1
|
de Groote E, Macherey O, Deeks JM, Roman S, Carlyon RP. Temporal Pitch Perception of Multi-Channel Stimuli by Cochlear-Implant Users. J Assoc Res Otolaryngol 2025:10.1007/s10162-025-00983-4. [PMID: 40153148 DOI: 10.1007/s10162-025-00983-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/07/2025] [Indexed: 03/30/2025] Open
Abstract
PURPOSE To explore the feasibility of cochlear-implant (CI) processing strategies that aim to improve pitch perception by presenting information on the stimulus temporal fine structure (TFS) in low-frequency channels to the corresponding apical electrodes. METHODS Eight users of the MED-EL CI pitch-ranked stimuli consisting of isochronous pulse trains presented concurrently to the four most apical CI electrodes. RESULTS When the same rate was applied to all electrodes, pitch ranks increased with increasing rates up to 200-300 pulses-per-second (pps), consistent with previous research. Presenting rates of 100, 200, 300, and 400 pps to one electrode per rate produced a pitch rank between that of the 100- and 200-pps same-rate stimuli. The assignation of pulse rate to electrode did not have a consistent effect on pitch ranks. However, maximising the delay between pulses on the different electrodes generally produced higher pitch ranks compared to when the between-electrode pulse delay was very short. CONCLUSION Our results show no evidence that listeners combine the rates of TFS applied to different channels so as to estimate the fundamental frequency but do show that pitch can be affected by between-electrode delays. We conclude that presenting different temporal patterns to adjacent electrodes is unlikely to produce a clear and robust pitch and propose an alternative method for conveying the F0 of complex sounds on multiple electrodes of a CI.
Collapse
Affiliation(s)
- Evelien de Groote
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Rd, Cambridge, CB2 7EF, UK
| | - Olivier Macherey
- Laboratoire de Mécanique Et d'Acoustique, Aix Marseille Université, Centre National de La Recherche Scientifique, Centrale Méditerranée, 13453, Cedex 13, France
| | - John M Deeks
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Rd, Cambridge, CB2 7EF, UK
| | - Stéphane Roman
- Dept. of Pediatric Otolaryngology and Neck Surgery, Aix-Marseille Univ, 13005, Marseille, France
| | - Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Rd, Cambridge, CB2 7EF, UK.
| |
Collapse
|
2
|
Lindenbeck MJ, Majdak P, Laback B. Effects of Monaural Temporal Electrode Asynchrony and Channel Interactions in Bilateral and Unilateral Cochlear-Implant Stimulation. Trends Hear 2024; 28:23312165241271340. [PMID: 39215517 PMCID: PMC11382250 DOI: 10.1177/23312165241271340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Timing cues such as interaural time differences (ITDs) and temporal pitch are pivotal for sound localization and source segregation, but their perception is degraded in cochlear-implant (CI) listeners as compared to normal-hearing listeners. In multi-electrode stimulation, intra-aural channel interactions between electrodes are assumed to be an important factor limiting access to those cues. The monaural asynchrony of stimulation timing across electrodes is assumed to mediate the amount of these interactions. This study investigated the effect of the monaural temporal electrode asynchrony (mTEA) between two electrodes, applied similarly in both ears, on ITD-based left/right discrimination sensitivity in five CI listeners, using pulse trains with 100 pulses per second and per electrode. Forward-masked spatial tuning curves were measured at both ears to find electrode separations evoking controlled degrees of across-electrode masking. For electrode separations smaller than 3 mm, results showed an effect of mTEA. Patterns were u/v-shaped, consistent with an explanation in terms of the effective pulse rate that appears to be subject to the well-known rate limitation in electric hearing. For separations larger than 7 mm, no mTEA effects were observed. A comparison to monaural rate-pitch discrimination in a separate set of listeners and in a matched setup showed no systematic differences between percepts. Overall, an important role of the mTEA in both binaural and monaural dual-electrode stimulation is consistent with a monaural pulse-rate limitation whose effect is mediated by channel interactions. Future CI stimulation strategies aiming at improved timing-cue encoding should minimize the stimulation delay between nearby electrodes that need to be stimulated successively.
Collapse
Affiliation(s)
| | - Piotr Majdak
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
3
|
Lindenbeck MJ, Majdak P, Srinivasan S, Laback B. Pitch discrimination in electric hearing with inconsistent and consistent amplitude-modulation and inter-pulse rate cues. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:3268. [PMID: 37307025 PMCID: PMC10264086 DOI: 10.1121/10.0019452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 06/13/2023]
Abstract
Users of cochlear implants (CIs) struggle in situations that require selective hearing to focus on a target source while ignoring other sources. One major reason for that is the limited access to timing cues such as temporal pitch or interaural time differences (ITDs). Various approaches to improve timing-cue sensitivity while maintaining speech understanding have been proposed, among them inserting extra pulses with short inter-pulse intervals (SIPIs) into amplitude-modulated (AM) high-rate pulse trains. Indeed, SIPI rates matching the naturally occurring AM rates improve pitch discrimination. For ITD, however, low SIPI rates are required, potentially mismatching the naturally occurring AM rates and thus creating unknown pitch effects. In this study, we investigated the perceptual contribution of AM and SIPI rate to pitch discrimination in five CI listeners and with two AM depths (0.1 and 0.5). Our results show that the SIPI-rate cue generally dominated the percept for both consistent and inconsistent cues. When tested with inconsistent cues, also the AM rate contributed, however, at the large AM depth only. These findings have implications when aiming at jointly improving temporal-pitch and ITD sensitivity in a future mixed-rate stimulation approach.
Collapse
Affiliation(s)
- Martin J Lindenbeck
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria
| | - Piotr Majdak
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria
| | - Sridhar Srinivasan
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria
| | - Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria
| |
Collapse
|
4
|
Tahmasebi S, Segovia-Martinez M, Nogueira W. Optimization of Sound Coding Strategies to Make Singing Music More Accessible for Cochlear Implant Users. Trends Hear 2023; 27:23312165221148022. [PMID: 36628453 PMCID: PMC9837293 DOI: 10.1177/23312165221148022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cochlear implants (CIs) are implantable medical devices that can partially restore hearing to people suffering from profound sensorineural hearing loss. While these devices provide good speech understanding in quiet, many CI users face difficulties when listening to music. Reasons include poor spatial specificity of electric stimulation, limited transmission of spectral and temporal fine structure of acoustic signals, and restrictions in the dynamic range that can be conveyed via electric stimulation of the auditory nerve. The coding strategies currently used in CIs are typically designed for speech rather than music. This work investigates the optimization of CI coding strategies to make singing music more accessible to CI users. The aim is to reduce the spectral complexity of music by selecting fewer bands for stimulation, attenuating the background instruments by strengthening a noise reduction algorithm, and optimizing the electric dynamic range through a back-end compressor. The optimizations were evaluated through both objective and perceptual measures of speech understanding and melody identification of singing voice with and without background instruments, as well as music appreciation questionnaires. Consistent with the objective measures, results gathered from the perceptual evaluations indicated that reducing the number of selected bands and optimizing the electric dynamic range significantly improved speech understanding in music. Moreover, results obtained from questionnaires show that the new music back-end compressor significantly improved music enjoyment. These results have potential as a new CI program for improved singing music perception.
Collapse
Affiliation(s)
- Sina Tahmasebi
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
- Sina Tahmasebi, Karl-Wiechert-Allee 3, 30625 Hannover, Germany.
Waldo Nogueira, Karl-Wiechert-Allee 3, 30625 Hannover, Germany.
| | | | - Waldo Nogueira
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
- Sina Tahmasebi, Karl-Wiechert-Allee 3, 30625 Hannover, Germany.
Waldo Nogueira, Karl-Wiechert-Allee 3, 30625 Hannover, Germany.
| |
Collapse
|
5
|
Bissmeyer SRS, Goldsworthy RL. Combining Place and Rate of Stimulation Improves Frequency Discrimination in Cochlear Implant Users. Hear Res 2022; 424:108583. [PMID: 35930901 PMCID: PMC10849775 DOI: 10.1016/j.heares.2022.108583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022]
Abstract
In the auditory system, frequency is represented as tonotopic and temporal response properties of the auditory nerve. While these response properties are inextricably linked in normal hearing, cochlear implants can separately excite tonotopic location and temporal synchrony using different electrodes and stimulation rates, respectively. This separation allows for the investigation of the contributions of tonotopic and temporal cues for frequency discrimination. The present study examines frequency discrimination in adult cochlear implant users as conveyed by electrode position and stimulation rate, separately and combined. The working hypothesis is that frequency discrimination is better provided by place and rate cues combined compared to either cue alone. This hypothesis was tested in two experiments. In the first experiment, frequency discrimination needed for melodic contour identification was measured for frequencies near 100, 200, and 400 Hz using frequency allocation modeled after clinical processors. In the second experiment, frequency discrimination for pitch ranking was measured for frequencies between 100 and 1600 Hz using an experimental frequency allocation designed to provide better access to place cues. The results of both experiments indicate that frequency discrimination is better with place and rate cues combined than with either cue alone. These results clarify how signal processing for cochlear implants could better encode frequency into place and rate of electrical stimulation. Further, the results provide insight into the contributions of place and rate cues for pitch.
Collapse
Affiliation(s)
- Susan R S Bissmeyer
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States; Auditory Research Center, Health Research Association, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, 1640 Marengo Street Suite 326, Los Angeles, CA 90033, United States.
| | - Raymond L Goldsworthy
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States; Auditory Research Center, Health Research Association, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, 1640 Marengo Street Suite 326, Los Angeles, CA 90033, United States
| |
Collapse
|
6
|
Heshmat A, Sajedi S, Schrott-Fischer A, Rattay F. Polarity Sensitivity of Human Auditory Nerve Fibers Based on Pulse Shape, Cochlear Implant Stimulation Strategy and Array. Front Neurosci 2021; 15:751599. [PMID: 34955717 PMCID: PMC8692583 DOI: 10.3389/fnins.2021.751599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Neural health is of great interest to determine individual degeneration patterns for improving speech perception in cochlear implant (CI) users. Therefore, in recent years, several studies tried to identify and quantify neural survival in CI users. Among all proposed techniques, polarity sensitivity is a promising way to evaluate the neural status of auditory nerve fibers (ANFs) in CI users. Nevertheless, investigating neural health based on polarity sensitivity is a challenging and complicated task that involves various parameters, and the outcomes of many studies show contradictory results of polarity sensitivity behavior. Our computational study benefits from an accurate three-dimensional finite element model of a human cochlea with realistic human ANFs and determined ANF degeneration pattern of peripheral part with a diminishing of axon diameter and myelination thickness based on degeneration levels. In order to see how different parameters may impact the polarity sensitivity behavior of ANFs, we investigated polarity behavior under the application of symmetric and asymmetric pulse shapes, monopolar and multipolar CI stimulation strategies, and a perimodiolar and lateral CI array system. Our main findings are as follows: (1) action potential (AP) initiation sites occurred mainly in the peripheral site in the lateral system regardless of stimulation strategies, pulse polarities, pulse shapes, cochlear turns, and ANF degeneration levels. However, in the perimodiolar system, AP initiation sites varied between peripheral and central processes, depending on stimulation strategies, pulse shapes, and pulse polarities. (2) In perimodiolar array, clusters formed in threshold values based on cochlear turns and degeneration levels for multipolar strategies only when asymmetric pulses were applied. (3) In the perimodiolar array, a declining trend in polarity (anodic threshold/cathodic threshold) with multipolar strategies was observed between intact or slight degenerated cases and more severe degenerated cases, whereas in the lateral array, cathodic sensitivity was noticed for intact and less degenerated cases and anodic sensitivity for cases with high degrees of degeneration. Our results suggest that a combination of asymmetric pulse shapes, focusing more on multipolar stimulation strategies, as well as considering the distances to the modiolus wall, allows us to distinguish the degeneration patterns of ANFs across the cochlea.
Collapse
Affiliation(s)
- Amirreza Heshmat
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria.,Laboratory for Inner Ear Biology, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sogand Sajedi
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Anneliese Schrott-Fischer
- Laboratory for Inner Ear Biology, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Frank Rattay
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
7
|
Griessner A, Schatzer R, Steixner V, Rajan GP, Zierhofer C, Távora-Vieira D. Temporal Pitch Perception in Cochlear-Implant Users: Channel Independence in Apical Cochlear Regions. Trends Hear 2021; 25:23312165211020645. [PMID: 34041983 PMCID: PMC8165527 DOI: 10.1177/23312165211020645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two-electrode stimuli presented on adjacent mid-array contacts in cochlear-implant users elicit pitch percepts that are not consistent with a summation of the two temporal patterns. This indicates that low-rate temporal rate codes can be applied with considerable independence on adjacent mid-array electrodes. At issue in this study was whether a similar independence of temporal pitch cues can also be observed for more apical sites of stimulation, where temporal cues have been shown to be more reliable than place cues, in contrast to middle and basal sites. In cochlear-implant recipients with single-sided deafness implanted with long lateral-wall electrode arrays, pitch percepts were assessed by matching the pitch of dual-electrode stimuli with pure tones presented to the contralateral normal-hearing ear. The results were supported with an additional pitch-ranking experiment, in a different subject population with bilateral deafness. Unmodulated pulse trains with 100, 200, and 400 pulses per second were presented on three pairs of adjacent electrodes. Pulses were separated by the minimal interchannel delay (1.7 µs) in a short-delay configuration and by half the pulse period in a long-delay configuration. The hypothesis was that subjects would perceive a pitch corresponding to the doubled temporal pattern for the long-delay stimuli due to the summation of excitation patterns from adjacent apical electrodes, if those electrodes were to activate largely overlapping neural populations. However, we found that the mean matched acoustic pitch of the long-delay pulses was not significantly different from that of the short-delay pulses. These findings suggest that also in the apical region in long-array cochlear-implant recipients, temporal cues can be transmitted largely independently on adjacent electrodes.
Collapse
Affiliation(s)
| | | | - Viktor Steixner
- Department of Mechatronics, University of Innsbruck, Austria
| | - Gunesh P Rajan
- Otolaryngology, Head & Neck Surgery, Medical School, University of Western Australia, Perth, Australia.,Otolaryngology, Head & Neck Surgery Department, Luzerner Kantonsspital, Lucerne, Switzerland
| | | | - Dayse Távora-Vieira
- Otolaryngology, Head & Neck Surgery, Medical School, University of Western Australia, Perth, Australia.,Fiona Stanley Hospital, Department of Audiology, Perth, Australia
| |
Collapse
|
8
|
Carlyon RP, Guérit F, Deeks JM, Harland A, Gransier R, Wouters J, de Rijk SR, Bance M. Using Interleaved Stimulation to Measure the Size and Selectivity of the Sustained Phase-Locked Neural Response to Cochlear Implant Stimulation. J Assoc Res Otolaryngol 2021; 22:141-159. [PMID: 33492562 PMCID: PMC7943679 DOI: 10.1007/s10162-020-00783-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
We measured the sustained neural response to electrical stimulation by a cochlear implant (CI). To do so, we interleaved two stimuli with frequencies F1 and F2 Hz and recorded a neural distortion response (NDR) at F2-F1 Hz. We show that, because any one time point contains only the F1 or F2 stimulus, the instantaneous nonlinearities typical of electrical artefact should not produce distortion at this frequency. However, if the stimulus is smoothed, such as by charge integration at the nerve membrane, subsequent (neural) nonlinearities can produce a component at F2-F1 Hz. We stimulated a single CI electrode with interleaved sinusoids or interleaved amplitude-modulated pulse trains such that F2 = 1.5F1, and found no evidence for an NDR when F2-F1 was between 90 and 120 Hz. However, interleaved amplitude-modulated pulse trains with F2-F1~40 Hz revealed a substantial NDR with a group delay of about 45 ms, consistent with a thalamic and/or cortical response. The NDR could be measured even from recording electrodes adjacent to the implant and at the highest pulse rates (> 4000 pps) used clinically. We then measured the selectivity of this sustained response by presenting F1 and F2 to different electrodes and at different between-electrode distances. This revealed a broad tuning that, we argue, reflects the overlap between the excitation elicited by the two electrodes. Our results also provide a glimpse of the neural nonlinearity in the auditory system, unaffected by the biomechanical cochlear nonlinearities that accompany acoustic stimulation. Several potential clinical applications of our findings are discussed.
Collapse
Affiliation(s)
- Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Rd, Cambridge, CB2 7EF, England.
| | - François Guérit
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Rd, Cambridge, CB2 7EF, England
| | - John M Deeks
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Rd, Cambridge, CB2 7EF, England
| | - Andrew Harland
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Rd, Cambridge, CB2 7EF, England
| | - Robin Gransier
- Dept. of Neurosciences, ExpORL, KU Leuven, Herestraat 49 box 721, 3000, Leuven, Belgium
| | - Jan Wouters
- Dept. of Neurosciences, ExpORL, KU Leuven, Herestraat 49 box 721, 3000, Leuven, Belgium
| | - Simone R de Rijk
- Cambridge Hearing Group, Dept. Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, England
| | - Manohar Bance
- Cambridge Hearing Group, Dept. Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, England
| |
Collapse
|
9
|
Adel Y, Nagel S, Weissgerber T, Baumann U, Macherey O. Pitch Matching in Cochlear Implant Users With Single-Sided Deafness: Effects of Electrode Position and Acoustic Stimulus Type. Front Neurosci 2019; 13:1119. [PMID: 31736684 PMCID: PMC6839387 DOI: 10.3389/fnins.2019.01119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/03/2019] [Indexed: 01/27/2023] Open
Abstract
Previous studies in patients with single-sided deafness (SSD) have reported results of pitch comparisons between electric stimulation of their cochlear implant (CI) and acoustic stimulation presented to their near-normal hearing contralateral ear. These comparisons typically used sinusoids, although the percept elicited by electric stimulation may be closer to a wideband stimulus. Furthermore, it has been shown that pitch comparisons between sounds with different timbres is a difficult task and subjected to various types of range biases. The present study aims to introduce a method to minimize non-sensory biases, and to investigate the effect of different acoustic stimulus types on the frequency and variability of the electric-acoustic pitch matches. Pitch matches were collected from 13 CI users with SSD using the binary search procedure. Electric stimulation was presented at either an apical or a middle electrode position, at a rate of 800 pps. Acoustic stimulus types were sinusoids (SINE), 1/3-octave wide narrow bands of Gaussian noises (NBN), or 1/3-octave wide pulse spreading harmonic complexes (PSHC). On the one hand, NBN and PSHC are presumed to better mimic the spread of excitation produced by a single-electrode stimulation than SINE. On the other hand, SINE and PSHC contain less inherent fluctuations than NBN and may therefore provide a temporal pattern closer to that produced by a constant-amplitude electric pulse train. Analysis of mean pitch match variance showed no differences between stimulus types. However, mean pitch matches showed effects of electrode position and stimulus type, with the middle electrode always matched to a higher frequency than the apical one (p < 0.001), and significantly higher across-subject pitch matches for PSHC compared with SINE (p = 0.017). Mean pitch matches for all stimulus types were better predicted by place-dependent characteristic frequencies (CFs) based on an organ of Corti map compared with a spiral ganglion map. CF predictions were closest to pitch matches with SINE for the apical electrode position, and conversely with NBN or PSHC for the middle electrode position. These results provide evidence that the choice of acoustic stimulus type can have a significant effect on electric-acoustic pitch matching.
Collapse
Affiliation(s)
- Youssef Adel
- Audiological Acoustics, Department of Otorhinolaryngology, University Hospital Frankfurt, Frankfurt, Germany
| | - Sharon Nagel
- Audiological Acoustics, Department of Otorhinolaryngology, University Hospital Frankfurt, Frankfurt, Germany
| | - Tobias Weissgerber
- Audiological Acoustics, Department of Otorhinolaryngology, University Hospital Frankfurt, Frankfurt, Germany
| | - Uwe Baumann
- Audiological Acoustics, Department of Otorhinolaryngology, University Hospital Frankfurt, Frankfurt, Germany
| | - Olivier Macherey
- Aix-Marseille University, CNRS, Centrale Marseille, LMA, Marseille, France
| |
Collapse
|
10
|
Paredes-Gallardo A, Innes-Brown H, Madsen SMK, Dau T, Marozeau J. Auditory Stream Segregation and Selective Attention for Cochlear Implant Listeners: Evidence From Behavioral Measures and Event-Related Potentials. Front Neurosci 2018; 12:581. [PMID: 30186105 PMCID: PMC6110823 DOI: 10.3389/fnins.2018.00581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
The role of the spatial separation between the stimulating electrodes (electrode separation) in sequential stream segregation was explored in cochlear implant (CI) listeners using a deviant detection task. Twelve CI listeners were instructed to attend to a series of target sounds in the presence of interleaved distractor sounds. A deviant was randomly introduced in the target stream either at the beginning, middle or end of each trial. The listeners were asked to detect sequences that contained a deviant and to report its location within the trial. The perceptual segregation of the streams should, therefore, improve deviant detection performance. The electrode range for the distractor sounds was varied, resulting in different amounts of overlap between the target and the distractor streams. For the largest electrode separation condition, event-related potentials (ERPs) were recorded under active and passive listening conditions. The listeners were asked to perform the behavioral task for the active listening condition and encouraged to watch a muted movie for the passive listening condition. Deviant detection performance improved with increasing electrode separation between the streams, suggesting that larger electrode differences facilitate the segregation of the streams. Deviant detection performance was best for deviants happening late in the sequence, indicating that a segregated percept builds up over time. The analysis of the ERP waveforms revealed that auditory selective attention modulates the ERP responses in CI listeners. Specifically, the responses to the target stream were, overall, larger in the active relative to the passive listening condition. Conversely, the ERP responses to the distractor stream were not affected by selective attention. However, no significant correlation was observed between the behavioral performance and the amount of attentional modulation. Overall, the findings from the present study suggest that CI listeners can use electrode separation to perceptually group sequential sounds. Moreover, selective attention can be deployed on the resulting auditory objects, as reflected by the attentional modulation of the ERPs at the group level.
Collapse
Affiliation(s)
- Andreu Paredes-Gallardo
- Hearing Systems Group, Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hamish Innes-Brown
- Department of Medical Bionics, The University of Melbourne, Melbourne, VIC, Australia.,Bionics Institute, East Melbourne, VIC, Australia
| | - Sara M K Madsen
- Hearing Systems Group, Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Torsten Dau
- Hearing Systems Group, Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jeremy Marozeau
- Hearing Systems Group, Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Stahl P, Macherey O, Meunier S, Roman S. Rate discrimination at low pulse rates in normal-hearing and cochlear implant listeners: Influence of intracochlear stimulation site. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:1578. [PMID: 27106306 DOI: 10.1121/1.4944564] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Temporal pitch perception in cochlear implantees remains weaker than in normal hearing listeners and is usually limited to rates below about 300 pulses per second (pps). Recent studies have suggested that stimulating the apical part of the cochlea may improve the temporal coding of pitch by cochlear implants (CIs), compared to stimulating other sites. The present study focuses on rate discrimination at low pulse rates (ranging from 20 to 104 pps). Two experiments measured and compared pulse rate difference limens (DLs) at four fundamental frequencies (ranging from 20 to 104 Hz) in both CI and normal-hearing (NH) listeners. Experiment 1 measured DLs in users of the (Med-El CI, Innsbruck, Austria) device for two electrodes (one apical and one basal). In experiment 2, DLs for NH listeners were compared for unresolved harmonic complex tones filtered in two frequency regions (lower cut-off frequencies of 1200 and 3600 Hz, respectively) and for different bandwidths. Pulse rate discrimination performance was significantly better when stimulation was provided by the apical electrode in CI users and by the lower-frequency tone complexes in NH listeners. This set of data appears consistent with better temporal coding when stimulation originates from apical regions of the cochlea.
Collapse
Affiliation(s)
- Pierre Stahl
- Laboratoire de Mécanique et d'acoustique-CNRS, Unité Propre de Recherche 7051, Aix-Marseille University, Centrale Marseille, 4 Impasse Nikola Tesla, CS-40006 Marseille Cedex 13, France
| | - Olivier Macherey
- Laboratoire de Mécanique et d'acoustique-CNRS, Unité Propre de Recherche 7051, Aix-Marseille University, Centrale Marseille, 4 Impasse Nikola Tesla, CS-40006 Marseille Cedex 13, France
| | - Sabine Meunier
- Laboratoire de Mécanique et d'acoustique-CNRS, Unité Propre de Recherche 7051, Aix-Marseille University, Centrale Marseille, 4 Impasse Nikola Tesla, CS-40006 Marseille Cedex 13, France
| | - Stéphane Roman
- Department of Pediatric Otolaryngology and Neck Surgery, Aix-Marseille University, Marseille, France
| |
Collapse
|
12
|
Fielden CA, Kluk K, Boyle PJ, McKay CM. The perception of complex pitch in cochlear implants: A comparison of monopolar and tripolar stimulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:2524-36. [PMID: 26520335 DOI: 10.1121/1.4931910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cochlear implant listeners typically perform poorly in tasks of complex pitch perception (e.g., musical pitch and voice pitch). One explanation is that wide current spread during implant activation creates channel interactions that may interfere with perception of temporal fundamental frequency information contained in the amplitude modulations within channels. Current focusing using a tripolar mode of stimulation has been proposed as a way of reducing channel interactions, minimising spread of excitation and potentially improving place and temporal pitch cues. The present study evaluated the effect of mode in a group of cochlear implant listeners on a pitch ranking task using male and female singing voices separated by either a half or a quarter octave. Results were variable across participants, but on average, pitch ranking was at chance level when the pitches were a quarter octave apart and improved when the difference was a half octave. No advantage was observed for tripolar over monopolar mode at either pitch interval, suggesting that previously published psychophysical advantages for focused modes may not translate into improvements in complex pitch ranking. Evaluation of the spectral centroid of the stimulation pattern, plus a lack of significant difference between male and female voices, suggested that participants may have had difficulty in accessing temporal pitch cues in either mode.
Collapse
Affiliation(s)
- Claire A Fielden
- School of Psychological Sciences, University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Karolina Kluk
- School of Psychological Sciences, University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Patrick J Boyle
- Advanced Bionics UK Ltd., 2 Breaks House, Mill Court, Great Shelford, Cambridge, CB22 5LD, United Kingdom
| | - Colette M McKay
- School of Psychological Sciences, University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
13
|
Ambert-Dahan E, Giraud AL, Sterkers O, Samson S. Judgment of musical emotions after cochlear implantation in adults with progressive deafness. Front Psychol 2015; 6:181. [PMID: 25814961 PMCID: PMC4357245 DOI: 10.3389/fpsyg.2015.00181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/04/2015] [Indexed: 11/14/2022] Open
Abstract
While cochlear implantation is rather successful in restoring speech comprehension in quiet environments (Nimmons et al., 2008), other auditory tasks, such as music perception, can remain challenging for implant users. Here, we tested how patients who had received a cochlear implant (CI) after post-lingual progressive deafness perceive emotions in music. Thirteen adult CI recipients with good verbal comprehension (dissyllabic words ≥70%) and 13 normal hearing participants matched for age, gender, and education listened to 40 short musical excerpts that selectively expressed fear, happiness, sadness, and peacefulness ( Vieillard et al., 2008). The participants were asked to rate (on a 0–100 scale) how much the musical stimuli expressed these four cardinal emotions, and to judge their emotional valence (unpleasant–pleasant) and arousal (relaxing–stimulating). Although CI users performed above chance level, their emotional judgments (mean correctness scores) were generally impaired for happy, scary, and sad, but not for peaceful excerpts. CI users also demonstrated deficits in perceiving arousal of musical excerpts, whereas rating of valence remained unaffected. The current findings indicate that judgments of emotional categories and dimensions of musical excerpts are not uniformly impaired after cochlear implantation. These results are discussed in relation to the relatively spared abilities of CI users in perceiving temporal (rhythm and metric) as compared to spectral (pitch and timbre) musical dimensions, which might benefit the processing of musical emotions (Cooper et al., 2008).
Collapse
Affiliation(s)
- Emmanuèle Ambert-Dahan
- Unité Otologie, Implants auditifs et Chirurgie de la base du crâne, Assistance Publique Hôpitaux de Paris - Groupe Hospitalier Pitié-Salpêtrière Paris, France ; Laboratoire PSITEC (EA 4072), Neuropsychologie: Audition, Cognition et Action, Department of Psychology, Université de Lille 3 Villeneuve d'Ascq, France
| | - Anne-Lise Giraud
- Neuroscience Department, Campus Biotech, University of Geneva Geneva, Switzerland
| | - Olivier Sterkers
- Unité Otologie, Implants auditifs et Chirurgie de la base du crâne, Assistance Publique Hôpitaux de Paris - Groupe Hospitalier Pitié-Salpêtrière Paris, France
| | - Séverine Samson
- Laboratoire PSITEC (EA 4072), Neuropsychologie: Audition, Cognition et Action, Department of Psychology, Université de Lille 3 Villeneuve d'Ascq, France ; Unité d'épilepsie, Assistance Publique Hôpitaux de Paris - Groupe Hospitalier Pitié-Salpêtrière Paris, France
| |
Collapse
|
14
|
Is there a fundamental 300 Hz limit to pulse rate discrimination in cochlear implants? J Assoc Res Otolaryngol 2014; 15:849-66. [PMID: 24942704 DOI: 10.1007/s10162-014-0468-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 05/28/2014] [Indexed: 10/25/2022] Open
Abstract
Literature often refers to a 300 pps limit for cochlear implant (CI) electrical stimulation, above which pulse rate discrimination deteriorates or above which rate pitch is not perceived to increase. The present study investigated the effect on pulse rate difference limens (PRDLs) when using compound stimuli in which identical pulse trains were applied to multiple electrodes across the length of the electrode array and compared the results to those of single-electrode stimuli. PRDLs of seven CI users were determined in two stimulus pulse phase conditions, one in which the phase delays between pulses on different electrodes were minimised (burst mode) and a second in which they were maximised (spread mode). PRDLs were measured at base rates of 100 to 600 pps in 100 pps intervals, using compound stimuli on one, two, five, nine and 18 electrodes. As smaller PRDLs were expected to reflect improved rate pitch perception, 18-electrode spread mode stimuli were also included in a pitch ranking task. PRDLs improved markedly when multi-electrode compound stimuli were used, with average spread mode PRDLs across listeners between 6 and 8 % of the base rate in the whole range tested (i.e. up to 600 pps). PRDLs continued to improve as more electrodes were included, up to at least nine electrodes in the compound stimulus. Stimulus pulse phase had a significant influence on the results, with PRDLs being smaller in spread mode. Results indicate that pulse rate discrimination may be manipulated with stimulus parameter choice so that previously observed deterioration of PRDLs at 300 pps probably does not reflect a fundamental limitation to rate discrimination. However, rate pitch perception did not improve in the conditions that resulted in smaller PRDLs. This may indicate that listeners used cues other than pitch to perform the rate discrimination task or may reflect limitations in the electrically evoked neural excitation patterns presented to a rate pitch extraction mechanism.
Collapse
|
15
|
Fielden CA, Kluk K, McKay CM. Interpulse interval discrimination within and across channels: comparison of monopolar and tripolar mode of stimulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:2913-2922. [PMID: 24815271 DOI: 10.1121/1.4869687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Perception of temporal patterns is crucial to speech understanding and music perception in normal hearing, and is fundamental in the design and implementation of processing strategies for cochlear implants. Two experiments described here investigated the effect of stimulation mode (monopolar versus tripolar) on interpulse interval discrimination using single-electrode stimulation (experiment 1) and dual-electrode stimulation (experiment 2). Experiment 1 required participants to discriminate stimuli containing different interpulse intervals and experiment 2 required listeners to discriminate between two dual-electrode stimuli that had the same temporal pattern on each electrode, but differed in inter-electrode timing. The hypotheses were that (i) stimulation mode would affect the ability to distinguish interpulse interval patterns on a single electrode and (ii) the electrode separation range in which subjects were sensitive to inter-electrode timing would be more restricted in tripolar than in monopolar stimulation. Results in nine cochlear implant users showed that mode did not have a significant mean effect on either the ability to discriminate interpulse intervals in single-electrode stimulation or the range of electrode separation in dual-electrode stimulation in which participants were sensitive to inter-electrode timing. In conclusion, tripolar stimulation did not show any advantage in delivering temporal information within or across channels in this group.
Collapse
Affiliation(s)
- Claire A Fielden
- School of Psychological Sciences, Ellen Wilkinson Building, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Karolina Kluk
- School of Psychological Sciences, Ellen Wilkinson Building, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Colette M McKay
- School of Psychological Sciences, Ellen Wilkinson Building, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
16
|
Mc Laughlin M, Reilly RB, Zeng FG. Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:1546-1560. [PMID: 23464025 PMCID: PMC3606303 DOI: 10.1121/1.4789940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 06/01/2023]
Abstract
Understanding speech-in-noise is difficult for most cochlear implant (CI) users. Speech-in-noise segregation cues are well understood for acoustic hearing but not for electric hearing. This study investigated the effects of stimulation rate and onset delay on synthetic vowel-in-noise recognition in CI subjects. In experiment I, synthetic vowels were presented at 50, 145, or 795 pulse/s and noise at the same three rates, yielding nine combinations. Recognition improved significantly if the noise had a lower rate than the vowel, suggesting that listeners can use temporal gaps in the noise to detect a synthetic vowel. This hypothesis is supported by accurate prediction of synthetic vowel recognition using a temporal integration window model. Using lower rates a similar trend was observed in normal hearing subjects. Experiment II found that for CI subjects, a vowel onset delay improved performance if the noise had a lower or higher rate than the synthetic vowel. These results show that differing rates or onset times can improve synthetic vowel-in-noise recognition, indicating a need to develop speech processing strategies that encode or emphasize these cues.
Collapse
Affiliation(s)
- Myles Mc Laughlin
- Hearing and Speech Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, California 92697-5320, USA.
| | | | | |
Collapse
|
17
|
Macherey O, Carlyon RP. Place-pitch manipulations with cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 131:2225-36. [PMID: 22423718 PMCID: PMC3383798 DOI: 10.1121/1.3677260] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pitch can be conveyed to cochlear implant listeners via both place of excitation and temporal cues. The transmission of place cues may be hampered by several factors, including limitations on the insertion depth and number of implanted electrodes, and the broad current spread produced by monopolar stimulation. The following series of experiments investigate several methods to partially overcome these limitations. Experiment 1 compares two recently published techniques that aim to activate more apical fibers than produced by monopolar or bipolar stimulation of the most apical contacts. The first technique (phantom stimulation) manipulates the current spread by simultaneously stimulating two electrodes with opposite-polarity pulses of different amplitudes. The second technique manipulates the neural spread of excitation by using asymmetric pulses and exploiting the polarity-sensitive properties of auditory nerve fibers. The two techniques yielded similar results and were shown to produce lower place-pitch percepts than stimulation of monopolar and bipolar symmetric pulses. Furthermore, combining these two techniques may be advantageous in a clinical setting. Experiment 2 proposes a method to create place pitches intermediate to those produced by physical electrodes by using charge-balanced asymmetric pulses in bipolar mode with different degrees of asymmetry.
Collapse
Affiliation(s)
- Olivier Macherey
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom.
| | | |
Collapse
|
18
|
Landsberger D, Galvin JJ. Discrimination between sequential and simultaneous virtual channels with electrical hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:1559-1566. [PMID: 21895094 PMCID: PMC3188970 DOI: 10.1121/1.3613938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 06/28/2011] [Accepted: 06/28/2011] [Indexed: 05/31/2023]
Abstract
In cochlear implants (CIs), simultaneous or sequential stimulation of adjacent electrodes can produce intermediate pitch percepts between those of the component electrodes. However, it is unclear whether simultaneous and sequential virtual channels (VCs) can be discriminated. In this study, CI users were asked to discriminate simultaneous and sequential VCs; discrimination was measured for monopolar (MP) and bipolar + 1 stimulation (BP + 1), i.e., relatively broad and focused stimulation modes. For sequential VCs, the interpulse interval (IPI) varied between 0.0 and 1.8 ms. All stimuli were presented at comfortably loud, loudness-balanced levels at a 250 pulse per second per electrode (ppse) stimulation rate. On average, CI subjects were able to reliably discriminate between sequential and simultaneous VCs. While there was no significant effect of IPI or stimulation mode on VC discrimination, some subjects exhibited better VC discrimination with BP + 1 stimulation. Subjects' discrimination between sequential and simultaneous VCs was correlated with electrode discrimination, suggesting that spatial selectivity may influence perception of sequential VCs. To maintain equal loudness, sequential VC amplitudes were nearly double those of simultaneous VCs, presumably resulting in a broader spread of excitation. These results suggest that perceptual differences between simultaneous and sequential VCs might be explained by differences in the spread of excitation.
Collapse
Affiliation(s)
- David Landsberger
- Division of Communication and Auditory Neuroscience, House Ear Institute, 2100 West 3rd Street, Los Angeles, California 90057, USA.
| | | |
Collapse
|
19
|
Van Deun L, van Wieringen A, Francart T, Büchner A, Lenarz T, Wouters J. Binaural unmasking of multi-channel stimuli in bilateral cochlear implant users. J Assoc Res Otolaryngol 2011; 12:659-70. [PMID: 21656197 DOI: 10.1007/s10162-011-0275-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 05/24/2011] [Indexed: 11/27/2022] Open
Abstract
Previous work suggests that bilateral cochlear implant users are sensitive to interaural cues if experimental speech processors are used to preserve accurate interaural information in the electrical stimulation pattern. Binaural unmasking occurs in adults and children when an interaural delay is applied to the envelope of a high-rate pulse train. Nevertheless, for speech perception, binaural unmasking benefits have not been demonstrated consistently, even with coordinated stimulation at both ears. The present study aimed at bridging the gap between basic psychophysical performance on binaural signal detection tasks on the one hand and binaural perception of speech in noise on the other hand. Therefore, binaural signal detection was expanded to multi-channel stimulation and biologically relevant interaural delays. A harmonic complex, consisting of three sinusoids (125, 250, and 375 Hz), was added to three 125-Hz-wide noise bands centered on the sinusoids. When an interaural delay of 700 μs was introduced, an average BMLD of 3 dB was established. Outcomes are promising in view of real-life benefits. Future research should investigate the generalization of the observed benefits for signal detection to speech perception in everyday listening situations and determine the importance of coordination of bilateral speech processors and accentuation of envelope cues.
Collapse
|
20
|
Macherey O, Deeks JM, Carlyon RP. Extending the limits of place and temporal pitch perception in cochlear implant users. J Assoc Res Otolaryngol 2011; 12:233-51. [PMID: 21116672 PMCID: PMC3046333 DOI: 10.1007/s10162-010-0248-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 10/26/2010] [Indexed: 11/30/2022] Open
Abstract
A series of experiments investigated the effects of asymmetric current waveforms on the perception of place and temporal pitch cues. The asymmetric waveforms were trains of pseudomonophasic (PS) pulses consisting of a short, high-amplitude phase followed by a longer (and lower amplitude) opposite-polarity phase. When such pulses were presented in a narrow bipolar ("BP+1") mode and with the first phase anodic relative to the most apical electrode (so-called PSA pulses), pitch was lower than when the first phase was anodic re the more basal electrode. For a pulse rate of 12 pulses per second (pps), pitch was also lower than with standard symmetric biphasic pulses in either monopolar or bipolar mode. This suggests that PSA pulses can extend the range of place-pitch percepts available to cochlear implant listeners by focusing the spread of excitation in a more apical region than common stimulation techniques. Temporal pitch was studied by requiring subjects to pitch-rank single-channel pulse trains with rates ranging from 105 to 1,156 pps; this task was repeated at several intra-cochlear stimulation sites and using both symmetric and pseudomonophasic pulses. For PSA pulses presented to apical electrodes, the upper limit of temporal pitch was significantly higher than that for all the other conditions, averaging 713 pps. Measures of discriminability obtained using the method of constant stimuli indicated that this pitch percept was probably weak. However, a multidimensional scaling study showed that the percept associated with a rate change, even at high rates, was orthogonal to that of a place change and therefore reflected a genuine change in the temporal pattern of neural activity.
Collapse
Affiliation(s)
- Olivier Macherey
- Medical Research Council, Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge, UK.
| | | | | |
Collapse
|