1
|
Prostate Cancer Radiation Therapy: What Do Clinicians Have to Know? BIOMED RESEARCH INTERNATIONAL 2016; 2016:6829875. [PMID: 28116302 PMCID: PMC5225325 DOI: 10.1155/2016/6829875] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Radiotherapy (RT) for prostate cancer (PC) has steadily evolved over the last decades, with improving biochemical disease-free survival. Recently population based research also revealed an association between overall survival and doses ≥ 75.6 Gray (Gy) in men with intermediate- and high-risk PC. Examples of improved RT techniques are image-guided RT, intensity-modulated RT, volumetric modulated arc therapy, and stereotactic ablative body RT, which could facilitate further dose escalation. Brachytherapy is an internal form of RT that also developed substantially. New devices such as rectum spacers and balloons have been developed to spare rectal structures. Newer techniques like protons and carbon ions have the intrinsic characteristics maximising the dose on the tumour while minimising the effect on the surrounding healthy tissue, but clinical data are needed for confirmation in randomised phase III trials. Furthermore, it provides an overview of an important discussion issue in PC treatment between urologists and radiation oncologists: the comparison between radical prostatectomy and RT. Current literature reveals that all possible treatment modalities have the same cure rate, but a different toxicity pattern. We recommend proposing the possible different treatment modalities with their own advantages and side-effects to the individual patient. Clinicians and patients should make treatment decisions together (shared decision-making) while using patient decision aids.
Collapse
|
2
|
Yamoah K, Zaorsky NG, Siglin J, Shi W, Werner-Wasik M, Andrews DW, Dicker AP, Bar-Ad V, Liu H. Spine Stereotactic Body Radiation Therapy Residual Setup Errors and Intra-Fraction Motion Using the Stereotactic X-Ray Image Guidance Verification System. ACTA ACUST UNITED AC 2014; 3:1-8. [PMID: 29333353 PMCID: PMC5766040 DOI: 10.4236/ijmpcero.2014.31001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Purpose To determine the precision of our institution’s current immobilization devices for spine SBRT, ultimately leading to recommendations for appropriate planning margins. Methods We identified 12 patients (25 treatments) with spinal metastasis treated with spine Stereotactic Body Radiation Therapy (SBRT). The Body-FIX system was used as immobilization device for thoracic (T) and lumbar (L) spine lesions. The head and shoulder mask system was used as immobilization device for cervical (C) spine lesions. Initial patient setup used the infrared positioning system with body markers. Stereotactic X-ray imaging was then performed and correction was made if the initial setup error exceeded predetermined institutional tolerances, 1.5 mm for translation and 2° for rotation. Three additional sets of verification X-rays were obtained pre-, mid-, and post-treatment for all treatments. Results Intrafraction motion regardless of immobilization technique was found to be 1.28 ± 0.57 mm. The mean and standard deviation of the variances along each direction were as follows: Superior-inferior, 0.56 ± 0.39 mm and 0.77 ± 0.52 mm, (p = 0.25); Anterior-posterior, 0.57 ± 0.43 mm and 1.14 ± 0.61 mm, (p = 0.01); Left-right, 0.48 ± 0.34 mm and 0.74 ± 0.40 mm, (p = 0.09) respectively. There was a significantly greater difference in the average 3D variance of the BodyFIX as compared to the head and shoulder mask immobilization system, 1.04 ± 0.46 mm and 1.71 ± 0.52 mm; (p = 0.003) respectively. Conclusions Overall, our institution’s image guidance system using stereotactic X-ray imaging verification provides acceptable localization accuracy as previously defined in the literature. We observed a greater intrafraction motion for the head and shoulder mask as compared with the BodyFIX immobilization system, which may be a result of greater C-spine mobility and/or the suboptimal mask immobilization. Thus, better immobilization techniques for C-spine SBRT are needed to reduce setup error and intrafraction motion. We are currently exploring alternative C-spine immobilization techniques to improve set up accuracy and decrease intrafraction motion during treatment.
Collapse
Affiliation(s)
- Kosj Yamoah
- Department of Radiation Oncology, Jefferson Medical College and Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, USA
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Jefferson Medical College and Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, USA.,Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - Joshua Siglin
- Department of Radiation Oncology, Jefferson Medical College and Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Jefferson Medical College and Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, USA
| | - Maria Werner-Wasik
- Department of Radiation Oncology, Jefferson Medical College and Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, USA
| | - David W Andrews
- Department of Neurological Surgery, Jefferson Medical College, Philadelphia, USA
| | - Adam P Dicker
- Department of Radiation Oncology, Jefferson Medical College and Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, USA
| | - Voichita Bar-Ad
- Department of Radiation Oncology, Jefferson Medical College and Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, USA
| | - Haisong Liu
- Department of Radiation Oncology, Jefferson Medical College and Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
3
|
Watanabe M, Onishi H, Kuriyama K, Komiyama T, Marino K, Araya M, Saito R, Aoki S, Maehata Y, Tominaga R, Oguri J, Sano N, Araki T. Intrafractional setup errors in patients undergoing non-invasive fixation using an immobilization system during hypofractionated stereotactic radiotherapy for lung tumors. JOURNAL OF RADIATION RESEARCH 2013; 54:762-768. [PMID: 23412467 PMCID: PMC3709672 DOI: 10.1093/jrr/rrt001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/29/2012] [Accepted: 12/31/2012] [Indexed: 06/01/2023]
Abstract
Intrafractional setup errors during hypofractionated stereotactic radiotherapy (SRT) were investigated on the patient under voluntary breath-holding conditions with non-invasive immobilization on the CT-linac treatment table. A total of 30 patients with primary and metastatic lung tumors were treated with the hypofractionated SRT with a total dose of 48-60 Gy with four treatment fractions. The patient was placed supine and stabilized on the table with non-invasive patient fixation. Intrafractional setup errors in Right/Left (R.L.), Posterior/Anterior (P.A.), and Inferior/Superior (I.S.) dimensions were analyzed with pre- and post-irradiation CT images. The means and one standard deviation of the intrafractional errors were 0.9 ± 0.7mm (R.L.), 0.9 ± 0.7mm (P.A.) and 0.5 ± 1.0 mm (I.S.). Setup errors in each session of the treatment demonstrated no statistically significant difference in the mean value between any two sessions. The frequency within 3mm displacement was 98% in R.L., 98% in P.A. and 97% in I.S. directions. SRT under the non-invasive patient fixation immobilization system with a comparatively loose vacuum pillow demonstrated satisfactory reproducibility of minimal setup errors with voluntary breath-holding conditions that required a small internal margin.
Collapse
Affiliation(s)
- Meguru Watanabe
- Department of Radiation Oncology, University of Yamanashi, 1110, Chuo-city, Yamanashi 409-3898, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Scorsetti M, Alongi F, Castiglioni S, Clivio A, Fogliata A, Lobefalo F, Mancosu P, Navarria P, Palumbo V, Pellegrini C, Pentimalli S, Reggiori G, Ascolese AM, Roggio A, Arcangeli S, Tozzi A, Vanetti E, Cozzi L. Feasibility and early clinical assessment of flattening filter free (FFF) based stereotactic body radiotherapy (SBRT) treatments. Radiat Oncol 2011; 6:113. [PMID: 21910868 PMCID: PMC3179946 DOI: 10.1186/1748-717x-6-113] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/12/2011] [Indexed: 01/07/2023] Open
Abstract
Purpose To test feasibility and safety of clinical usage of Flattening Filter Free (FFF) beams for delivering ablative stereotactic body radiation therapy (SBRT) doses to various tumor sites, by means of Varian TrueBeam™ (Varian Medical Systems). Methods and Materials Seventy patients were treated with SBRT and FFF: 51 lesions were in the thorax (48 patients),10 in the liver, 9 in isolated abdominal lymph node, adrenal gland or pancreas. Doses ranged from 32 to 75 Gy, depending on the anatomical site and the volume of the lesion to irradiate. Lung lesions were treated with cumulative doses of 32 or 48 Gy, delivered in 4 consecutive fractions. The liver patients were treated in 3 fractions with total dose of 75 Gy. The isolated lymph nodes were irradiated in 6 fractions with doses of 45 Gy. The inclusion criteria were the presence of isolated node, or few lymph nodes in the same lymph node region, in absence of other active sites of cancer disease before the SBRT treatment. Results All 70 patients completed the treatment. The minimum follow-up was 3 months. Six cases of acute toxicities were recorded (2 Grade2 and 2 Grade3 in lung and 2 Grade2 in abdomen). No patient experienced acute toxicity greater than Grade3. No other types or grades of toxicities were observed at clinical evaluation visits. Conclusions This study showed that, with respect to acute toxicity, SBRT with FFF beams showed to be a feasible technique in 70 consecutive patients with various primary and metastatic lesions in the body.
Collapse
Affiliation(s)
- Marta Scorsetti
- Radiotherapy and Radiosurgery, Humanitas Cancer Center, Istituto Clinico Humanitas, Rozzano (Milano), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, Keall P, Lovelock M, Meeks S, Papiez L, Purdie T, Sadagopan R, Schell MC, Salter B, Schlesinger DJ, Shiu AS, Solberg T, Song DY, Stieber V, Timmerman R, Tomé WA, Verellen D, Wang L, Yin FF. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys 2010; 37:4078-101. [PMID: 20879569 DOI: 10.1118/1.3438081] [Citation(s) in RCA: 1476] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Task Group 101 of the AAPM has prepared this report for medical physicists, clinicians, and therapists in order to outline the best practice guidelines for the external-beam radiation therapy technique referred to as stereotactic body radiation therapy (SBRT). The task group report includes a review of the literature to identify reported clinical findings and expected outcomes for this treatment modality. Information is provided for establishing a SBRT program, including protocols, equipment, resources, and QA procedures. Additionally, suggestions for developing consistent documentation for prescribing, reporting, and recording SBRT treatment delivery is provided.
Collapse
Affiliation(s)
- Stanley H Benedict
- University of Virginia Health System, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ali I, Tubbs J, Hibbitts K, Algan O, Thompson S, Herman T, Ahmad S. Evaluation of the setup accuracy of a stereotactic radiotherapy head immobilization mask system using kV on-board imaging. J Appl Clin Med Phys 2010; 11:3192. [PMID: 20717086 PMCID: PMC5720447 DOI: 10.1120/jacmp.v11i3.3192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/01/2009] [Accepted: 03/27/2010] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to evaluate setup accuracy and quantify random and systematic errors of the BrainLAB stereotactic immobilization mask and localization system using kV on‐board imaging. Nine patients were simulated and set up with the BrainLAB stereotactic head immobilization mask and localizer to be treated for brain lesions using single and hypofractions. Orthogonal pairs of projections were acquired using a kV on‐board imager mounted on a Varian Trilogy machine. The kV projections were then registered with digitally‐reconstructed radiographs (DRR) obtained from treatment planning. Shifts between the kV images and reference DRRs were calculated in the different directions: anterior‐posterior (A‐P), medial‐lateral (R‐L) and superior‐inferior (S‐I). If the shifts were larger than 2 mm in any direction, the patient was reset within the immobilization mask until satisfying setup accuracy based on image guidance has been achieved. Shifts as large as 4.5 mm, 5.0 mm, 8.0 mm in the A‐P, R‐L and S‐I directions, respectively, were measured from image registration of kV projections and DRRs. These shifts represent offsets between the treatment and simulation setup using immobilization mask. The mean offsets of 0.1 mm, 0.7 mm, and −1.6 mm represent systematic errors of the BrainLAB localizer in the A‐P, R‐L and S‐I directions, respectively. The mean of the radial shifts is about 1.7 mm. The standard deviations of the shifts were 2.2 mm, 2.0 mm, and 2.6 mm in A‐P, R‐L and S‐I directions, respectively, which represent random patient setup errors with the BrainLAB mask. The BrainLAB mask provides a noninvasive, practical and flexible immobilization system that keeps the patients in place during treatment. Relying on this system for patient setup might be associated with significant setup errors. Image guidance with the kV on‐board imager provides an independent verification technique to ensure accuracy of patient setup. Since the patient may relax or move during treatment, uncontrolled and undetected setup errors may be produced with patients that are not well‐immobilized. Therefore, the combination of stereotactic immobilization and image guidance achieves more controlled and accurate patient setup within 2 mm in A‐P, R‐L and S‐I directions. PACS numbers: 87.56.‐v, 87.56.Da
Collapse
Affiliation(s)
- Imad Ali
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Ali I, Ahmad S. Evaluation of the effects of sagging shifts on isocenter accuracy and image quality of cone-beam CT from kV on-board imagers. J Appl Clin Med Phys 2009; 10:180-194. [PMID: 19692976 PMCID: PMC5720558 DOI: 10.1120/jacmp.v10i3.2930] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 12/16/2008] [Accepted: 02/18/2009] [Indexed: 11/30/2022] Open
Abstract
To investigate the effects of sagging shifts of three on-board kV imaging systems (OBI) on the isocenter positioning accuracy and image quality of cone-beam CT (CBCT). A cubical phantom having a metal marker in the center that can be aligned with the radiation isocenter was used to measure sagging shifts and their variation with gantry angle on three Varian linacs with kV on-board imaging systems. A marker-tracking algorithm was applied to detect the shadow of the metal marker and localize its center in the two-dimensional cone-beam radiographic projections. This tracking algorithm is based on finding the position of maximum cross-correlation between a region-of-interest from a template image (including the metal marker) and the projections containing the shadow of the metal marker. Sagging shifts were corrected by mapping the center of the metal marker to a reference position for all projections acquired over a full gantry rotation (0-360 degrees). The sag-corrected radiographic projections were then used to reconstruct CBCT using Feldkamp back-projection. A standard quality assurance phantom was used to evaluate the image quality of CBCT before and after sagging correction. Sagging affects both the positioning accuracy of the OBI isocenter and the CBCT image quality. For example, on one linac, the position of the marker on the cone-beam radiographic projections depends on the angular view and has maximal shifts of about 2 mm along the imager x-direction (patient's cross-plane). Sagging produces systematic shifts of the OBI isocenter as large as 1 mm posterior and 1 mm left in patient coordinates relative to the radiation isocenter. Further, it causes spatial distortion and blurring in CBCT image reconstructed from radiographic projections that are not corrected for OBI sagging. CBCT numbers vary by about 1% in full-fan scans and up to 3.5% in half-fan scans because of sagging. In order to achieve better localization accuracy in image-guided radiation therapy, sagging shifts of the kV OBI need to be corrected. In addition, correction of sagging improves image and provides better visualization of internal structures. Frequent quality assurance is required to monitor and maintain standards of variations in the mechanical accuracy of isocenter and image quality of CBCT because of sagging shifts.
Collapse
Affiliation(s)
- Imad Ali
- Department of Radiation OncologyOklahoma University Health Sciences CenterOklahoma CityOK73104USA
| | - Salahuddin Ahmad
- Department of Radiation OncologyOklahoma University Health Sciences CenterOklahoma CityOK73104USA
| |
Collapse
|
8
|
Vesper J, Bölke B, Wille C, Gerber PA, Matuschek C, Peiper M, Steiger HJ, Budach W, Lammering G. Current concepts in stereotactic radiosurgery - a neurosurgical and radiooncological point of view. Eur J Med Res 2009; 14:93-101. [PMID: 19380278 PMCID: PMC3352064 DOI: 10.1186/2047-783x-14-3-93] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stereotactic radiosurgery is related to the history of "radiotherapy" and "stereotactic neurosurgery". The concepts for neurosurgeons and radiooncologists have been changed during the last decade and have also transformed neurosurgery. The gamma knife and the stereotactically modified linear accelerator (LINAC) are radiosurgical equipments to treat predetermined intracranial targets through the intact skull without damaging the surrounding normal brain tissue. These technical developments allow a more precise intracranial lesion control and offer even more conformal dose plans for irregularly shaped lesions. Histological determination by stereotactic biopsy remains the basis for any otherwise undefined intracranial lesion. As a minimal approach, it allows functional preservation, low risk and high sensitivity. Long-term results have been published for various indications. The impact of radiosurgery is presented for the management of gliomas, metastases, brain stem lesions, benign tumours and vascular malformations and selected functional disorders such as trigeminal neuralgia. In AVM's it can be performed as part of a multimodality strategy including resection or endovascular embolisation. Finally, the technological advances in radiation oncology as well as stereotactic neurosurgery have led to significant improvements in radiosurgical treatment opportunities. Novel indications are currently under investigation. The combination of both, the neurosurgical and the radiooncological expertise, will help to minimize the risk for the patient while achieving a greater treatment success.
Collapse
Affiliation(s)
- Jan Vesper
- Department of Neurosurgery, University of Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Boda-Heggemann J, Köhler FM, Wertz H, Ehmann M, Hermann B, Riesenacker N, Küpper B, Lohr F, Wenz F. Intrafraction motion of the prostate during an IMRT session: a fiducial-based 3D measurement with Cone-beam CT. Radiat Oncol 2008; 3:37. [PMID: 18986517 PMCID: PMC2588616 DOI: 10.1186/1748-717x-3-37] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 11/05/2008] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Image-guidance systems allow accurate interfractional repositioning of IMRT treatments, however, these may require up to 15 minutes. Therefore intrafraction motion might have an impact on treatment precision. 3D geometric data regarding intrafraction prostate motion are rare; we therefore assessed its magnitude with pre- and post-treatment fiducial-based imaging with cone-beam-CT (CBCT). METHODS 39 IMRT fractions in 5 prostate cancer patients after 125I-seed implantation were evaluated. Patient position was corrected based on the 125I-seeds after pre-treatment CBCT. Immediately after treatment delivery, a second CBCT was performed. Differences in bone- and fiducial position were measured by seed-based grey-value matching. RESULTS Fraction time was 13.6 +/- 1.6 minutes. Median overall displacement vector length of 125I-seeds was 3 mm (M = 3 mm, Sigma = 0.9 mm, sigma = 1.7 mm; M: group systematic error, Sigma: SD of systematic error, sigma: SD of random error). Median displacement vector of bony structures was 1.84 mm (M = 2.9 mm, Sigma = 1 mm, sigma = 3.2 mm). Median displacement vector length of the prostate relative to bony structures was 1.9 mm (M = 3 mm, Sigma = 1.3 mm, sigma = 2.6 mm). CONCLUSION a) Overall displacement vector length during an IMRT session is < 3 mm.b) Positioning devices reducing intrafraction bony displacements can further reduce overall intrafraction motion.c) Intrafraction prostate motion relative to bony structures is < 2 mm and may be further reduced by institutional protocols and reduction of IMRT duration.
Collapse
Affiliation(s)
- Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Frederick Marc Köhler
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Hansjörg Wertz
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Michael Ehmann
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Brigitte Hermann
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Nadja Riesenacker
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Beate Küpper
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Frank Lohr
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| |
Collapse
|
10
|
Benedict SH, Bova FJ, Clark B, Goetsch SJ, Hinson WH, Leavitt DD, Schlesinger DJ, Yenice KM. The role of medical physicists in developing stereotactic radiosurgery. Med Phys 2008; 35:4262-77. [DOI: 10.1118/1.2969268] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
11
|
Timmerman RD, Kavanagh BD, Cho LC, Papiez L, Xing L. Stereotactic body radiation therapy in multiple organ sites. J Clin Oncol 2007; 25:947-52. [PMID: 17350943 DOI: 10.1200/jco.2006.09.7469] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Stereotactic body radiation therapy (SBRT) uses advanced technology to deliver a potent ablative dose to deep-seated tumors in the lung, liver, spine, pancreas, kidney, and prostate. METHODS SBRT involves constructing very compact high-dose volumes in and about the tumor. Tumor position must be accurately assessed throughout treatment, especially for tumors that move with respiration. Sophisticated image guidance and related treatment delivery technologies have developed to account for such motion and efficiently deliver high daily dose. All this serves to allow the delivery of ablative dose fractionation to the target capable of both disrupting tumor mitosis and cellular function. RESULTS Prospective phase I dose-escalation trials have been carried out to reach potent tumoricidal dose levels capable of eradicating tumors with high likelihood. These studies indicate a clear dose-response relationship for tumor control with escalating dose of SBRT. Prospective phase II studies have been reported from several continents consistently showing very high levels of local tumor control. Although late toxicity requires further careful assessment, acute and subacute toxicities are generally acceptable. Patterns of toxicity, both clinical and radiographic, are distinct from those observed with conventionally fractionated radiotherapy as a result of the unique biologic response to ablative fractionation. CONCLUSION Prospective trials using SBRT have confirmed the efficacy of treatment in a variety of patient populations. Although mechanisms of ablative-dose injury remain elusive, ongoing prospective trials offer the hope of finding the ideal application for SBRT in the treatment arsenal.
Collapse
Affiliation(s)
- Robert D Timmerman
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9183, USA.
| | | | | | | | | |
Collapse
|
12
|
Zhang M, Moiseenko V, Liu M. PTV margin for dose escalated radiation therapy of prostate cancer with daily on-line realignment using internal fiducial markers: Monte Carlo approach and dose population histogram (DPH) analysis. J Appl Clin Med Phys 2006; 7:38-49. [PMID: 17533327 PMCID: PMC5722437 DOI: 10.1120/jacmp.v7i2.2210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 03/22/2006] [Accepted: 12/31/1969] [Indexed: 12/25/2022] Open
Abstract
Using internal fiducial markers and electronic portal imaging (EPI) to realign patients has been shown to significantly reduce positioning uncertainties in prostate radiation treatment. This creates the possibility of decreasing the planning target volume (PTV) margin added on the clinical target volume (CTV), which in turn may allow for dose escalation. We compared the outcome of two plans: 70 Gy/35 fx, 10‐mm PTV margin without patient realignment (Reference Plan) and 78 Gy/39 fx, 5‐mm PTV margin with patient realignment (Escalated Plan). Four‐field‐oblique (gantry angles 35°, 90°, 270°, 325°) beam arrangement was used. Monte Carlo code was used to simulate the daily organ motion. Dose to each organ was calculated. Tumor control probability (TCP) and the effective dose to critical organs (Deff) were calculated using the biologically normalized dose‐volume histograms. By comparing the biological factors, we found that the prescription dose can be escalated to 78 Gy/39 fx with a 5‐mm PTV margin when using internal fiducial markers and EPI. Based on the available dose‐response data for intermediate risk prostate patients, this will result in a 20% increase of local control and significantly reduced rectal complications provided that less serial dose‐volume behavior of rectum is proven. PACS number: 87.50.‐a
Collapse
Affiliation(s)
- Miao Zhang
- Department of Medical Physics, British Columbia Cancer Agency-Fraser Valley Centre, Surrey, British Columbia, Canada.
| | | | | |
Collapse
|
13
|
Wang L, Li J, Paskalev K, Hoban P, Luo W, Chen L, McNeeley S, Price R, Ma C. Commissioning and quality assurance of a commercial stereotactic treatment-planning system for extracranial IMRT. J Appl Clin Med Phys 2006; 7:21-34. [PMID: 16518314 PMCID: PMC5722476 DOI: 10.1120/jacmp.v7i1.2125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A 3D treatment‐planning system (TPS) for stereotactic intensity‐modulated radiotherapy (IMRT) using a micro‐multileaf collimator has been made available by Radionics. In this work, we report our comprehensive quality assurance (QA) procedure for commissioning this TPS. First, the accuracy of stereotaxy established with a body frame was checked to ensure accurate determination of a target position within the planning system. Second, the CT‐to‐electron density conversion curve used in the TPS was fitted to our site‐specific measurement data to ensure the accuracy of dose calculation and measurement verification in a QA phantom. Using the QA phantom, the radiological path lengths were verified against known geometrical depths to ensure the accuracy of the ray‐tracing algorithm. We also checked inter‐ and intraleaf leakage/transmission for adequate jaw settings. Measurements for dose verification were performed in various head/neck and prostate IMRT treatment plans using the patient‐specific optimized fluence maps. Both ion chamber and film were used for point dose and isodose distribution verifications. To ensure that adjacent organs at risk receive dose within the expectation, we used the Monte Carlo method to calculate dose distributions and dose‐volume histograms (DVHs) for these organs at risk. The dosimetric accuracy satisfied the published acceptability criteria. The Monte Carlo calculations confirmed the measured dose distributions for target volumes. For organs located on the beam boundary or outside the beam, some differences in the DVHs were noticed. However, the plans calculated by both methods met our clinical criteria. We conclude that the accuracy of the XKnife™ RT2 treatment‐planning system is adequate for the clinical implementation of stereotactic IMRT. PACS numbers: 87.53.Xd, 87.53.Ly, 87.53.Wz
Collapse
MESH Headings
- Brain Neoplasms/diagnostic imaging
- Brain Neoplasms/radiotherapy
- Equipment Failure Analysis/instrumentation
- Equipment Failure Analysis/methods
- Equipment Failure Analysis/standards
- Humans
- Imaging, Three-Dimensional/instrumentation
- Imaging, Three-Dimensional/methods
- Imaging, Three-Dimensional/standards
- Phantoms, Imaging
- Quality Assurance, Health Care/methods
- Quality Assurance, Health Care/standards
- Radiographic Image Interpretation, Computer-Assisted/methods
- Radiographic Image Interpretation, Computer-Assisted/standards
- Radiometry/instrumentation
- Radiometry/methods
- Radiometry/standards
- Radiosurgery/instrumentation
- Radiosurgery/methods
- Radiosurgery/standards
- Radiotherapy Dosage
- Radiotherapy Planning, Computer-Assisted/methods
- Radiotherapy Planning, Computer-Assisted/standards
- Radiotherapy, Conformal/instrumentation
- Radiotherapy, Conformal/methods
- Radiotherapy, Conformal/standards
- Reproducibility of Results
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Lu Wang
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|