1
|
Berger J, Rubinstein J. A flexible anatomical set of mechanical models for the organ of Corti. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210016. [PMID: 34540242 PMCID: PMC8441134 DOI: 10.1098/rsos.210016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
We build a flexible platform to study the mechanical operation of the organ of Corti (OoC) in the transduction of basilar membrane (BM) vibrations to oscillations of an inner hair cell bundle (IHB). The anatomical components that we consider are the outer hair cells (OHCs), the outer hair cell bundles, Deiters cells, Hensen cells, the IHB and various sections of the reticular lamina. In each of the components we apply Newton's equations of motion. The components are coupled to each other and are further coupled to the endolymph fluid motion in the subtectorial gap. This allows us to obtain the forces acting on the IHB, and thus study its motion as a function of the parameters of the different components. Some of the components include a nonlinear mechanical response. We find that slight bending of the apical ends of the OHCs can have a significant impact on the passage of motion from the BM to the IHB, including critical oscillator behaviour. In particular, our model implies that the components of the OoC could cooperate to enhance frequency selectivity, amplitude compression and signal to noise ratio in the passage from the BM to the IHB. Since the model is modular, it is easy to modify the assumptions and parameters for each component.
Collapse
Affiliation(s)
- Jorge Berger
- Department of Physics and Optical Engineering, Ort Braude College, Karmiel, Israel
| | | |
Collapse
|
2
|
Wilson US, Browning-Kamins J, Durante AS, Boothalingam S, Moleti A, Sisto R, Dhar S. Cochlear tuning estimates from level ratio functions of distortion product otoacoustic emissions. Int J Audiol 2021; 60:890-899. [PMID: 33612052 DOI: 10.1080/14992027.2021.1886352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: Distortion product otoacoustic emission (DPOAE) levels plotted as a function of stimulus frequency ratio demonstrate a bandpass shape. This bandpass shape is narrower at higher frequencies compared to lower frequencies and thus has been thought to be related to cochlear mechanical tuning.Design: However, the frequency- and level-dependence of these functions above 8 kHz is largely unknown. Furthermore, how tuning estimates from these functions are related to behavioural tuning is not fully understood.Study Sample: From experiment 1, we report DPOAE level ratio functions (LRF) from seven normal-hearing, young-adults for f2 = 0.75-16 kHz and two stimulus levels of 62/52 and 52/37 dB FPL. We found that LRFs became narrower as a function of increasing frequency and decreasing level.Results: Tuning estimates from these functions increased as expected from 1-8 kHz. In experiment 2, we compared tuning estimates from DPOAE LRF to behavioural tuning in 24 normal-hearing, young adults for 1 and 4 kHz and found that behavioural tuning generally predicted DPOAE LRF estimated tuning.Conclusions: Our findings suggest that DPOAE LRFs generally reflect the tuning profile consistent with basilar membrane, neural, and behavioural tuning. However, further investigations are warranted to fully determine the use of DPOAE LRF as a clinical measure of cochlear tuning.
Collapse
Affiliation(s)
- Uzma Shaheen Wilson
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL, USA
| | - Jenna Browning-Kamins
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL, USA
| | | | | | - Arturo Moleti
- Physics Department, University of Roma Tor Vergata, Rome, Italy
| | | | - Sumitrajit Dhar
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL, USA.,Knowles Hearing Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
3
|
An intracochlear DP-gram: Proof of principle in noise-damaged rabbits. Hear Res 2020; 396:108058. [PMID: 32871416 DOI: 10.1016/j.heares.2020.108058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 11/23/2022]
Abstract
Distortion-product otoacoustic emissions (DPOAEs) can be used to assess cochlear damage and are often evaluated by generating a DP-gram in which 2f1-f2 DPOAE levels are plotted as a function of the higher-frequency primary at f2. DPOAEs are derived from the reverse propagation of distortion-product (DP) wavelets from their intracochlear sites of generation to emerge as measurable acoustic signals in the outer ear canal. However, at least, some of these same wavelets also propagate within the cochlea in the normal forward direction to the DP-frequency (fdp) place, where they appear as intracochlear distortion products (iDPs). Depending on several factors, especially, the extent to which DP wavelets add or cancel with each other in phase, one might expect iDPs to differ from DPOAEs in their ability to map the frequency pattern of cochlear damage. In the present study, the behavior of 2f1-f2 iDPs was inferred by interacting a probe tone (f3) with the iDP of interest to produce a 'secondary' DPOAE (i.e., DPOAE2ry), which was then used to infer the level of 2f1-f2 iDPs as a function of the f2-test frequency, thus, constituting a newly developed iDP-gram. To determine the feasibility of and potential applications for the iDP-gram procedure, noise-induced cochlear damage was assessed in two 'test' rabbits, one of which exhibited a well-defined punctate loss in their DP-gram, while the other exhibited a broader V-shaped loss. To validate the iDP-gram procedure, standard DP-grams were simultaneously collected and compared to their iDP-gram counterparts. Cochlear damage was independently assessed using auditory brainstem responses (ABRs) describing threshold-shift patterns to which both DP-gram types could be compared. Each DP-gram variety, to some extent, was able to detect a punctate loss in one rabbit and a broader V-shaped loss in the other. For the punctate-loss subject, the standard DP-gram showed a more generalized loss across test frequencies, while iDP-grams showed several localized notches superimposed on the generalized-loss pattern. In general, for the V-shaped loss pattern, both DP-gram types performed very well at detecting the large loss, with the lower primary-tone levels being most sensitive. At the narrow primary-tone ratios of f2/f1=1.05, standard DP-grams were unable to detect either loss pattern, while for the punctate loss, they paradoxically showed enhancement. Notably, the simultaneously collected iDP-grams performed favorably at the narrow-ratio setting, which is consistent with the notion that DPs travelling toward the 2f1-f2 fdp place are not subject to the cancellation of wavelets typical for narrow primary-ratio conditions that can confound measures of DPs moving towards the ear canal to emerge as DPOAEs.
Collapse
|
4
|
Dong W, Stomackin G, Lin X, Martin GK, Jung TT. Distortion product otoacoustic emissions: Sensitive measures of tympanic -membrane perforation and healing processes in a gerbil model. Hear Res 2019; 378:3-12. [PMID: 30709692 DOI: 10.1016/j.heares.2019.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/13/2019] [Accepted: 01/20/2019] [Indexed: 11/27/2022]
Abstract
Distortion product otoacoustic emissions (DPOAEs) evoked by two pure tones carry information about the mechanisms that generate and shape them. Thus, DPOAEs hold promise for providing powerful noninvasive diagnostic details of cochlear operations, middle ear (ME) transmission, and impairments. DPOAEs are sensitive to ME function because they are influenced by ME transmission twice, i.e., by the inward-going primary tones in the forward direction and the outward traveling DPOAEs in the reverse direction. However, the effects of ME injuries on DPOAEs have not been systematically characterized. The current study focused on exploring the utility of DPOAEs for examining ME function by methodically characterizing DPOAEs and ME transmission under pathological ME conditions, specifically under conditions of tympanic-membrane (TM) perforation and spontaneous healing. Results indicated that DPOAEs were measurable with TM perforations up to ∼50%, and DPOAE reductions increased with increasing size of the TM perforation. DPOAE reductions were approximately flat across test frequencies when the TM was perforated about 10% (<1/8 of pars tensa) or less. However, with perforations greater than 10%, DPOAEs decreased further with a low-pass filter shape, with ∼30 dB loss at frequencies below 10 kHz and a quick downward sloping pattern at higher frequencies. The reduction pattern of DPOAEs across frequencies was similar to but much greater than, the directly measured ME pressure gain in the forward direction, which suggested that reduction in the DPOAE was a summation of losses of ME ear transmission in both the forward and reverse directions. Following 50% TM perforations, DPOAEs recovered over a 4-week spontaneously healing interval, and these recoveries were confirmed by improvements in auditory brainstem response (ABR) thresholds. However, up to 4-week post-perforation, DPOAEs never fully recovered to the levels obtained with normal intact TM, consistent with the incomplete recovery of ABR thresholds and ME transmission, especially at high-frequency regions, which could be explained by an irregularly dense and thickened healed TM. Since TM perforations in patients are commonly caused by either trauma or infection, the present results contribute towards providing insight into understanding ME transmission under pathological conditions as well as promoting the application of DPOAEs in the evaluation and diagnosis of deficits in the ME-transmission system.
Collapse
Affiliation(s)
- Wei Dong
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; Department of Otolaryngology--Head & Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA.
| | - Glenna Stomackin
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Xiaohui Lin
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Glen K Martin
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; Department of Otolaryngology--Head & Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Timothy T Jung
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; Department of Otolaryngology--Head & Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA
| |
Collapse
|
5
|
Comparing Distortion Product Otoacoustic Emissions to Intracochlear Distortion Products Inferred from a Noninvasive Assay. J Assoc Res Otolaryngol 2016; 17:271-87. [PMID: 27229002 DOI: 10.1007/s10162-016-0552-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/12/2016] [Indexed: 10/21/2022] Open
Abstract
The behavior of intracochlear distortion products (iDPs) was inferred by interacting a probe tone (f3) with the iDP of interest to produce a "secondary" distortion product otoacoustic emission termed DPOAE(2ry). Measures of the DPOAE(2ry) were then used to deduce the properties of the iDP. This approach was used in alert rabbits and anesthetized gerbils to compare ear-canal 2f1-f2 and 2f2-f1 DPOAE f2/f1 ratio functions, level/phase (L/P) maps, and interference-response areas (IRAs) to their simultaneously collected DPOAE(2ry) counterparts. These same measures were also collected in a human volunteer to demonstrate similarities with their laboratory animal counterparts and their potential applicability to humans. Results showed that DPOAEs and inferred iDPs evidenced distinct behaviors and properties. That is, DPOAE ratio functions elicited by low-level primaries peaked around an f2/f1 = 1.21 or 1.25, depending on species, while the corresponding inferred iDP ratio functions peaked at f2/f1 ratios of ~1. Additionally, L/P maps showed rapid phase variation with DPOAE frequency (fdp) for the narrow-ratio 2f1-f2 and all 2f2-f1 DPOAEs, while the corresponding DPOAE(2ry) measures evidenced relatively constant phases. Common features of narrow-ratio DPOAE IRAs, such as large enhancements for interference tones (ITs) presented above f2, were not present in DPOAE(2ry) IRAs. Finally, based on prior experiments in gerbils, the behavior of the iDP directly measured in intracochlear pressure was compared to the iDP inferred from the DPOAE(2ry) and found to be similar. Together, these findings are consistent with the notion that under certain conditions, ear-canal DPOAEs provide poor representations of iDPs and thus support a "beamforming" hypothesis. According to this concept, distributed emission components directed toward the ear canal from the f2 and basal to f2 regions can be of differing phases and thus cancel, while these same components directed toward fdp add in phase.
Collapse
|
6
|
van der Heijden M, Versteegh CPC. Energy Flux in the Cochlea: Evidence Against Power Amplification of the Traveling Wave. J Assoc Res Otolaryngol 2015; 16:581-97. [PMID: 26148491 PMCID: PMC4569608 DOI: 10.1007/s10162-015-0529-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 05/28/2015] [Indexed: 11/27/2022] Open
Abstract
Traveling waves in the inner ear exhibit an amplitude peak that shifts with frequency. The peaking is commonly believed to rely on motile processes that amplify the wave by inserting energy. We recorded the vibrations at adjacent positions on the basilar membrane in sensitive gerbil cochleae and tested the putative power amplification in two ways. First, we determined the energy flux of the traveling wave at its peak and compared it to the acoustic power entering the ear, thereby obtaining the net cochlear power gain. For soft sounds, the energy flux at the peak was 1 ± 0.6 dB less than the middle ear input power. For more intense sounds, increasingly smaller fractions of the acoustic power actually reached the peak region. Thus, we found no net power amplification of soft sounds and a strong net attenuation of intense sounds. Second, we analyzed local wave propagation on the basilar membrane. We found that the waves slowed down abruptly when approaching their peak, causing an energy densification that quantitatively matched the amplitude peaking, similar to the growth of sea waves approaching the beach. Thus, we found no local power amplification of soft sounds and strong local attenuation of intense sounds. The most parsimonious interpretation of these findings is that cochlear sensitivity is not realized by amplifying acoustic energy, but by spatially focusing it, and that dynamic compression is realized by adjusting the amount of dissipation to sound intensity.
Collapse
Affiliation(s)
- Marcel van der Heijden
- Department of Neuroscience, Erasmus MC, Room Ee 1285, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Corstiaen P C Versteegh
- Department of Neuroscience, Erasmus MC, Room Ee 1285, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Reichenbach T, Hudspeth AJ. The physics of hearing: fluid mechanics and the active process of the inner ear. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:076601. [PMID: 25006839 DOI: 10.1088/0034-4885/77/7/076601] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Most sounds of interest consist of complex, time-dependent admixtures of tones of diverse frequencies and variable amplitudes. To detect and process these signals, the ear employs a highly nonlinear, adaptive, real-time spectral analyzer: the cochlea. Sound excites vibration of the eardrum and the three miniscule bones of the middle ear, the last of which acts as a piston to initiate oscillatory pressure changes within the liquid-filled chambers of the cochlea. The basilar membrane, an elastic band spiraling along the cochlea between two of these chambers, responds to these pressures by conducting a largely independent traveling wave for each frequency component of the input. Because the basilar membrane is graded in mass and stiffness along its length, however, each traveling wave grows in magnitude and decreases in wavelength until it peaks at a specific, frequency-dependent position: low frequencies propagate to the cochlear apex, whereas high frequencies culminate at the base. The oscillations of the basilar membrane deflect hair bundles, the mechanically sensitive organelles of the ear's sensory receptors, the hair cells. As mechanically sensitive ion channels open and close, each hair cell responds with an electrical signal that is chemically transmitted to an afferent nerve fiber and thence into the brain. In addition to transducing mechanical inputs, hair cells amplify them by two means. Channel gating endows a hair bundle with negative stiffness, an instability that interacts with the motor protein myosin-1c to produce a mechanical amplifier and oscillator. Acting through the piezoelectric membrane protein prestin, electrical responses also cause outer hair cells to elongate and shorten, thus pumping energy into the basilar membrane's movements. The two forms of motility constitute an active process that amplifies mechanical inputs, sharpens frequency discrimination, and confers a compressive nonlinearity on responsiveness. These features arise because the active process operates near a Hopf bifurcation, the generic properties of which explain several key features of hearing. Moreover, when the gain of the active process rises sufficiently in ultraquiet circumstances, the system traverses the bifurcation and even a normal ear actually emits sound. The remarkable properties of hearing thus stem from the propagation of traveling waves on a nonlinear and excitable medium.
Collapse
|
8
|
Young JA, Elliott SJ, Lineton B. Investigating the wave-fixed and place-fixed origins of the 2f(1)-f(2) distortion product otoacoustic emission within a micromechanical cochlear model. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 131:4699-4709. [PMID: 22712943 DOI: 10.1121/1.4707447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The 2f(1)-f(2) distortion product otoacoustic emission (DPOAE) arises within the cochlea due to the nonlinear interaction of two stimulus tones (f(1) and f(2)). It is thought to comprise contributions from a wave-fixed source and a place-fixed source. The generation and transmission of the 2f(1)-f(2) DPOAE is investigated here using quasilinear solutions to an elemental model of the human cochlea with nonlinear micromechanics. The micromechanical parameters and nonlinearity are formulated to match the measured response of the cochlea to single- and two-tone stimulation. The controlled introduction of roughness into the active micromechanics of the model allows the wave- and place-fixed contributions to the DPOAE to be studied separately. It is also possible to manipulate the types of nonlinear suppression that occur within the quasilinear model to investigate the influence of stimulus parameters on DPOAE generation. The model predicts and explains a variety of 2f(1)-f(2) DPOAE phenomena: The dependence of emission amplitude on stimulus parameters, the weakness of experiments designed to quantify cochlear amplifier gain, and the predominant mechanism which gives rise to DPOAE fine structure. In addition, the model is used to investigate the properties of the wave-fixed source and how these properties are influenced by the stimulus parameters.
Collapse
Affiliation(s)
- Jacqueline A Young
- Institute of Sound and Vibration Research, University of Southampton, Southampton, Hampshire, SO17 1BJ, United Kingdom.
| | | | | |
Collapse
|
9
|
Measurement of cochlear power gain in the sensitive gerbil ear. Nat Commun 2011; 2:216. [PMID: 21364555 DOI: 10.1038/ncomms1226] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/03/2011] [Indexed: 01/16/2023] Open
Abstract
The extraordinary sensitivity of the mammalian ear is commonly attributed to the cochlear amplifier, a cellular process thought to locally boost responses of the cochlear partition to soft sounds. However, cochlear power gain has not been measured directly. Here we use a scanning laser interferometer to determine the volume displacement and volume velocity of the cochlear partition by measuring its transverse vibration along and across the partition. We show the transverse displacement at the peak-response location can be >1,000 times greater than the displacement of the stapes, whereas the volume displacement of an area centred at this location is approximately tenfold greater than that of the stapes. Using the volume velocity and cochlear-fluid impedance, we discover that power at the peak-response area is >100-fold greater than that at the stapes. These results demonstrate experimentally that the cochlea amplifies soft sounds, offering insight into the mechanism responsible for the cochlear sensitivity.
Collapse
|
10
|
Dalhoff E, Turcanu D, Gummer AW. Forward and reverse transfer functions of the middle ear based on pressure and velocity DPOAEs with implications for differential hearing diagnosis. Hear Res 2011; 280:86-99. [PMID: 21624450 DOI: 10.1016/j.heares.2011.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/06/2011] [Accepted: 04/23/2011] [Indexed: 11/17/2022]
Abstract
Recently it was shown that distortion product otoacoustic emissions (DPOAEs) can be measured as vibration of the human tympanic membrane in vivo, and proposed to use these vibration DPOAEs to support a differential diagnosis of middle-ear and cochlear pathologies. Here, we investigate how the reverse transfer function (r-TF), defined as the ratio of DPOAE-velocity of the umbo to DPOAE-pressure in the ear canal, can be used to diagnose the state of the middle ear. Anaesthetized guinea pigs served as the experimental animal. Sound was delivered free-field and the vibration of the umbo measured with a laser Doppler vibrometer (LDV). Sound pressure was measured 2-3 mm from the tympanic membrane with a probe-tube microphone. The forward transfer function (f-TF) of umbo velocity relative to ear-canal pressure was obtained by stimulating with multi-tone pressure. The r-TF was assembled from DPOAE components generated in response to acoustic stimulation with two stimulus tones of frequencies f(1) and f(2); f(2)/f(1) was constant at 1.2. The r-TF was plotted as function of DPOAE frequencies; they ranged from 1.7 kHz to 23 kHz. The r-TF showed a characteristic shape with an anti-resonance around 8 kHz as its most salient feature. The data were interpreted with the aid of a middle-ear transmission-line model taken from the literature for the cat and adapted to the guinea pig. Parameters were estimated with a three-step fitting algorithm. Importantly, the r-TF is governed by only half of the 15 independent, free parameters of the model. The parameters estimated from the r-TF were used to estimate the other half of the parameters from the f-TF. The use of r-TF data - in addition to f-TF data - allowed robust estimates of the middle-ear parameters to be obtained. The results highlight the potential of using vibration DPOAEs for ascertaining the functionality of the middle ear and, therefore, for supporting a differential diagnosis of middle-ear and cochlear pathologies.
Collapse
Affiliation(s)
- Ernst Dalhoff
- Eberhard-Karls-University Tübingen, Department Otolaryngology, Section of Physiological Acoustics and Communication, Elfriede-Aulhorn-Straße 5, Tübingen, Germany.
| | | | | |
Collapse
|
11
|
Dong W, Olson ES. Local cochlear damage reduces local nonlinearity and decreases generator-type cochlear emissions while increasing reflector-type emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 127:1422-1431. [PMID: 20329842 PMCID: PMC2856509 DOI: 10.1121/1.3291682] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 05/29/2023]
Abstract
Distortion product otoacoustic emissions (DPOAEs) originate in cochlear nonlinearity and emerge into the ear canal as an apparent sum of emission types, one of which (generator) travels directly out and the other (reflector) travels out following linear reflection. The present study explores intracochlear sources of DPOAEs via simultaneous ear canal and intracochlear pressure measurements in gerbils. A locally damaged cochlea was produced with reduced local intracochlear nonlinearity and significant elevation of the compound action potential thresholds at frequencies represented within the damaged region. In the DPOAE the comparison of healthy to locally damaged cochleae showed the following: (1) In the broad frequency region corresponding to the locally damaged best frequency, DPOAEs evoked by wider f(2)/f(1) stimuli decreased, consistent with the reduction in local nonlinearity. (2) DPOAEs evoked by narrow f(2)/f(1) stimuli often had a bimodal change, decreasing in a lower frequency band and increasing in a band just adjacent and higher, and the DPOAE phase-vs-frequency slope steepened. These changes confirm the complex nature of the DPOAE.
Collapse
Affiliation(s)
- Wei Dong
- Department of Otolaryngology, Head and Neck Surgery, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
12
|
Chen F, Nuttall AL. Comment on "Measuring power production in the mammalian cochlea" [Curr. Biol. 17, 1340 (2007)]. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 125:11-14. [PMID: 19173387 DOI: 10.1121/1.2950090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recently, a paper by Lakashkin et al. (2007) ("Power amplification in the mammalian cochlea," Curr. Biol. 17, 1340-1344) was published on how power can be measured in the mammalian cochlea. The general subject is of current widespread interest, so the question of whether the method used by Lakashkin et al. is valid may be of interest to the readers of this journal. Power generation in the cochlea can account for the extraordinary sensitivity of hearing. Lukashkin et al. claimed to provide a direct proof of cochlear power generation. A first-order spring-dashpot system was used to model the organ of Corti. The power flux direction can be derived from the sign of the phase difference between the force and displacement, which can be presented as a "hysteresis plot." Basilar membrane (BM) vibration near the characteristic frequency (CF) was measured while applying a low-frequency modulation tone together with the CF tone. A force was derived from the modulation profile of the BM CF vibration and when plotted versus the displacement at the modulation frequency, the function had a counterclockwise direction of hysteresis, suggesting power generation. In this letter, we present comments on the analysis in the report: (1) that it is not appropriate to analyze at the modulation frequency to derive the power generation at CF; (2) that the derivation of a force from just the displacement profile is not justified, followed by an alternative interpretation of the experimental data.
Collapse
Affiliation(s)
- Fangyi Chen
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center, NRCO4, Oregon Health Sciences University, Portland, Oregon 97239, USA
| | | |
Collapse
|
13
|
Hudspeth AJ. Making an effort to listen: mechanical amplification in the ear. Neuron 2008; 59:530-45. [PMID: 18760690 PMCID: PMC2724262 DOI: 10.1016/j.neuron.2008.07.012] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/01/2008] [Accepted: 07/01/2008] [Indexed: 11/30/2022]
Abstract
The inner ear's performance is greatly enhanced by an active process defined by four features: amplification, frequency selectivity, compressive nonlinearity, and spontaneous otoacoustic emission. These characteristics emerge naturally if the mechanoelectrical transduction process operates near a dynamical instability, the Hopf bifurcation, whose mathematical properties account for specific aspects of our hearing. The active process of nonmammalian tetrapods depends upon active hair-bundle motility, which emerges from the interaction of negative hair-bundle stiffness and myosin-based adaptation motors. Taken together, these phenomena explain the four characteristics of the ear's active process. In the high-frequency region of the mammalian cochlea, the active process is dominated instead by the phenomenon of electromotility, in which the cell bodies of outer hair cells extend and contract as the protein prestin alters its membrane surface area in response to changes in membrane potential.
Collapse
Affiliation(s)
- A J Hudspeth
- Laboratory of Sensory Neuroscience and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
14
|
Moleti A, Sisto R. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:1495-503. [PMID: 18345838 DOI: 10.1121/1.2836781] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Experimental measurements of the latency of transient evoked otoacoustic emission and auditory brainstem responses are compared, to discriminate between different cochlear models for the backward acoustic propagation of otoacoustic emissions. In most transmission-line cochlear models otoacoustic emissions propagate towards the base as a slow transverse traveling wave, whereas other models assume fast backward propagation via longitudinal compression waves in the fluid. Recently, sensitive measurements of the basilar membrane motion have cast serious doubts on the existence of slow backward traveling waves associated with distortion product otoacoustic emissions [He et al., Hear. Res. 228, 112-122 (2007)]. On the other hand, recent analyses of "Allen-Fahey" experiments suggest instead that the slow mechanism transports most of the otoacoustic energy [Shera et al., J. Acoust. Soc. Am. 122, 1564-1575 (2007)]. The two models can also be discriminated by comparing accurate estimates of the otoacoustic emission latency and of the auditory brainstem response latency. In this study, this comparison is done using human data, partly original, and partly from the literature. The results are inconsistent with fast otoacoustic propagation, and suggest that slow traveling waves on the basilar membrane are indeed the main mechanism for the backward propagation of the otoacoustic energy.
Collapse
Affiliation(s)
- Arturo Moleti
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 1, 00133 Roma, Italy.
| | | |
Collapse
|
15
|
de Boer E, Zheng J, Porsov E, Nuttall AL. Inverted direction of wave propagation (IDWP) in the cochlea. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:1513-21. [PMID: 18345840 PMCID: PMC3647475 DOI: 10.1121/1.2828064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The "classical" view on wave propagation is that propagating waves are possible in both directions along the length of the basilar membrane and that they have identical properties. Results of several recently executed experiments [T. Ren, Nat. Neurosci. 2, 333-334 (2004) and W. X. He, A. L. Nuttall, and T. Ren, Hear. Res., 228, 112-122 (2007)] appear to contradict this view. In the current work measurements were made of the velocity of the guinea-pig basilar membrane (BM). Distortion products (DPs) were produced by presenting two primary tones, with frequencies below the characteristic frequency f(0) of the BM location at which the BM measurements were made, with a constant frequency ratio. In each experiment the phase of the principal DP, with frequency 2f(1)-f(2), was recorded as a function of the DP frequency. The results indicate that the DP wave going from the two-tone interaction region toward the stapes is not everywhere traveling in the reverse direction, but also in the forward direction. The extent of the region in which the forward wave occurs appears larger than is accounted for by classical theory. This property has been termed "inverted direction of wave propagation." The results of this study confirm the wave propagation findings of other authors. The experimental data are compared to theoretical predictions for a classical three-dimensional model of the cochlea that is based on noise-response data of the same animal. Possible physical mechanisms underlying the findings are discussed.
Collapse
Affiliation(s)
- Egbert de Boer
- Academic Medical Center, University of Amsterdam, Room D2-225/226, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands and Oregon Hearing Research Center, NRC04, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239-3098
| | - Jiefu Zheng
- Oregon Hearing Research Center, NRC04, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239-3098
| | - Edward Porsov
- Oregon Hearing Research Center, NRC04, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239-3098
| | | |
Collapse
|
16
|
Keefe DH, Ellison JC, Fitzpatrick DF, Gorga MP. Two-tone suppression of stimulus frequency otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:1479-94. [PMID: 18345837 PMCID: PMC2517244 DOI: 10.1121/1.2828209] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Stimulus frequency otoacoustic emissions (SFOAEs) measured using a suppressor tone in human ears are analogous to two-tone suppression responses measured mechanically and neurally in mammalian cochleae. SFOAE suppression was measured in 24 normal-hearing adults at octave frequencies (f(p)=0.5-8.0 kHz) over a 40 dB range of probe levels (L(p)). Suppressor frequencies (f(s)) ranged from -2.0 to 0.7 octaves re: f(p), and suppressor levels ranged from just detectable suppression to full suppression. The lowest suppression thresholds occurred for "best" f(s) slightly higher than f(p). SFOAE growth of suppression (GOS) had slopes close to one at frequencies much lower than best f(s), and shallow slopes near best f(s), which indicated compressive growth close to 0.3 dBdB. Suppression tuning curves constructed from GOS functions were well defined at 1, 2, and 4 kHz, but less so at 0.5 and 8.0 kHz. Tuning was sharper at lower L(p) with an equivalent rectangular bandwidth similar to that reported behaviorally for simultaneous masking. The tip-to-tail difference assessed cochlear gain, increasing with decreasing L(p) and increasing f(p) at the lowest L(p) from 32 to 45 dB for f(p) from 1 to 4 kHz. SFOAE suppression provides a noninvasive measure of the saturating nonlinearities associated with cochlear amplification on the basilar membrane.
Collapse
Affiliation(s)
- Douglas H Keefe
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.
| | | | | | | |
Collapse
|
17
|
Shera CA, Guinan JJ. Mechanisms of Mammalian Otoacoustic Emission. ACTIVE PROCESSES AND OTOACOUSTIC EMISSIONS IN HEARING 2008. [DOI: 10.1007/978-0-387-71469-1_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
18
|
Abstract
The remarkable sensitivity, frequency selectivity, and nonlinearity of the cochlea have been attributed to the putative 'cochlear amplifier', which consumes metabolic energy to amplify the cochlear mechanical response to sounds. Recent studies have demonstrated that outer hair cells actively generate force using somatic electromotility and active hair-bundle motion. However, the expected power gain of the cochlear amplifier has not been demonstrated experimentally, and the measured location of cochlear nonlinearity is inconsistent with the predicted location of the cochlear amplifier. We instead propose a 'cochlear transformer' mechanism to interpret cochlear performance.
Collapse
Affiliation(s)
- Tianying Ren
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, NRC 04, Portland, OR 97239-3098, USA.
| | | |
Collapse
|
19
|
Shera CA, Tubis A, Talmadge CL, de Boer E, Fahey PF, Guinan JJ. Allen-Fahey and related experiments support the predominance of cochlear slow-wave otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 121:1564-75. [PMID: 17407894 DOI: 10.1121/1.2405891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Originally proposed as a method for measuring the power gain of the cochlear amplifier, Allen-Fahey experiments compare intracochlear distortion products and ear-canal otoacoustic emissions (OAEs) under tightly controlled conditions. In this paper Allen-Fahey experiments are shown to place significant constraints on the dominant mode of reverse energy propagation within the cochlea. Existing Allen-Fahey experiments are reviewed and shown to contradict the predictions of compression-wave OAE models recently proposed in the literature. In compression-wave models, distortion products propagate from their site of generation to the stapes via longitudinal compression waves in the cochlear fluids (fast waves); in transverse traveling-wave models, by contrast, distortion products propagate primarily via pressure-difference waves whose velocity and other characteristics depend on the mechanical properties of the cochlear partition (slow waves). Compression-wave models predict that the distortion-product OAEs (DPOAEs) measured in the Allen-Fahey paradigm increase at close primary-frequency ratios (or remain constant in the hypothetical absence of tuned suppression). The behavior observed experimentally is just the opposite-a pronounced decrease in DPOAE amplitude at close ratios. Since neither compression-wave nor simple conceptual "hybrid-wave" models can account for the experimental results--whereas slow-wave models can, via systematic changes in distortion-source directionality arising from wave-interference effects--Allen-Fahey and related experiments provide compelling evidence against the predominance of compression-wave OAEs in mammalian cochlear mechanics.
Collapse
Affiliation(s)
- Christopher A Shera
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Shera CA, Guinan JJ. Cochlear traveling-wave amplification, suppression, and beamforming probed using noninvasive calibration of intracochlear distortion sources. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 121:1003-16. [PMID: 17348523 DOI: 10.1121/1.2404620] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Originally developed to estimate the power gain of the cochlear amplifier, so-called "Allen-Fahey" and related experiments have proved invaluable for probing the mechanisms of wave generation and propagation within the cochlea. The experimental protocol requires simultaneous measurement of intracochlear distortion products (DPs) and ear-canal otoacoustic emissions (DPOAEs) under tightly controlled conditions. To calibrate the intracochlear response to the DP, Allen-Fahey experiments traditionally employ invasive procedures such as recording from auditory-nerve fibers or measuring basilar-membrane velocity. This paper describes an alternative method that allows the intracochlear distortion source to be calibrated noninvasively. In addition to the standard pair of primary tones used to generate the principal DP the noninvasive method employs a third, fixed tone to create a secondary DPOAE whose amplitude and phase provide a sensitive assay of the intracochlear value of the principal DP near its characteristic place. The method is used to perform noninvasive Allen-Fahey experiments in cat and shown to yield results in quantitative agreement with the original, auditory-nerve-based paradigm performed in the same animal. Data obtained using a suppression-compensated variation of the noninvasive method demonstrate that neither traveling-wave amplification nor two-tone suppression constitutes the controlling influence in DPOAE generation at close frequency ratios. Rather, the dominant factor governing the emission magnitude appears to be the variable directionality of the waves radiated by the distortion-source region, which acts as a distortion beamformer tuned by the primary frequency ratio.
Collapse
Affiliation(s)
- Christopher A Shera
- Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, 243 Charles Street, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
21
|
de Boer E, Nuttall AL, Shera CA. Wave propagation patterns in a "classical" three-dimensional model of the cochlea. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 121:352-62. [PMID: 17297790 DOI: 10.1121/1.2385068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The generation mechanisms of cochlear waves, in particular those that give rise to otoacoustic emissions (OAEs), are often complex. This makes it difficult to analyze wave propagation. In this paper two unusual excitation methods are applied to a three-dimensional stylized classical nonlinear model of the cochlea. The model used is constructed on the basis of data from an experimental animal selected to yield a smooth basilar-membrane impedance function. Waves going in two directions can be elicited by exciting the model locally instead of via the stapes. Production of DPOAEs was simulated by presenting the model with two relatively strong primary tones, with frequencies f1 and f2, estimating the driving pressure for the distortion product (DP) with frequency 2f1 - f2, and computing the resulting DP response pattern - as a function of distance along the basilar membrane. For wide as well as narrow frequency separations the resulting DP wave pattern in the model invariably showed that a reverse wave is dominant in nearly the entire region from the peak of the f2-tone to the stapes. The computed DP wave pattern was further analyzed as to its constituent components with the aim to isolate their properties.
Collapse
Affiliation(s)
- Egbert de Boer
- Room D2-226, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | | |
Collapse
|
22
|
Lukashkin AN, Smith JK, Russell IJ. Properties of distortion product otoacoustic emissions and neural suppression tuning curves attributable to the tectorial membrane resonance. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 121:337-43. [PMID: 17297788 DOI: 10.1121/1.2390670] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Mechanically coupled cochlear structures are likely to form a resonator with several degrees of freedom. Consequently one can expect complex, frequency-dependent relative movements between these structures, particularly between the tectorial membrane and reticular lamina. Shearing movement between these two structures excites the cochlear receptors. This excitation should be minimal at the frequency of the hypothesized tectorial membrane resonance. In each preparation, simultaneous masking neural tuning curves and distortion product otoacoustic emissions were recorded. The position of the low-frequency minima in the tuning curves, frequency dependence of the emission bandpass structure, and level-dependent phase reversal were compared to determine if they were generated by a common phenomenon, for example the tectorial membrane resonance. The notch in the masking curves and the phase inversion of the emission growth functions at the auditory thresholds are both situated half an octave below the probe frequency and the high-frequency primary, respectively, and show similar frequency dependence. The emission bandpass structure is, however, likely to be generated by a combination of mechanisms with different ones dominating at different stimulus parameters.
Collapse
Affiliation(s)
- Andrei N Lukashkin
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom.
| | | | | |
Collapse
|
23
|
Ren T, Nuttall AL. Cochlear compression wave: an implication of the Allen-Fahey experiment. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006; 119:1940-2. [PMID: 16642805 DOI: 10.1121/1.2177586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In order to measure the gain of the cochlear amplifier, de Boer and co-workers recently extended the Allen-Fahey experiment by measuring otoacoustic emissions and basilar membrane vibration [J. Acoust. Soc. Am. 117, 1260-1266 (2005)]. Although this new experiment overcame the limitation of the original Allen-Fahey experiment for using a low-frequency ratio, it confirmed the previous finding that there is no detectable cochlear amplification. This result was attributed to destructive interference of the otoacoustic emission over its generation site. The present letter provides an alternative interpretation of the results of the Allen-Fahey experiment based on the cochlear fluid compression-wave theory.
Collapse
Affiliation(s)
- Tianying Ren
- Oregon Hearing Research Center, Department of Otolaryngology and Head & Neck Surgery, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, NRC04, Portland, Oregon 97239-3098, USA.
| | | |
Collapse
|