1
|
Shende R, Dhoble SJ, Saroj D, Gupta G. Dosimetric evaluation and gradient analysis of various MLC leaf-width effects in external beam radiation therapy: TrueBeam Vs Halcyon. Radiography (Lond) 2024; 30:1646-1654. [PMID: 39437610 DOI: 10.1016/j.radi.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION This study investigates dosimetric influence and gradient-analysis of leaf-width of various Multi-leaf-collimators (MLC) from Truebeam and Halcyon linear accelerators. METHODS The leaf-width effects of Millennium120 and HD120MLC from Truebeam and SX1 and SX2 from Halcyon were studied using virtual phantom in Eclipse16.1.2 TPS. Target structures consist of bore and wave cylinders of equally spaced projected Planning target volume (PTV) of diameters ranging from 1-to-5 cm and 20 cm length. Treatment plans for all PTVs, and four different MLCs configurations from both machines were created utilizing 6MVFFF beam to deliver dose of 50Gy/25# using IMRT and VMAT. Plans were evaluated using plan quality indices including dose conformity, homogeneity, gradient radius, and Monitor-unit (MU). Also, dose gradients were analyzed by estimating distinct integral volume VD% and paired-t-tests were performed to evaluate statistical differences. RESULTS All the plan satisfied the minimum criteria of D95 %≥prescription dose and V107 %≤2cc. Mean conformity and homogeneity indices for SX1MLC(CI = 0.680,HI = 0.022) were found significantly higher and lower than SX2(CI = 0.746,HI = 0.016), Millennium120 (CI = 0.739,HI = 0.012), and HD120MLC(CI = 0.745,HI = 0.017), respectively. However, CI and HI for SX2, Millennium120, and HD120MLC found comparable. Gradient radius enclosing 50 % of isodose observed maximum and minimum for SX1 and HD120MLC, respectively. Plan MUs for Truebeam MLCs were found approximately 25 % higher than Halcyon MLCs. Dose distribution generated using SX2 and Millennium120 found comparable, however p ≤ 0.05 ascertained substantial differences among SX1, Millennium120, and HD120MLC. CONCLUSION MLC leaf-width influences intensity-modulation and significantly alters dosimetric outcome depending on the magnitude of the leaf-width. HD120MLC does not show much significant advantages over SX2 and Millennium120 except gradient control. IMPLICATIONS FOR PRACTICE Halcyon SX1MLC produces least effective plan compared to all other MLC types. However, SX2 and Millennium120 can produce plans of comparable quality except plan MUs difference.
Collapse
Affiliation(s)
- R Shende
- Department of Radiation Oncology, Balco Medical Centre, New Raipur, Chhattisgarh, India; Department of Physics, R.T.M. Nagpur University, Nagpur, Maharashtra, India.
| | - S J Dhoble
- Department of Physics, R.T.M. Nagpur University, Nagpur, Maharashtra, India
| | - D Saroj
- Department of Radiation Oncology, Balco Medical Centre, New Raipur, Chhattisgarh, India
| | - G Gupta
- Department of Radiation Oncology, Balco Medical Centre, New Raipur, Chhattisgarh, India
| |
Collapse
|
2
|
Kong VC, Dang J, Li W, Navarro I, Padayachee J, Malkov V, Winter J, Raman S, Berlin A, Catton C, Warde P, Chung P. Dosimetric comparison of MR-guided adaptive IMRT versus 3DOF-VMAT for prostate stereotactic radiotherapy. Tech Innov Patient Support Radiat Oncol 2022; 21:64-70. [PMID: 35252598 PMCID: PMC8892164 DOI: 10.1016/j.tipsro.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 02/09/2022] [Indexed: 11/15/2022] Open
Abstract
Prostate SBRT are treated using MR-guided adaptive IMRT (A-IMRT) and VMAT based on translation correction (3DOF-VMAT) at our institution. Comparison of reference and delivered dose between adaptive-IMRT and 3DOF-VMAT to assess the effect of interfractional motion. Despite large interfractional changes, prostate received clinically acceptable dose with a margin of 5 mm through either A-IMRT or 3DOF-VMAT. A-IMRT was more superior than 3DOF-VMAT in sparing the rectum in the high dose region; no difference between the two systems was observed for bladder.
Introduction Methods & Materials Results Conclusions
Collapse
Affiliation(s)
- Vickie C. Kong
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Corresponding author at: Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
| | - Jennifer Dang
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
| | - Winnie Li
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Inmaculada Navarro
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Jerusha Padayachee
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Victor Malkov
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Jeff Winter
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Srinivas Raman
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Alejandro Berlin
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Charles Catton
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Padraig Warde
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Peter Chung
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Li T, Scheuermann R, Lin A, Teo BKK, Zou W, Swisher-McClure S, Alonso-Basanta M, Lukens JN, Fotouhi Ghiam A, Kennedy C, Kim MM, Mihailidis D, Metz JM, Dong L. Impact of Multi-leaf Collimator Parameters on Head and Neck Plan Quality and Delivery: A Comparison between Halcyon™ and Truebeam® Treatment Delivery Systems. Cureus 2018; 10:e3648. [PMID: 30723647 PMCID: PMC6351111 DOI: 10.7759/cureus.3648] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose A new dual-layer multi-leaf collimator (MLC) system with several improved characteristics was introduced with the Varian Halcyon™ treatment platform. This study evaluated this new MLC's impact on head and neck plan quality and delivery efficiency. Methods Nine patients were retrospectively studied with Institutional Review Board (IRB) approval. To compare plan quality between the Halcyon dual-layer MLC and Truebeam® MLC, all patients were replanned with the same prescription and target coverage following the institutional clinical protocol for both platforms and using both intensity modulated radiation therapy (IMRT) or volumetrically modulated arc therapy (VMAT) techniques. Organs-at-risk (OAR) dose-volume histogram (DVH) statistics were compared along with total plan monitor units (MU). To evaluate delivery efficiency, actual beam-on time for five patients' plans were recorded and compared. To evaluate the impact of MLC performance parameters on plan quality, virtual MLC models were generated by matching Truebeam MLC's parameters to those of the Halcyon dual-layer MLC both individually and combined. OAR doses were then compared between these virtual MLCs, the Truebeam MLC, and the actual Halcyon MLC. Results Overall the Halcyon dual-layer MLC provided similar plan quality compared to Truebeam MLC for VMAT plans, and improved sparing for majority of the OARs when using IMRT. Paired comparison showed median dose differences in mean doses to the parotids, cochlea, esophagus, and larynx ranged from -0.83 Gy to 0.37 Gy for VMAT, and from -4.79 Gy to -0.04 Gy for IMRT, with negative values indicating improved performance by Halcyon. Despite a slight increase in plan MU, the Halcyon reduced the total beam-on time by 42.8 ± 8.5%. Virtual MLC simulations demonstrated that matching MLC transmission accounted for nearly half of the total dose difference between Halcyon and Truebeam IMRT plans. Conclusion When compared to the Truebeam, the Halcyon's dual-layer MLC achieved similar plan quality using VMAT, and improved OAR sparing using IMRT, while providing nearly twice as fast treatment delivery. Reduction in MLC transmission is the dominating factor contributing to dosimetric differences in OAR sparing.
Collapse
Affiliation(s)
- Taoran Li
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ryan Scheuermann
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Alexander Lin
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Boon-Keng Kevin Teo
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Wei Zou
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Samuel Swisher-McClure
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - John N Lukens
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Alireza Fotouhi Ghiam
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Chris Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Michele M Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Dimitris Mihailidis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - James M Metz
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Lei Dong
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
4
|
Chae SM, Lee KW, Son SH. Dosimetric impact of multileaf collimator leaf width according to sophisticated grade of technique in the IMRT and VMAT planning for pituitary adenoma lesion. Oncotarget 2018; 7:78119-78126. [PMID: 27806336 PMCID: PMC5363648 DOI: 10.18632/oncotarget.12974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/14/2016] [Indexed: 11/25/2022] Open
Abstract
We analyzed the difference in the dosimetric effect between 5-mm and 2.5-mm multileaf collimator (MLC) leaf width according to the sophisticated grades of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT). Nineteen patients with pituitary adenomas were selected for this study. The treatment plans were performed according to the size of the MLC (5-mm and 2.5-mm MLC), the type of technique (IMRT and VMAT), and the sophisticated grades of each technique (5-field, 9-field, 13-field, 17-field technique in IMRT and 1-arc and 2-arc techniques in VMAT). The downsizing effects of MLC leaf width were analyzed using target volume coverage (TVC), conformity index (CI), dose gradient index (GI), and normal tissue difference 70% isodose line and 50% isodose line. Upon replacing the 5-mm MLC with the 2.5-mm MLC, TVC and CI improved by 1.30% and 1.36%, respectively, in total plans. The TVC and CI improved by 1.68% and 1.67% in IMRT, respectively, and by 0.54% and 0.72% in VMAT, respectively. TVC improved by 2.53%, 1.82%, 1.34%, and 0.94%, and CI also improved by 2.70%, 1.81%, 1.24%, and 0.94%, in 5-field, 9-field, 13-field, and 17-field IMRT, respectively. TVC improved by 0.66% and 0.43%, and CI also improved by 0.93%, and 0.52% in 1-arc and 2-arc VMAT, respectively. Regarding the target coverage, there were dosimetric benefits of a smaller MLC leaf width. However, the downsizing effect of the MLC leaf width decreased with the use of a more precise RT technique and a more sophisticated grade of the same technique.
Collapse
Affiliation(s)
- Soo-Min Chae
- Department of Radiation Oncology, Cheju Halla General Hospital, Jeju, Korea
| | - Ki Woong Lee
- Department of Radiation Oncology, Cheju Halla General Hospital, Jeju, Korea
| | - Seok Hyun Son
- Department of Radiation Oncology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
5
|
Influence of multi-leaf collimator leaf transmission on head and neck intensity-modulated radiation therapy and volumetric-modulated arc therapy planning. Jpn J Radiol 2017. [DOI: 10.1007/s11604-017-0661-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
A dosimetric comparison of the fixed-beam IMRT plans using different leaf width of multileaf collimators for the intermediate risk prostate cancer. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Inokuchi H, Mizowaki T, Norihisa Y, Takayama K, Ikeda I, Nakamura K, Nakamura M, Hiraoka M. Clinical effect of multileaf collimator width on the incidence of late rectal bleeding after high-dose intensity-modulated radiotherapy for localized prostate carcinoma. Int J Clin Oncol 2015; 21:156-61. [PMID: 26164689 DOI: 10.1007/s10147-015-0873-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/28/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Several studies have confirmed a dosimetric advantage associated with use of a smaller leaf in intensity-modulated radiation therapy (IMRT). However, no studies have identified any clinical benefits. We investigated the effect of a smaller multileaf collimator (MLC) width on the onset of late rectal bleeding after high-dose prostate IMRT. MATERIALS AND METHODS Two hundred and five prostate cancer patients were treated with a total dose of 78 Gy in 39 fractions by use of a dynamic MLC technique; however, two different MLC were used: a 10-mm-wide device and a 5-mm-wide device. Gastrointestinal toxicity and several clinical factors were assessed. RESULTS The 5-year actuarial risk of grade 2 or higher rectal bleeding was 6.9 % for the 10-mm-wide group (n = 132) and 1.8 % for the 5-mm-wide group (n = 73) (p = 0.04). The median estimated rectal doses for the two groups were 55.1 and 50.6 Gy (p < 0.001), respectively. Univariate analysis showed that acute toxicity, rectal V30-60, median rectal dose, normal tissue complication probability (NTCP), and MLC type were significant predictive factors for late rectal toxicity. In multivariate analysis, acute toxicity and NTCP remained significant. CONCLUSION In our planning approach for prostate IMRT, a decrease in MLC width from 10 to 5 mm contributed to further rectal dose reduction, which was the most important predictor of late rectal toxicity.
Collapse
Affiliation(s)
- Haruo Inokuchi
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Yoshiki Norihisa
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Takayama
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Itaru Ikeda
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kiyonao Nakamura
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
8
|
Chae SM, Lee GW, Son SH. The effect of multileaf collimator leaf width on the radiosurgery planning for spine lesion treatment in terms of the modulated techniques and target complexity. Radiat Oncol 2014; 9:72. [PMID: 24606890 PMCID: PMC3995916 DOI: 10.1186/1748-717x-9-72] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 03/02/2014] [Indexed: 11/12/2022] Open
Abstract
Purpose We aim to evaluate the effects of multileaf collimator (MLC) leaf width (5 mm vs. 2.5 mm) on the radiosurgery planning for the treatment of spine lesions according to the modulated techniques (intensity-modulated radiotherapy [IMRT] vs. volumetric-modulated arc therapy [VMAT]) and the complexity of the target shape. Methods For this study, artificial spinal lesions were contoured and used for treatment plans. Three spinal levels (C5, T5, and L2 spines) were selected, and four types of target shapes reflecting the complexity of lesions were contoured. The treatment plans were performed using 2.5-mm and 5-mm MLCs, and also using both static IMRT and VMAT. In total, 48 treatment plans were established. The efficacy of each treatment plan was compared using target volume coverage (TVC), conformity index (CI), dose gradient index (GI), and V30%. Results When the 5-mm MLC was replaced by the 2.5-mm MLC, TVC and GI improved significantly by 5.68% and 6.25%, respectively, while CI did not improve. With a smaller MLC leaf width, the improvement ratios of the TVC were larger in IMRT than VMAT (8.38% vs. 2.97%). In addition, the TVC was improved by 14.42-16.74% in target type 4 compared to the other target types. These improvements were larger in IMRT than in VMAT (27.99% vs. 6.34%). The V30% was not statistically different between IMRT and VMAT according to the MLC leaf widths and the types of target. Conclusion The smaller MLC leaf width provided improved target coverage in both IMRT and VMAT, and its improvement was larger in IMRT than in VMAT. In addition, the smaller MLC leaf width was more effective for complex-shaped targets.
Collapse
Affiliation(s)
| | | | - Seok Hyun Son
- Department of Radiation Oncology, Incheon St, Mary's hospital, College of Medicine, the Catholic University of Korea, Incheon, Korea.
| |
Collapse
|
9
|
Kim J, Wen N, Jin JY, Walls N, Kim S, Li H, Ren L, Huang Y, Doemer A, Faber K, Kunkel T, Balawi A, Garbarino K, Levin K, Patel S, Ajlouni M, Miller B, Nurushev T, Huntzinger C, Schulz R, Chetty IJ, Movsas B, Ryu S. Clinical commissioning and use of the Novalis Tx linear accelerator for SRS and SBRT. J Appl Clin Med Phys 2012; 13:3729. [PMID: 22584170 PMCID: PMC5716565 DOI: 10.1120/jacmp.v13i3.3729] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/14/2011] [Accepted: 01/25/2012] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study was to perform comprehensive measurements and testing of a Novalis Tx linear accelerator, and to develop technical guidelines for com-missioning from the time of acceptance testing to the first clinical treatment. The Novalis Tx (NTX) linear accelerator is equipped with, among other features, a high-definition MLC (HD120 MLC) with 2.5 mm central leaves, a 6D robotic couch, an optical guidance positioning system, as well as X-ray-based image guidance tools to provide high accuracy radiation delivery for stereotactic radiosurgery and stereotactic body radiation therapy procedures. We have performed extensive tests for each of the components, and analyzed the clinical data collected in our clinic. We present technical guidelines in this report focusing on methods for: (1) efficient and accurate beam data collection for commissioning treatment planning systems, including small field output measurements conducted using a wide range of detectors; (2) commissioning tests for the HD120 MLC; (3) data collection for the baseline characteristics of the on-board imager (OBI) and ExacTrac X-ray (ETX) image guidance systems in conjunction with the 6D robotic couch; and (4) end-to-end testing of the entire clinical process. Established from our clinical experience thus far, recommendations are provided for accurate and efficient use of the OBI and ETX localization systems for intra- and extracranial treatment sites. Four results are presented. (1) Basic beam data measurements: Our measurements confirmed the necessity of using small detectors for small fields. Total scatter factors varied significantly (30% to approximately 62%) for small field measurements among detectors. Unshielded stereotactic field diode (SFD) overestimated dose by ~ 2% for large field sizes. Ion chambers with active diameters of 6 mm suffered from significant volume averaging. The sharpest profile penumbra was observed for the SFD because of its small active diameter (0.6 mm). (2) MLC commissioning: Winston Lutz test, light/radiation field congruence, and Picket Fence tests were performed and were within criteria established by the relevant task group reports. The measured mean MLC transmission and dynamic leaf gap of 6 MV SRS beam were 1.17% and 0.36 mm, respectively. (3) Baseline characteristics of OBI and ETX: The isocenter localization errors in the left/right, posterior/anterior, and superior/inferior directions were, respectively, -0.2 ± 0.2 mm, -0.8 ± 0.2 mm, and -0.8 ± 0.4 mm for ETX, and 0.5 ± 0.7 mm, 0.6 ± 0.5 mm, and 0.0 ± 0.5 mm for OBI cone-beam computed tomography. The registration angular discrepancy was 0.1 ± 0.2°, and the maximum robotic couch error was 0.2°. (4) End-to-end tests: The measured isocenter dose differences from the planned values were 0.8% and 0.4%, measured respectively by an ion chamber and film. The gamma pass rate, measured by EBT2 film, was 95% (3% DD and 1 mm DTA). Through a systematic series of quantitative commissioning experiments and end-to-end tests and our initial clinical experience, described in this report, we demonstrate that the NTX is a robust system, with the image guidance and MLC requirements to treat a wide variety of sites - in particular for highly accurate delivery of SRS and SBRT-based treatments.
Collapse
Affiliation(s)
- Jinkoo Kim
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fujimoto S, Ono K, Furukawa K, Kudo T, Akagi Y, Koyama T, Hirokawa Y, Kawai S, Nakashima T. [Influence of high-definition multileaf collimator for three-dimensional conformal radiotherapy and intensity-modulated radiotherapy of prostate cancer]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2012; 68:825-834. [PMID: 22821155 DOI: 10.6009/jjrt.2012_jsrt_68.7.825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The focus of this work is to evaluate the dosimetric impact of treatment planning for three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) of prostate cancer using Varian/BrainLAB 120-leaf high-definition multileaf collimator (HD120 MLC) with 2.5 mm leaf width and Varian 120-leaf millennium multileaf collimator (M120 MLC) with 5 mm leaf width. We measured the leaf transmission and dosimetric leaf gap (DLG) of two multileaf collimator (MLC) systems using Farmer ionization chamber. The dosimetric impact of treatment planning for 3DCRT and IMRT of prostate cancer for ten clinical cases using two MLC systems was evaluated quantitatively. 3DCRT was divided to 3DCRT(middle) as fitting at middle of leaf tip and 3DCRT(outside) as fitting at outside of leaf tip. The leaf transmission factor and DLG of HD120 MLC for 6 and 10 MV X-ray decreased by 0.2% and 1 mm, respectively, compared to M120 MLC. The mean conformity index of PTV of treatment planning for prostate 3DCRT(middle), 3DCRT(outside) , and IMRT decreased by 0.9%, 6.6%, and 0.9% and the mean homogeneity index increased 2.3%, 13.0%, and 4.2%, respectively. The mean V20, V40, and V65 decreased by 2.4%, 6.6%, and 4.5% for bladder and 3.3%, 6.1%, and 5.9% for rectum, respectively. The results of this work demonstrated that the dose conformity of PTV improved and the dose of bladder and rectum decreased for 3DCRT and IMRT of prostate cancer using HD120 MLC compared to M120 MLC, because of reduction of leaf width, leaf transmission, and rounded leaf end transmission.
Collapse
|
11
|
Tanyi JA, Summers PA, McCracken CL, Chen Y, Ku LC, Fuss M. Implications of a high-definition multileaf collimator (HD-MLC) on treatment planning techniques for stereotactic body radiation therapy (SBRT): a planning study. Radiat Oncol 2009; 4:22. [PMID: 19591687 PMCID: PMC2716348 DOI: 10.1186/1748-717x-4-22] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 07/10/2009] [Indexed: 12/26/2022] Open
Abstract
Purpose To assess the impact of two multileaf collimator (MLC) systems (2.5 and 5 mm leaf widths) on three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, and dynamic conformal arc techniques for stereotactic body radiation therapy (SBRT) of liver and lung lesions. Methods Twenty-nine SBRT plans of primary liver (n = 11) and lung (n = 18) tumors were the basis of this study. Five-millimeter leaf width 120-leaf Varian Millennium (M120) MLC-based plans served as reference, and were designed using static conformal beams (3DCRT), sliding-window intensity-modulated beams (IMRT), or dynamic conformal arcs (DCA). Reference plans were either re-optimized or recomputed, with identical planning parameters, for a 2.5-mm width 120-leaf BrainLAB/Varian high-definition (HD120) MLC system. Dose computation was based on the anisotropic analytical algorithm (AAA, Varian Medical Systems) with tissue heterogeneity taken into account. Each plan was normalized such that 100% of the prescription dose covered 95% of the planning target volume (PTV). Isodose distributions and dose-volume histograms (DVHs) were computed and plans were evaluated with respect to target coverage criteria, normal tissue sparing criteria, as well as treatment efficiency. Results Dosimetric differences achieved using M120 and the HD120 MLC planning were generally small. Dose conformality improved in 51.7%, 62.1% and 55.2% of the IMRT, 3DCRT and DCA cases, respectively, with use of the HD120 MLC system. Dose heterogeneity increased in 75.9%, 51.7%, and 55.2% of the IMRT, 3DCRT and DCA cases, respectively, with use of the HD120 MLC system. DVH curves demonstrated a decreased volume of normal tissue irradiated to the lower (90%, 50% and 25%) isodose levels with the HD120 MLC. Conclusion Data derived from the present comparative assessment suggest dosimetric merit of the high definition MLC system over the millennium MLC system. However, the clinical significance of these results warrants further investigation in order to determine whether the observed dosimetric advantages translate into outcome improvements.
Collapse
Affiliation(s)
- James A Tanyi
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Can field-in-field technique replace wedge filter in radiotherapy treatment planning: a comparative analysis in various treatment sites. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2009; 31:317-24. [PMID: 19239058 DOI: 10.1007/bf03178601] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of the study was to show whether field-in-field (FIF) technique can be used to replace wedge filter in radiation treatment planning. The study was performed in cases where wedges are commonly used in radiotherapy treatment planning. Thirty patients with different malignancies who received radiotherapy were studied. This includes patients with malignancies of brain, head and neck, breast, upper and lower abdomen. All the patients underwent computed tomography scanning and the datasets were transferred to the treatment planning system. Initially, wedge based planning was performed to achieve the best possible dose distribution inside the target volume with multileaf collimators (Plan 1). Wedges were removed from a copy of the same plan and FIF plan was generated (Plan 2). The two plans were then evaluated and compared for mean dose, maximum dose, median dose, doses to 2% (D2) and 98% (D98) of the target volume, volume receiving greater than 107% of the prescribed dose (V > 107%), volume receiving less than 95% of the prescribed dose (V< 95%), conformality index (CI) and total monitor units. FIF gives equivalent dosimetric results as wedge based treatment planning. It is better than wedge planning in terms of maximum dose, D2, V >107% and CI for most of the sites with statistically significant reduction in monitor units. FIF results in better dose distribution in terms of homogeneity in most of the sites. It is feasible to replace wedge filter with FIF in radiotherapy treatment planning.
Collapse
|
13
|
Metwaly M, Awaad AM, El-Sayed ESM, Sallam ASM. Comparison of intensity-modulated radiotherapy and forward-planning dynamic arc therapy techniques for prostate cancer. J Appl Clin Med Phys 2008; 9:37-56. [PMID: 19020481 PMCID: PMC5722358 DOI: 10.1120/jacmp.v9i4.2783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/03/2008] [Accepted: 07/18/2008] [Indexed: 12/05/2022] Open
Abstract
We compare an inverse‐planning intensity‐modulated radiotherapy (IMRT) technique with three previously published forward‐planning dynamic arc therapy techniques and a newly implemented technique for treatment of prostate only. The three previously published dynamic arc techniques are dynamic arc therapy (DAT), two‐axis dynamic arc therapy (2A‐DAT), and modified dynamic arc therapy (M‐DAT). The newly implemented technique is the bilateral wedged dynamic arc (BW‐DAT). In all dynamic arcs, the multileaf collimator is moving during rotation to fit the prostate, except that, in 2A‐DAT, it is fitting two separate symmetrical rhombi including the prostate. The rectum is shielded during rotation only in the cases of M‐DAT and BW‐DAT. The results obtained indicate that the BW‐DAT, M‐DAT, and DAT techniques provide the intended dose coverage of the prescribed dose to the planning target volume (PTV)—that is, 95% of the PTV is covered by 100% of the dose. The maximum dose to a 3‐cm margin of healthy tissue that surrounds the PTV is lower by 2.5% in the case of IMRT than in both BW‐DAT and M‐DAT, but it is lower by 5.0% than that in both DAT and 2A‐DAT. The maximum dose to the rest of the healthy tissue in the case of BW‐DAT is 33.2Gy±2.2Gy. This dose covers percentage healthy body volumes of 8%±3.2% with IMRT, 4%±1.5% with DAT, and 6%±1.2% with both 2A‐DAT and M‐DAT. Also, this dose is much lower than the accepted maximum dose (52 Gy) to the femoral heads and necks according to Report 62 from the International Commission on Radiation Units and Measurements. Accordingly, it would be possible to neglect delineation of the femoral heads and necks as organs at risk in cases of BW‐DAT. Doses to 15%, 25%, 35%, and 50% (D15%, D25%, D35%, and D50%) of the rectum volume in the case of BW‐DAT were 43.5Gy±8.6Gy, 24.2Gy±8.7Gy, 13.2Gy±4.2Gy, and 5.7Gy±2.1Gy respectively. The D15% of rectum in the case of IMRT was lower than that in BW‐DAT, M‐DAT, 2A‐DAT, and DAT by 7.3%, 10.3%, 33.0%, and 17.6% of the prescribed dose (78 Gy in 39 fractions) respectively. The D25%, D35%, and D50% of the rectum volume in the cases of IMRT and DAT were comparable (with a maximum variation of 4.5%); they were similarly comparable in the cases of M‐DAT and BW‐DAT (with maximum variation of 1.5%). These same doses in BW‐DAT were lower than those in IMRT by 8.7%, 10.6%, and 6.2% respectively, but they were quite lower than those in 2A‐DAT, because the average variation was 41.6% (with a maximum of 44.0%). The D15%, D25%, D35%, and D50% of the bladder volume in the case of BW‐DAT were 33.2Gy±10.9Gy, 17.4Gy±7.9Gy, 6.5Gy±4.3Gy, and 4.2Gy±3.5Gy respectively. The D15% and D25% of the bladder in the cases of IMRT, M‐DAT, and BW‐DAT were comparable (with a maximum variation of 2.2% and 3.6% respectively), and the mean values of each dose were lower in DAT by 14.3% and 11.7% respectively. However, the values of D35% and D50% in the four techniques were comparable, with maximum variations of 5.1% and 2.7% respectively. The D15%, D25%, D35%, and D50% of the bladder in the case of DAT were lower than those in 2A‐DAT by 20.1%, 26.9%, 16.0%, and 2.7% respectively. Ion chamber measurements showed good agreement between the calculated and measured isocentric doses (maximum deviation: 3.2%). Accuracy of the dose distribution calculation for BW‐DAT was evaluated by film dosimetry using a gamma index, allowing 3% dose variation and 3 mm distance to agreement as the individual acceptance criteria. We found that fewer than 6.5% of the pixels in the dose distributions of the scanned and calculated area of 10×10 cm failed the acceptance criteria. We conclude that, in addition to simplicity of the dose calculation, the BW‐DAT technique provides the intended concave dose distribution for treatment of the prostate only. Compared with IMRT, it produces better dose protection to the most of the rectum volume and to the healthy tissue outside the treatment volume. Also, as compared with the other forward planning dynamic arc techniques, it gives the most favorable isodose distributions to the prostate and rectum. PACS number: 87.53.Tf
Collapse
Affiliation(s)
- Mohamed Metwaly
- Radiation Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Awaad Mousa Awaad
- Radiotherapy Department, Oncology and Hematology Hospital, Maadi Armed Forces Medical Compound, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | | |
Collapse
|
14
|
Basran P, Yeboah C. Dosimetric verification of micro-MLC based intensity modulated radiation therapy. J Appl Clin Med Phys 2008; 9:109-121. [PMID: 18716597 PMCID: PMC5722288 DOI: 10.1120/jacmp.v9i3.2832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 03/12/2008] [Accepted: 03/12/2008] [Indexed: 11/23/2022] Open
Abstract
A methodology for the dosimetric verification of micro-multileaf collimator MMLC) based intensity modulated radiation therapy (IMRT) plans intended for stereotactic applications is described. The procedure is similar to that of conventional IMRT patient-specific quality assurance with some notable exceptions. Relative dosimetry measurements are performed with radiographic film, a commercial film-scanning system and a dose-image registration program. Film dosimetry results are within +/- 3.0% of calculated distributions or within 2.0 mm distance to agreement. Absolute dosimetry measurements are performed with a small volume ion-chamber and a commercially available stereotactic phantom. The cumulative dose from all beams is within +/- 2.0 % of the prescribed dose. Large deviations may be observed from individual beams since the smaller IMRT fields tend to have very few high-dose and low-gradient regions. An independent program that examines the treatment MLC file is used to estimate the central axis dose from each beam and provide a dose image that can be assessed alongside the intended fluence distribution prior to treatment. Tolerances for relative and absolute dosimetry of MMLC-based IMRT treatments are tighter than what is typically reported for conventional MLC-based IMRT. Also, the time commitment for the IMRT QA is slightly longer than of conventional MLC-based IMRT due to QA processes which check the mechanical alignment of the MMLC device with the laser and radiation isocentre.
Collapse
Affiliation(s)
- Parminder Basran
- Department of Medical Physics, Odette Cancer Centre, Toronto, ON.,Department of Radiation Oncology, University of Toronto, Toronto, ON
| | - Collins Yeboah
- Department of Medical Physics, Odette Cancer Centre, Toronto, ON.,Department of Radiation Oncology, University of Toronto, Toronto, ON
| |
Collapse
|
15
|
Popple RA, Fiveash JB, Brezovich IA. Effect of beam number on organ-at-risk sparing in dynamic multileaf collimator delivery of intensity modulated radiation therapy. Med Phys 2007; 34:3752-9. [DOI: 10.1118/1.2779862] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
16
|
Abstract
The dosimetric characteristics of a production pilot multi-leaf collimator (Elekta Beam Modulator, Elekta Oncology Systems, Crawley, UK) having a 4 mm leaf width (at isocentre) have been investigated. Characteristics explored included leaf bank set-up, penumbra width (80-20%) as a function of leaf position, leaf positioning reproducibility, interleaf leakage and leaf transmission. The penumbra values for leaf ends were measured to be between 4.2 and 4.8 mm for various large rectangular fields studied using Kodak X-omat V film at isocentre (1.5 cm deep). Similar films were taken with a standard 1 cm width multi-leaf collimator (MLC) and the penumbra for leaf ends was found to range from 4.3 to 5.2 mm. Other results showed that the rounded leaf tip provided tight control of the penumbra across the leaves' full range of travel. The positioning of the leaves was within a 0.5 mm range when approaching from the same direction. The maximum interleaf leakage was found to be 1.7% and the average leaf transmission less than 1.0%. No major differences were observed in leakage and transmission with changing gantry angle.
Collapse
Affiliation(s)
- I Patel
- North Western Medical Physics, Radiotherapy Department, Rosemere Cancer Centre, Royal Preston Hospital, UK.
| | | | | |
Collapse
|
17
|
Price RA, Paskalev K, McNeeley S, Ma CM. Elongated beamlets: a simple technique for segment and MU reduction for sMLC IMRT delivery on accelerators utilizing 5 mm leaf widths. Phys Med Biol 2005; 50:N235-42. [PMID: 16177479 DOI: 10.1088/0031-9155/50/19/n01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The focus of this work is to demonstrate the effects of using an elongated beamlet to achieve similar dose conformity as achieved with a square beamlet while reducing the number of segments and subsequent MU required. A series of 10 patients were planned for IMRT delivery to the prostate using minimum beamlet sizes of 5x5 mm2 (default scheme), 10x5 mm2 with the short axis parallel to the prostate-rectum interface (scheme 1), and 10x5 mm2 with the short axis perpendicular to the prostate-rectum interface (scheme 2). All other parameters between plans were left unchanged. Plans were appropriately normalized and evaluated for R65, R40, conformity index, total number of segments and MU. All plans were generated using the Corvus inverse planning system. The average number of segments in this study decreased by approximately 49% for both schemes 1 and 2. The subsequent number of MU required decreased by approximately 34.6%. The resultant modified modulation scaling factor (MSFmod) decreased by approximately 34.3%. Additionally, we found that each isodose distribution using scheme 2 would still meet our clinical acceptance criteria with no visible degradation in the dose distribution as compared with the default scheme. In conclusion, we have demonstrated that it is possible to achieve similar results as those obtained using a 5x5 mm2 beamlet with respect to target coverage and critical structure sparing by using strategically oriented elongated beamlets. This technique directly translates to a decreased MSF(mod) allowing for decreased leakage dose to the patient, a decreased risk of exceeding secondary shielding limits in pre-existing vaults, and shorter treatment times.
Collapse
Affiliation(s)
- R A Price
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|