Exradin A16, fulfill the requirement recommended in the TRS-483 Code of Practice, that is, 0.95 < k Q clin , Q ref f clin , f ref < 1.05 , down to the field size 0.8 cm2 × 0.8 cm2 , when they are positioned in parallel orientation; two of the ionization chambers, IBA Razor and PTW 31023 PinPoint, satisfy this condition down to the field size of 0.5 cm2 × 0.5 cm2 . CONCLUSIONS The present paper provides experimental results of detector-specific output correction factors for seven small volume ionization chambers. Output correction factors were determined in 6 and 10 MV photon beams with and without flattening filter down to the square field size of 0.5 cm2 × 0.5 cm2 for two orientations of ionization chambers - perpendicular and parallel. Our main finding is that output correction factors are smaller if they are determined in a parallel orientation compared to those obtained in a perpendicular orientation for all ionization chambers regardless of the photon beam energy, filtration, or linear accelerator being used. Based on our findings, we recommend using ionization chambers in parallel orientation, to minimize corrections in the experimental determination of field output factors. Latter holds even for field sizes below 1.0 cm2 × 1.0 cm2 , whenever necessary corrections remain within 5%, which was the case for several ionization chambers from our set. TRS-483 recommended perpendicular orientation of ionization chambers for the determination of field output factors. The present study presents results for both perpendicular and parallel orientation of ionization chambers. When validated by other researchers, the present results for parallel orientation can be considered as a complementary dataset to those given in TRS-483.
Collapse
Affiliation(s)
- Božidar Casar
- Department for Dosimetry and Quality of Radiological ProceduresInstitute of Oncology LjubljanaLjubljanaSlovenia
| | | | - Ignasi Mendez
- Department for Dosimetry and Quality of Radiological ProceduresInstitute of Oncology LjubljanaLjubljanaSlovenia
| | - Slaven Jurković
- Medical Physics DepartmentUniversity Hospital RijekaRijekaCroatia
- Department of Physics and BiophysicsFaculty of MedicineUniversity of RijekaRijekaCroatia
| | - M. Saiful Huq
- Department of Radiation OncologyUniversity of Pittsburgh School of Medicine and UPMC Hillman Cancer CenterPittsburghPAUSA
| |
Collapse
|
11
|
The effect of SSD, Field size, Energy and Detector type for Relative Output Factor measurement in small photon beams as compared with Monte Carlo simulation. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2019. [DOI: 10.2478/pjmpe-2019-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Introduction: Small fields photon dosimetry is associated with many problems. Using the right detector for measurement plays a fundamental role. This study investigated the measurement of relative output for small photon fields with different detectors. It was investigated for three-photon beam energies at SSDs of 90, 95, 100 and 110 cm. As a benchmark, the Monte Carlo simulation was done to calculate the relative output of these small photon beams for the dose in water.
Materials and Methods: 6, 10 and 15 MV beams were delivered from a Synergy LINAC equipped with an Agility 160 multileaf collimator (MLC). A CC01 ion chamber, EFD-3G diode, PTW60019 microdiamond, EBT2 radiochromic film, and EDR2 radiographic film were used to measure the relative output of the linac. Measurements were taken in water for the CC01 ion chamber, EFD-3G diode, and the PTW60019. Films were measured in water equivalent RW3 phantom slabs. Measurements were made for 1 × 1, 2 × 2, 3 × 3, 4 × 4, 5 × 5 and a reference field of 10 × 10 cm2. Field sizes were defined at 100cm SSD. Relative output factors were also compared with Monte Carlo (MC) simulation of the LINAC and a water phantom model. The influence of voxel size was also investigated for relative output measurement. Results and Discussion: The relative output factor (ROF) increased with energy for all fields large enough to have lateral electronic equilibrium (LEE). This relation broke down as the field sizes decreased due to the onset of lateral electronic disequilibrium (LED). The high-density detector, PTW60019 gave the highest ROF for the different energies, with the less dense CC01 giving the lowest ROFs.
Conclusion: These are results compared to MC simulation, higher density detectors give higher ROF values. Relative to water, the ROF measured with the air-chamber remained virtually unchanged. The ROFs, as measured in this study showed little variation due to increased SSDs. The effect of voxel size for the Monte Carlo calculations in water does not lead to significant ROF variation over the small fields studied.
Collapse
|
12
|
Shamsi QUA, Ahmad Buzdar S, Altaf S, Atiq A, Atiq M, Iqbal K. Total scatter factor for small fields in radiotherapy: a dosimetric comparison. JOURNAL OF RADIOTHERAPY IN PRACTICE 2018; 17:292-296. [DOI: 10.1017/s1460396917000681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPurposeSmall field dosimetry is complicated and accuracy in the measurement of total scatter factor (TSF) is crucial for dosimetric calculations, in making optimum intensity-modulated radiotherapy plans for treating small target volumes. In this study, we intended to determine the TSF measuring properties of CC01 and CC04 detectors for field sizes ranging from sub-centimetre to the centimetre fields.Material and methodsCC01 and CC04 chamber detectors were used to measure TSF for 6 and 18 MV photon beam delivered from the linear accelerator, through small fields in a water phantom. Small fields were created by collimator jaws and multi-leaf collimators separately, with field sizes ranging from 0·6 to 10 cm2and 0·5 to 20 cm2, respectively.ResultsCC01 measured TSF at all the given field sizes created by jaws and multi-leaf collimators for both 6 and 18 MV beams whereas CC04 could not measure TSF for field sizes <1 cm2due to volume averaging and perturbation effects.ConclusionCC01 was shown to be effective for measurement of TSF in sub-centimetre field sizes. CC01 can be employed to measure other dosimetric quantities in small fields using different energy beams.
Collapse
|
13
|
Lechner W, Wesolowska P, Azangwe G, Arib M, Alves VGL, Suming L, Ekendahl D, Bulski W, Samper JLA, Vinatha SP, Siri S, Tomsej M, Tenhunen M, Povall J, Kry SF, Followill DS, Thwaites DI, Georg D, Izewska J. A multinational audit of small field output factors calculated by treatment planning systems used in radiotherapy. Phys Imaging Radiat Oncol 2018; 5:58-63. [PMID: 33458370 PMCID: PMC7807586 DOI: 10.1016/j.phro.2018.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND AND PURPOSE An audit methodology for verifying the implementation of output factors (OFs) of small fields in treatment planning systems (TPSs) used in radiotherapy was developed and tested through a multinational research group and performed on a national level in five different countries. MATERIALS AND METHODS Centres participating in this study were asked to provide OFs calculated by their TPSs for 10 × 10 cm2, 6 × 6 cm2, 4 × 4 cm2, 3 × 3 cm2 and 2 × 2 cm2 field sizes using an SSD of 100 cm. The ratio of these calculated OFs to reference OFs was analysed. The action limit was ±3% for the 2 × 2 cm2 field and ±2% for all other fields. RESULTS OFs for more than 200 different beams were collected in total. On average, the OFs for small fields calculated by TPSs were generally larger than measured reference data. These deviations increased with decreasing field size. On a national level, 30% and 31% of the calculated OFs of the 2 × 2 cm2 field exceeded the action limit of 3% for nominal beam energies of 6 MV and for nominal beam energies higher than 6 MV, respectively. CONCLUSION Modern TPS beam models generally overestimate the OFs for small fields. The verification of calculated small field OFs is a vital step and should be included when commissioning a TPS. The methodology outlined in this study can be used to identify potential discrepancies in clinical beam models.
Collapse
Affiliation(s)
- Wolfgang Lechner
- International Atomic Energy Agency, Vienna, Austria
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Vienna, Austria
| | | | - Godfrey Azangwe
- International Atomic Energy Agency, Vienna, Austria
- National University of Science and Technology, Bulawayo, Zimbabwe
| | - Mehenna Arib
- Centre De Recherche Nucleaire D’alger, Alger Gare, Algeria
| | | | - Luo Suming
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | | | - Wojciech Bulski
- Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
| | | | - Sumanth Panyam Vinatha
- Radiation Standards Section, Radiation Safety Systems Division, Bhabha Atomic Research Centre Trombay, Mumbai, India
| | - Srimanoroth Siri
- SSDL, Bureau of Radiation and Medical Devices, Department of Medical Science, Nonthaburi, Thailand
| | - Milan Tomsej
- CHU Charleroi, Hopital Andre Vesale, Montigny-le-Tilleul, Belgium
| | - Mikko Tenhunen
- Helsinki University Hospital, Cancer Centre, Helsinki, Finland
| | - Julie Povall
- Department of Medical Physics & Engineering, St James’s University Hospital, Leeds, United Kingdom
| | - Stephen F. Kry
- Imaging and Radiation Oncology Core Houston QA Centre, MD Anderson Cancer Centre, Houston, TX, United States
| | - David S. Followill
- Imaging and Radiation Oncology Core Houston QA Centre, MD Anderson Cancer Centre, Houston, TX, United States
| | - David I. Thwaites
- University of Leeds, St James’s University Hospital, Leeds, United Kingdom
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, Australia
| | - Dietmar Georg
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Vienna, Austria
| | | |
Collapse
|
14
|
Biasi G, Petasecca M, Guatelli S, Hardcastle N, Carolan M, Perevertaylo V, Kron T, Rosenfeld AB. A novel high-resolution 2D silicon array detector for small field dosimetry with FFF photon beams. Phys Med 2017; 45:117-126. [PMID: 29472075 DOI: 10.1016/j.ejmp.2017.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Flattening filter free (FFF) beams are increasingly being considered for stereotactic radiotherapy (SRT). For the first time, the performance of a monolithic silicon array detector under 6 and 10 MV FFF beams was evaluated. The dosimeter, named "Octa" and designed by the Centre for Medical Radiation Physics (CMRP), was tested also under flattened beams for comparison. METHODS Output factors (OFs), percentage depth-dose (PDD), dose profiles (DPs) and dose per pulse (DPP) dependence were investigated. Results were benchmarked against commercially available detectors for small field dosimetry. RESULTS The dosimeter was shown to be a 'correction-free' silicon array detector for OFs and PDD measurements for all the beam qualities investigated. Measured OFs were accurate within 3% and PDD values within 2% compared against the benchmarks. Cross-plane, in-plane and diagonal DPs were measured simultaneously with high spatial resolution (0.3 mm) and real time read-out. A DPP dependence (24% at 0.021 mGy/pulse relative to 0.278 mGy/pulse) was found and could be easily corrected for in the case of machine specific quality assurance applications. CONCLUSIONS Results were consistent with those for monolithic silicon array detectors designed by the CMRP and previously characterized under flattened beams only, supporting the robustness of this technology for relative dosimetry for a wide range of beam qualities and dose per pulses. In contrast to its predecessors, the design of the Octa offers an exhaustive high-resolution 2D dose map characterization, making it a unique real-time radiation detector for small field dosimetry for field sizes up to 3 cm side.
Collapse
Affiliation(s)
- G Biasi
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - M Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - S Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - N Hardcastle
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - M Carolan
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW, Australia
| | | | - T Kron
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Cancer Institute, University of Melbourne, Australia
| | - A B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
15
|
Veselsky T, Novotny J, Pastykova V, Koniarova I. Determination of small field synthetic single-crystal diamond detector correction factors for CyberKnife, Leksell Gamma Knife Perfexion and linear accelerator. Phys Med 2017; 44:66-71. [DOI: 10.1016/j.ejmp.2017.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/09/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022] Open
|
16
|
Aland T, Jhala E, Kairn T, Trapp J. Film dosimetry using a smart device camera: a feasibility study for point dose measurements. ACTA ACUST UNITED AC 2017; 62:N506-N515. [DOI: 10.1088/1361-6560/aa8b36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Small field correction factors for the IBA Razor. Phys Med 2016; 32:1025-9. [DOI: 10.1016/j.ejmp.2016.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/09/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022] Open
|