1
|
Wilson US, Browning-Kamins J, Durante AS, Boothalingam S, Moleti A, Sisto R, Dhar S. Cochlear tuning estimates from level ratio functions of distortion product otoacoustic emissions. Int J Audiol 2021; 60:890-899. [PMID: 33612052 DOI: 10.1080/14992027.2021.1886352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: Distortion product otoacoustic emission (DPOAE) levels plotted as a function of stimulus frequency ratio demonstrate a bandpass shape. This bandpass shape is narrower at higher frequencies compared to lower frequencies and thus has been thought to be related to cochlear mechanical tuning.Design: However, the frequency- and level-dependence of these functions above 8 kHz is largely unknown. Furthermore, how tuning estimates from these functions are related to behavioural tuning is not fully understood.Study Sample: From experiment 1, we report DPOAE level ratio functions (LRF) from seven normal-hearing, young-adults for f2 = 0.75-16 kHz and two stimulus levels of 62/52 and 52/37 dB FPL. We found that LRFs became narrower as a function of increasing frequency and decreasing level.Results: Tuning estimates from these functions increased as expected from 1-8 kHz. In experiment 2, we compared tuning estimates from DPOAE LRF to behavioural tuning in 24 normal-hearing, young adults for 1 and 4 kHz and found that behavioural tuning generally predicted DPOAE LRF estimated tuning.Conclusions: Our findings suggest that DPOAE LRFs generally reflect the tuning profile consistent with basilar membrane, neural, and behavioural tuning. However, further investigations are warranted to fully determine the use of DPOAE LRF as a clinical measure of cochlear tuning.
Collapse
Affiliation(s)
- Uzma Shaheen Wilson
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL, USA
| | - Jenna Browning-Kamins
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL, USA
| | | | | | - Arturo Moleti
- Physics Department, University of Roma Tor Vergata, Rome, Italy
| | | | - Sumitrajit Dhar
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL, USA.,Knowles Hearing Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
2
|
Happel MFK, Ohl FW. Compensating Level-Dependent Frequency Representation in Auditory Cortex by Synaptic Integration of Corticocortical Input. PLoS One 2017; 12:e0169461. [PMID: 28046062 PMCID: PMC5207691 DOI: 10.1371/journal.pone.0169461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/16/2016] [Indexed: 11/20/2022] Open
Abstract
Robust perception of auditory objects over a large range of sound intensities is a fundamental feature of the auditory system. However, firing characteristics of single neurons across the entire auditory system, like the frequency tuning, can change significantly with stimulus intensity. Physiological correlates of level-constancy of auditory representations hence should be manifested on the level of larger neuronal assemblies or population patterns. In this study we have investigated how information of frequency and sound level is integrated on the circuit-level in the primary auditory cortex (AI) of the Mongolian gerbil. We used a combination of pharmacological silencing of corticocortically relayed activity and laminar current source density (CSD) analysis. Our data demonstrate that with increasing stimulus intensities progressively lower frequencies lead to the maximal impulse response within cortical input layers at a given cortical site inherited from thalamocortical synaptic inputs. We further identified a temporally precise intercolumnar synaptic convergence of early thalamocortical and horizontal corticocortical inputs. Later tone-evoked activity in upper layers showed a preservation of broad tonotopic tuning across sound levels without shifts towards lower frequencies. Synaptic integration within corticocortical circuits may hence contribute to a level-robust representation of auditory information on a neuronal population level in the auditory cortex.
Collapse
Affiliation(s)
- Max F. K. Happel
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
- Institute of Biology, Otto-von-Guericke-University, D-39120 Magdeburg, Germany
- * E-mail: (MH); (FO)
| | - Frank W. Ohl
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
- Institute of Biology, Otto-von-Guericke-University, D-39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- * E-mail: (MH); (FO)
| |
Collapse
|
3
|
Lewis JD, Kopun J, Neely ST, Schmid KK, Gorga MP. Tone-burst auditory brainstem response wave V latencies in normal-hearing and hearing-impaired ears. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:3210-3219. [PMID: 26627795 PMCID: PMC4662677 DOI: 10.1121/1.4935516] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 10/20/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
The metric used to equate stimulus level [sound pressure level (SPL) or sensation level (SL)] between ears with normal hearing (NH) and ears with hearing loss (HL) in comparisons of auditory function can influence interpretation of results. When stimulus level is equated in dB SL, higher SPLs are presented to ears with HL due to their reduced sensitivity. As a result, it may be difficult to determine if differences between ears with NH and ears with HL are due to cochlear pathology or level-dependent changes in cochlear mechanics. To the extent that level-dependent changes in cochlear mechanics contribute to auditory brainstem response latencies, comparisons between normal and pathologic ears may depend on the stimulus levels at which comparisons are made. To test this hypothesis, wave V latencies were measured in 16 NH ears and 15 ears with mild-to-moderate HL. When stimulus levels were equated in SL, latencies were shorter in HL ears. However, latencies were similar for NH and HL ears when stimulus levels were equated in SPL. These observations demonstrate that the effect of stimulus level on wave V latency is large relative to the effect of HL, at least in cases of mild-to-moderate HL.
Collapse
Affiliation(s)
- James D Lewis
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Judy Kopun
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Stephen T Neely
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Kendra K Schmid
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Michael P Gorga
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| |
Collapse
|
4
|
Saremi A, Stenfelt S. Effect of metabolic presbyacusis on cochlear responses: a simulation approach using a physiologically-based model. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:2833-2851. [PMID: 24116421 DOI: 10.1121/1.4820788] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the presented model, electrical, acoustical, and mechanical elements of the cochlea are explicitly integrated into a signal transmission line where these elements convey physiological interpretations of the human cochlear structures. As a result, this physiologically-motivated model enables simulation of specific cochlear lesions such as presbyacusis. The hypothesis is that high-frequency hearing loss in older adults may be due to metabolic presbyacusis whereby age-related cellular/chemical degenerations in the lateral wall of the cochlea cause a reduction in the endocochlear potential. The simulations quantitatively confirm this hypothesis and emphasize that even if the outer and inner hair cells are totally active and intact, metabolic presbyacusis alone can significantly deteriorate the cochlear functionality. Specifically, in the model, as the endocochlear potential decreases, the transduction mechanism produces less receptor current such that there is a reduction in the battery of the somatic motor. This leads to a drastic decrease in cochlear amplification and frequency sensitivity, as well as changes in position-frequency map (tuning pattern) of the cochlea. In addition, the simulations show that the age-related reduction of the endocochlear potential significantly inhibits the firing rate of the auditory nerve which might contribute to the decline of temporal resolution in the aging auditory system.
Collapse
MESH Headings
- Action Potentials
- Age Factors
- Aging/metabolism
- Animals
- Cochlea/metabolism
- Cochlea/pathology
- Cochlea/physiopathology
- Cochlear Nerve/metabolism
- Cochlear Nerve/physiopathology
- Computer Simulation
- Evoked Potentials
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Hearing
- Humans
- Linear Models
- Mechanotransduction, Cellular
- Models, Biological
- Nonlinear Dynamics
- Presbycusis/metabolism
- Presbycusis/pathology
- Presbycusis/physiopathology
- Pressure
- Time Factors
- Vibration
Collapse
Affiliation(s)
- Amin Saremi
- Department of Clinical and Experimental Medicine, Division of Technical Audiology, Linköping University, 581 85 Linköping, Sweden
| | | |
Collapse
|
5
|
Aguilar E, Eustaquio-Martin A, Lopez-Poveda EA. Contralateral efferent reflex effects on threshold and suprathreshold psychoacoustical tuning curves at low and high frequencies. J Assoc Res Otolaryngol 2013; 14:341-57. [PMID: 23423559 PMCID: PMC3642277 DOI: 10.1007/s10162-013-0373-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/21/2013] [Indexed: 11/28/2022] Open
Abstract
Medial olivocochlear efferent neurons can control cochlear frequency selectivity and may be activated in a reflexive manner by contralateral sounds. The present study investigated the significance of the contralateral medial olivocochlear reflex (MOCR) on human psychoacoustical tuning curves (PTCs), a behavioral correlate of cochlear tuning curves. PTCs were measured using forward masking in the presence and in the absence of a contralateral white noise, assumed to elicit the MOCR. To assess MOCR effects on apical and basal cochlear regions over a wide range of sound levels, PTCs were measured for probe frequencies of 500 Hz and 4 kHz and for near- and suprathreshold conditions. Results show that the contralateral noise affected the PTCs predominantly at 500 Hz. At near-threshold levels, its effect was obvious only for frequencies in the tails of the PTCs; at suprathreshold levels, its effects were obvious for all frequencies. It was verified that the effects were not due to the contralateral noise activating the middle-ear muscle reflex or changing the postmechanical rate of recovery from forward masking. A phenomenological computer model of forward masking with efferent control was used to explain the data. The model supports the hypothesis that the behavioral results were due to the contralateral noise reducing apical cochlear gain in a frequency- and level-dependent manner consistent with physiological evidence. Altogether, this shows that the contralateral MOCR may be changing apical cochlear responses in natural, binaural listening situations.
Collapse
Affiliation(s)
- Enzo Aguilar
- />Instituto de Neurociencias de Castilla y León and Instituto de Investigaciones Biomédicas de Salamanca, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Almudena Eustaquio-Martin
- />Instituto de Neurociencias de Castilla y León and Instituto de Investigaciones Biomédicas de Salamanca, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Enrique A. Lopez-Poveda
- />Instituto de Neurociencias de Castilla y León and Instituto de Investigaciones Biomédicas de Salamanca, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007 Salamanca, Spain
- />Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
6
|
Lopez-Poveda EA, Eustaquio-Martin A. On the controversy about the sharpness of human cochlear tuning. J Assoc Res Otolaryngol 2013; 14:673-86. [PMID: 23690279 DOI: 10.1007/s10162-013-0397-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 05/03/2013] [Indexed: 11/26/2022] Open
Abstract
In signal processing terms, the operation of the mammalian cochlea in the inner ear may be likened to a bank of filters. Based on otoacoustic emission evidence, it has been recently claimed that cochlear tuning is sharper for human than for other mammals. The claim was corroborated with a behavioral method that involves the masking of pure tones with forward notched noises (NN). Using this method, it has been further claimed that human cochlear tuning is sharper than suggested by earlier behavioral studies. These claims are controversial. Here, we contribute to the controversy by theoretically assessing the accuracy of the NN method at inferring the bandwidth (BW) of nonlinear cochlear filters. Behavioral forward masking was mimicked using a computer model of the squared basilar membrane response followed by a temporal integrator. Isoresponse and isolevel versions of the forward masking NN method were applied to infer the already known BW of the cochlear filter used in the model. We show that isolevel methods were overall more accurate than isoresponse methods. We also show that BWs for NNs and sinusoids equate only for isolevel methods and when the levels of the two stimuli are appropriately scaled. Lastly, we show that the inferred BW depends on the method version (isolevel BW was twice as broad as isoresponse BW at 40 dB SPL) and on the stimulus level (isoresponse and isolevel BW decreased and increased, respectively, with increasing level over the level range where cochlear responses went from linear to compressive). We suggest that the latter may contribute to explaining the reported differences in cochlear tuning across behavioral studies and species. We further suggest that given the well-established nonlinear nature of cochlear responses, even greater care must be exercised when using a single BW value to describe and compare cochlear tuning.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain,
| | | |
Collapse
|
7
|
Lopez-Poveda EA, Aguilar E, Johannesen PT, Eustaquio-Martín A. Contralateral efferent regulation of human cochlear tuning: behavioural observations and computer model simulations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 787:47-54. [PMID: 23716208 DOI: 10.1007/978-1-4614-1590-9_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In binaural listening, the two cochleae do not act as independent sound receptors; their functioning is linked via the contralateral medial olivo-cochlear reflex (MOCR), which can be activated by contralateral sounds. The present study aimed at characterizing the effect of a contralateral white noise (CWN) on psychophysical tuning curves (PTCs). PTCs were measured in forward masking for probe frequencies of 500 Hz and 4 kHz, with and without CWN. The sound pressure level of the probe was fixed across conditions. PTCs for different response criteria were measured by using various masker-probe time gaps. The CWN had no significant effects on PTCs at 4 kHz. At 500 Hz, by contrast, PTCs measured with CWN appeared broader, particularly for short gaps, and they showed a decrease in the masker level. This decrease was greater the longer the masker-probe time gap. A computer model of forward masking with efferent control of cochlear gain was used to explain the data. The model accounted for the data based on the assumption that the sole effect of the CWN was to reduce the cochlear gain by ∼6.5 dB at 500 Hz for low and moderate levels. It also suggested that the pattern of data at 500 Hz is the result of combined broad bandwidth of compression and off-frequency listening. Results are discussed in relation with other physiological and psychoacoustical studies on the effect of activation of MOCR on cochlear function.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.
| | | | | | | |
Collapse
|
8
|
Jennings SG, Strickland EA. Auditory filter tuning inferred with short sinusoidal and notched-noise maskers. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:2497-513. [PMID: 23039444 PMCID: PMC3477189 DOI: 10.1121/1.4746029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 07/18/2012] [Accepted: 07/24/2012] [Indexed: 05/29/2023]
Abstract
The physiology of the medial olivocochlear reflex suggests that a sufficiently long stimulus (>100 ms) may reduce cochlear gain and result in broadened frequency selectivity. The current study attempted to avoid gain reduction by using short maskers (20 ms) to measure psychophysical tuning curves (PTCs) and notched-noise tuning characteristics, with a 4-kHz signal. The influence of off-frequency listening on PTCs was evaluated using two types of background noise. Iso-level curves were derived using an estimate of the cochlear input/output (I/O) function, which was obtained using an off-frequency masker as a linear reference. The influence of masker duration on PTCs was assessed using a model that assumed long maskers (>20 ms) evoked gain reduction. The results suggested that the off-frequency masker was a valid linear reference when deriving I/O functions and that off-frequency listening may have occurred in auditory filters apical to the signal place. The iso-level curves from this growth-of-masking study were consistent with those from a temporal-masking-curve study by Eustaquio-Martin and Lopez-Poveda [J. Assoc. Res. Otolaryngol. 12, 281-299. (2011)], suggesting that either approach may be used to derive iso-level curves. Finally, model simulations suggested that masker duration may not influence estimates of frequency selectivity.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
9
|
Auditory nerve frequency tuning measured with forward-masked compound action potentials. J Assoc Res Otolaryngol 2012; 13:799-817. [PMID: 22948475 DOI: 10.1007/s10162-012-0346-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 07/31/2012] [Indexed: 10/27/2022] Open
Abstract
Frequency selectivity is a fundamental cochlear property. Recent studies using otoacoustic emissions and psychophysical forward masking suggest that frequency selectivity is sharper in human than in common laboratory species. This has been disputed based on reports using compound action potentials (CAPs), which reflect activity in the auditory nerve and can be measured in humans. Comparative data of CAPs, obtained with a variety of simultaneous masking protocols, have been interpreted to indicate similarity of frequency tuning across mammals and even birds. Unfortunately, there are several issues with the available CAP measurements which hamper a straightforward comparison across species. We investigate sharpness of CAP tuning in cat and chinchilla using a forward masking notched-noise paradigm--which is less confounded by cochlear nonlinearities than simultaneous masking paradigms and similar to what was used in the psychophysical study reporting sharper tuning in humans. Our parametric study, using different probe frequencies and notch widths, shows relationships consistent with those of auditory nerve fibers (ANFs). The sharpness of tuning, quantified by Q(10) factors, is negatively correlated with probe level and increases with probe frequency, but the Q(10) values are generally lower than the average trend for ANFs. Like the single fiber data, tuning for CAPs is sharper in cat than in chinchilla, but the two species are similar in the dependence of tuning on probe frequency and in the relationship between tuning in ANFs and CAP. Growth-of-maskability functions show slopes <1 indicating that with increasing probe level the probe is more susceptible to cochlear compression than the masker. The results support the use of forward-masked CAPs as an alternative measure to estimate ANF tuning and to compare frequency tuning across species.
Collapse
|
10
|
Warnaar B, Dreschler WA. Agreement between psychophysical tuning curves and the threshold equalizing noise test in dead region identification. Int J Audiol 2012; 51:456-64. [DOI: 10.3109/14992027.2012.658969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Eustaquio-Martín A, Lopez-Poveda EA. Isoresponse versus isoinput estimates of cochlear filter tuning. J Assoc Res Otolaryngol 2010; 12:281-99. [PMID: 21104288 DOI: 10.1007/s10162-010-0252-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022] Open
Abstract
The tuning of a linear filter may be inferred from the filter's isoresponse (e.g., tuning curves) or isoinput (e.g., isolevel curves) characteristics. This paper provides a theoretical demonstration that for nonlinear filters with compressive response characteristics like those of the basilar membrane, isoresponse measures can suggest strikingly sharper tuning than isoinput measures. The practical significance of this phenomenon is demonstrated by inferring the 3-dB-down bandwidths (BW(3dB)) of human auditory filters at 500 and 4,000 Hz from behavioral isoresponse and isoinput measures obtained with sinusoidal and notched noise forward maskers. Inferred cochlear responses were compressive for the two types of maskers. Consistent with expectations, low-level BW(3dB) estimates obtained from isoresponse conditions were considerably narrower than those obtained from isolevel conditions: 69 vs. 174 Hz, respectively, at 500 Hz, and 280 vs. 464 Hz, respectively, at 4,000 Hz. Furthermore, isoresponse BW(3dB) decreased with increasing level while corresponding isolevel estimates remained approximately constant at 500 Hz or increased slightly at 4 kHz. It is suggested that comparisons between isoresponse supra-threshold human tuning and threshold animal neural tuning should be made with caution.
Collapse
Affiliation(s)
- Almudena Eustaquio-Martín
- Unidad de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca, Spain
| | | |
Collapse
|
12
|
Wojtczak M, Oxenham AJ. Pitfalls in behavioral estimates of basilar-membrane compression in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 125:270-81. [PMID: 19173414 PMCID: PMC2677277 DOI: 10.1121/1.3023063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Psychoacoustic estimates of basilar-membrane compression often compare on- and off-frequency forward masking. Such estimates involve assuming that the recovery from forward masking for a given signal frequency is independent of masker frequency. To test this assumption, thresholds for a brief 4-kHz signal were measured as a function of masker-signal delay. Comparisons were made between on-frequency (4 kHz) and off-frequency (either 2.4 or 4.4 kHz) maskers, adjusted in level to produce the same amount of masking at a 0-ms delay between masker offset and signal onset. Consistent with the assumption, forward-masking recovery from a moderate-level (83 dB SPL) 2.4-kHz masker and a high-level (92 dB SPL) 4.4-kHz masker was the same as from the equivalent on-frequency maskers. In contrast, recovery from a high-level (92 dB SPL) 2.4-kHz forward masker was slower than from the equivalent on-frequency masker. The results were used to simulate temporal masking curves, taking into account the differences in on- and off-frequency masking recoveries at high levels. The predictions suggest that compression estimates assuming frequency-independent masking recovery may overestimate compression by as much as a factor of 2. The results suggest caution in interpreting forward-masking data in terms of basilar-membrane compression, particularly when high-level maskers are involved.
Collapse
Affiliation(s)
- Magdalena Wojtczak
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|