1
|
So W, Smith SB. Comparison of two cortical measures of binaural hearing acuity. Int J Audiol 2021; 60:875-884. [PMID: 33345686 PMCID: PMC8244817 DOI: 10.1080/14992027.2020.1860260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Multiple studies have demonstrated binaural hearing deficits in the aging and those with hearing loss. Consequently, there is great interest in developing efficient clinical tests of binaural hearing acuity to improve diagnostic assessments and to assist clinicians when fitting binaural hearing aids and/or cochlear implants. DESIGN Two cortical measures of interaural phase difference sensitivity, the acoustic change complex (ACC) and interaural phase modulation following response (IPM-FR), were compared on three metrics using five different stimulus interaural phase differences (IPDs; 0°, ±22.5°, ±45°, ±67.5° and ±90°). These metrics were scalp topography, time-to-detect, and input-output characteristics. STUDY SAMPLE Ten young, normal-hearing listeners. RESULTS Scalp topography qualitatively differed between ACC and IPM-FR. The IPM-FR demonstrated better time-to-detect performance on smaller (±22.5° and ±45°) but not larger (67.5°, and ±90°) IPDs. Input-output characteristics of each response were similar. CONCLUSIONS The IPM-FR may be a faster and more efficient tool for assessing neural sensitivity to subtle IPD changes. However, the ACC may be useful for research or clinical questions concerned with the topographic representation of binaural cues.
Collapse
Affiliation(s)
- Won So
- Department of Communication Sciences and Disorders, The University of Texas at Austin, Austin, TX, USA
| | - Spencer B Smith
- Department of Communication Sciences and Disorders, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Goldsworthy RL. Temporal envelope cues and simulations of cochlear implant signal processing. SPEECH COMMUNICATION 2019; 109:24-33. [PMID: 39104946 PMCID: PMC11299890 DOI: 10.1016/j.specom.2019.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Conventional signal processing implemented on clinical cochlear implant (CI) sound processors is based on envelope signals extracted from overlapping frequency regions. Conventional strategies do not encode temporal envelope or temporal fine-structure cues with high fidelity. In contrast, several research strategies have been developed recently to enhance the encoding of temporal envelope and fine-structure cues. The present study examines the salience of temporal envelope cues when encoded into vocoder representations of CI signal processing. Normal-hearing listeners were evaluated on measures of speech reception, speech quality ratings, and spatial hearing when listening to vocoder representations of CI signal processing. Conventional vocoder techniques using envelope signals with noise- or tone-excited reconstruction were evaluated in comparison to a novel approach based on impulse-response reconstruction. A variation of this impulse-response approach was based on a research strategy, the Fundamentally Asynchronous Stimulus Timing (FAST) algorithm, designed to improve temporal precision of envelope cues. The results indicate that the introduced impulse-response approach, combined with the FAST algorithm, produces similar results on speech reception measures as the conventional vocoder approaches, while providing significantly better sound quality and spatial hearing outcomes. This novel approach for stimulating how temporal envelope cues are encoded into CI stimulation has potential for examining diverse aspects of hearing, particularly in aspects of musical pitch perception and spatial hearing.
Collapse
|
3
|
Litovsky RY, Goupell MJ, Kan A, Landsberger DM. Use of Research Interfaces for Psychophysical Studies With Cochlear-Implant Users. Trends Hear 2019; 21:2331216517736464. [PMID: 29113579 PMCID: PMC5764139 DOI: 10.1177/2331216517736464] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A growing number of laboratories are using research interfaces to conduct experiments with cochlear-implant (CI) users. Because these interfaces bypass a subject’s clinical sound processor, several concerns exist regarding safety and stimulation levels. Here we suggest best-practice approaches for how to safely and ethically perform this type of research and highlight areas of limited knowledge where further research is needed to help clarify safety limits. The article is designed to provide an introductory level of technical detail about the devices and the effects of electrical stimulation on perception and neurophysiology. From this, we summarize what should be the best practices in the field, based on the literature and our experience. Findings from the review of the literature suggest that there are three main safety concerns: (a) to prevent biological or neural damage, (b) to avoid presentation of uncomfortably loud sounds, and (c) to ensure that subjects have control over stimulus presentation. Researchers must pay close attention to the software–hardware interface to ensure that the three main safety concerns are closely monitored. An important area for future research will be the determination of the amount of biological damage that can occur from electrical stimulation from a CI placed in the cochlea, not in direct contact with neural tissue. As technology used in research with CIs evolve, some of these approaches may change. However, the three main safety principles outlined here are not anticipated to undergo change with technological advances.
Collapse
Affiliation(s)
| | - Matthew J Goupell
- 2 Department of Hearing and Speech Sciences, University of Maryland-College Park, MD, USA
| | - Alan Kan
- 1 University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
4
|
The Relationship Between Intensity Coding and Binaural Sensitivity in Adults With Cochlear Implants. Ear Hear 2018; 38:e128-e141. [PMID: 27787393 DOI: 10.1097/aud.0000000000000382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Many bilateral cochlear implant users show sensitivity to binaural information when stimulation is provided using a pair of synchronized electrodes. However, there is large variability in binaural sensitivity between and within participants across stimulation sites in the cochlea. It was hypothesized that within-participant variability in binaural sensitivity is in part affected by limitations and characteristics of the auditory periphery which may be reflected by monaural hearing performance. The objective of this study was to examine the relationship between monaural and binaural hearing performance within participants with bilateral cochlear implants. DESIGN Binaural measures included dichotic signal detection and interaural time difference discrimination thresholds. Diotic signal detection thresholds were also measured. Monaural measures included dynamic range and amplitude modulation detection. In addition, loudness growth was compared between ears. Measures were made at three stimulation sites per listener. RESULTS Greater binaural sensitivity was found with larger dynamic ranges. Poorer interaural time difference discrimination was found with larger difference between comfortable levels of the two ears. In addition, poorer diotic signal detection thresholds were found with larger differences between the dynamic ranges of the two ears. No relationship was found between amplitude modulation detection thresholds or symmetry of loudness growth and the binaural measures. CONCLUSIONS The results suggest that some of the variability in binaural hearing performance within listeners across stimulation sites can be explained by factors nonspecific to binaural processing. The results are consistent with the idea that dynamic range and comfortable levels relate to peripheral neural survival and the width of the excitation pattern which could affect the fidelity with which central binaural nuclei process bilateral inputs.
Collapse
|
5
|
Having Two Ears Facilitates the Perceptual Separation of Concurrent Talkers for Bilateral and Single-Sided Deaf Cochlear Implantees. Ear Hear 2018; 37:289-302. [PMID: 26886027 DOI: 10.1097/aud.0000000000000284] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Listening to speech with multiple competing talkers requires the perceptual separation of the target voice from the interfering background. Normal-hearing listeners are able to take advantage of perceived differences in the spatial locations of competing sound sources to facilitate this process. Previous research suggests that bilateral (BI) cochlear-implant (CI) listeners cannot do so, and it is unknown whether single-sided deaf (SSD) CI users (one acoustic and one CI ear) have this ability. This study investigated whether providing a second ear via cochlear implantation can facilitate the perceptual separation of targets and interferers in a listening situation involving multiple competing talkers. DESIGN BI-CI and SSD-CI listeners were required to identify speech from a target talker mixed with one or two interfering talkers. In the baseline monaural condition, the target speech and the interferers were presented to one of the CIs (for the BI-CI listeners) or to the acoustic ear (for the SSD-CI listeners). In the bilateral condition, the target was still presented to the first ear but the interferers were presented to both the target ear and the listener's second ear (always a CI), thereby testing whether CI listeners could use information about the interferer obtained from a second ear to facilitate perceptual separation of the target and interferer. RESULTS Presenting a copy of the interfering signals to the second ear improved performance, up to 4 to 5 dB (12 to 18 percentage points), but the amount of improvement depended on the type of interferer. For BI-CI listeners, the improvement occurred mainly in conditions involving one interfering talker, regardless of gender. For SSD-CI listeners, the improvement occurred in conditions involving one or two interfering talkers of the same gender as the target. This interaction is consistent with the idea that the SSD-CI listeners had access to pitch cues in their normal-hearing ear to separate the opposite-gender target and interferers, while the BI-CI listeners did not. CONCLUSIONS These results suggest that a second auditory input via a CI can facilitate the perceptual separation of competing talkers in situations where monaural cues are insufficient to do so, thus partially restoring a key advantage of having two ears that was previously thought to be inaccessible to CI users.
Collapse
|
6
|
Clinard CG, Hodgson SL, Scherer ME. Neural Correlates of the Binaural Masking Level Difference in Human Frequency-Following Responses. J Assoc Res Otolaryngol 2017; 18:355-369. [PMID: 27896486 PMCID: PMC5352611 DOI: 10.1007/s10162-016-0603-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 11/02/2016] [Indexed: 11/30/2022] Open
Abstract
The binaural masking level difference (BMLD) is an auditory phenomenon where binaural tone-in-noise detection is improved when the phase of either signal or noise is inverted in one of the ears (SπNo or SoNπ, respectively), relative to detection when signal and noise are in identical phase at each ear (SoNo). Processing related to BMLDs and interaural time differences has been confirmed in the auditory brainstem of non-human mammals; in the human auditory brainstem, phase-locked neural responses elicited by BMLD stimuli have not been systematically examined across signal-to-noise ratio. Behavioral and physiological testing was performed in three binaural stimulus conditions: SoNo, SπNo, and SoNπ. BMLDs at 500 Hz were obtained from 14 young, normal-hearing adults (ages 21-26). Physiological BMLDs used the frequency-following response (FFR), a scalp-recorded auditory evoked potential dependent on sustained phase-locked neural activity; FFR tone-in-noise detection thresholds were used to calculate physiological BMLDs. FFR BMLDs were significantly smaller (poorer) than behavioral BMLDs, and FFR BMLDs did not reflect a physiological release from masking, on average. Raw FFR amplitude showed substantial reductions in the SπNo condition relative to SoNo and SoNπ conditions, consistent with negative effects of phase summation from left and right ear FFRs. FFR amplitude differences between stimulus conditions (e.g., SoNo amplitude-SπNo amplitude) were significantly predictive of behavioral SπNo BMLDs; individuals with larger amplitude differences had larger (better) behavioral B MLDs and individuals with smaller amplitude differences had smaller (poorer) behavioral B MLDs. These data indicate a role for sustained phase-locked neural activity in BMLDs of humans and are the first to show predictive relationships between behavioral BMLDs and human brainstem responses.
Collapse
Affiliation(s)
- Christopher G. Clinard
- Department of Communication Sciences and Disorders, James Madison University, 235 Martin Luther King Jr. Way, MSC 4304, Harrisonburg, VA 22807 USA
| | - Sarah L. Hodgson
- Department of Communication Sciences and Disorders, James Madison University, 235 Martin Luther King Jr. Way, MSC 4304, Harrisonburg, VA 22807 USA
| | - Mary Ellen Scherer
- Department of Communication Sciences and Disorders, James Madison University, 235 Martin Luther King Jr. Way, MSC 4304, Harrisonburg, VA 22807 USA
| |
Collapse
|
7
|
Todd AE, Goupell MJ, Litovsky RY. Binaural release from masking with single- and multi-electrode stimulation in children with cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:59. [PMID: 27475132 PMCID: PMC5392083 DOI: 10.1121/1.4954717] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cochlear implants (CIs) provide children with access to speech information from a young age. Despite bilateral cochlear implantation becoming common, use of spatial cues in free field is smaller than in normal-hearing children. Clinically fit CIs are not synchronized across the ears; thus binaural experiments must utilize research processors that can control binaural cues with precision. Research to date has used single pairs of electrodes, which is insufficient for representing speech. Little is known about how children with bilateral CIs process binaural information with multi-electrode stimulation. Toward the goal of improving binaural unmasking of speech, this study evaluated binaural unmasking with multi- and single-electrode stimulation. Results showed that performance with multi-electrode stimulation was similar to the best performance with single-electrode stimulation. This was similar to the pattern of performance shown by normal-hearing adults when presented an acoustic CI simulation. Diotic and dichotic signal detection thresholds of the children with CIs were similar to those of normal-hearing children listening to a CI simulation. The magnitude of binaural unmasking was not related to whether the children with CIs had good interaural time difference sensitivity. Results support the potential for benefits from binaural hearing and speech unmasking in children with bilateral CIs.
Collapse
Affiliation(s)
- Ann E Todd
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
8
|
Mesnildrey Q, Hilkhuysen G, Macherey O. Pulse-spreading harmonic complex as an alternative carrier for vocoder simulations of cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:986-91. [PMID: 26936577 DOI: 10.1121/1.4941451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Noise- and sine-carrier vocoders are often used to acoustically simulate the information transmitted by a cochlear implant (CI). However, sine-waves fail to mimic the broad spread of excitation produced by a CI and noise-bands contain intrinsic modulations that are absent in CIs. The present study proposes pulse-spreading harmonic complexes (PSHCs) as an alternative acoustic carrier in vocoders. Sentence-in-noise recognition was measured in 12 normal-hearing subjects for noise-, sine-, and PSHC-vocoders. Consistent with the amount of intrinsic modulations present in each vocoder condition, the average speech reception threshold obtained with the PSHC-vocoder was higher than with sine-vocoding but lower than with noise-vocoding.
Collapse
Affiliation(s)
- Quentin Mesnildrey
- LMA-CNRS, UPR 7051, Aix-Marseille Université, Centrale Marseille, 4 impasse Nikola TESLA CS 40006, F-13453, Marseille Cedex 13, France
| | - Gaston Hilkhuysen
- LMA-CNRS, UPR 7051, Aix-Marseille Université, Centrale Marseille, 4 impasse Nikola TESLA CS 40006, F-13453, Marseille Cedex 13, France
| | - Olivier Macherey
- LMA-CNRS, UPR 7051, Aix-Marseille Université, Centrale Marseille, 4 impasse Nikola TESLA CS 40006, F-13453, Marseille Cedex 13, France
| |
Collapse
|
9
|
Snik A, Agterberg M, Bosman A. How to quantify binaural hearing in patients with unilateral hearing using hearing implants. Audiol Neurootol 2015; 20 Suppl 1:44-7. [PMID: 25997479 DOI: 10.1159/000380747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Application of bilateral hearing devices in bilateral hearing loss and unilateral application in unilateral hearing loss (second ear with normal hearing) does not a priori lead to binaural hearing. An overview is presented on several measures of binaural benefits that have been used in patients with unilateral or bilateral deafness using one or two cochlear implants, respectively, and in patients with unilateral or bilateral conductive/mixed hearing loss using one or two percutaneous bone conduction implants (BCDs), respectively. Overall, according to this overview, the most significant and sensitive measure is the benefit in directional hearing. Measures using speech (viz. binaural summation, binaural squelch or use of the head shadow effect) showed minor benefits, except for patients with bilateral conductive/mixed hearing loss using two BCDs. Although less feasible in daily practise, the binaural masking level difference test seems to be a promising option in the assessment of binaural function.
Collapse
Affiliation(s)
- Ad Snik
- Department of Otorhinolaryngology, Radboud University Centre Nijmegen, Nijmegen, The Netherlands
| | | | | |
Collapse
|
10
|
Goupell MJ. Interaural envelope correlation change discrimination in bilateral cochlear implantees: effects of mismatch, centering, and onset of deafness. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:1282-97. [PMID: 25786942 PMCID: PMC4368584 DOI: 10.1121/1.4908221] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 01/24/2015] [Accepted: 01/28/2015] [Indexed: 05/25/2023]
Abstract
Bilateral cochlear implant (CI) listeners can perform binaural tasks, but they are typically worse than normal-hearing (NH) listeners. To understand why this difference occurs and the mechanisms involved in processing dynamic binaural differences, interaural envelope correlation change discrimination sensitivity was measured in real and simulated CI users. In experiment 1, 11 CI (eight late deafened, three early deafened) and eight NH listeners were tested in an envelope correlation change discrimination task. Just noticeable differences (JNDs) were best for a matched place-of-stimulation and increased for an increasing mismatch. In experiment 2, attempts at intracranially centering stimuli did not produce lower JNDs. In experiment 3, the percentage of correct identifications of antiphasic carrier pulse trains modulated by correlated envelopes was measured as a function of mismatch and pulse rate. Sensitivity decreased for increasing mismatch and increasing pulse rate. The experiments led to two conclusions. First, envelope correlation change discrimination necessitates place-of-stimulation matched inputs. However, it is unclear if previous experience with acoustic hearing is necessary for envelope correlation change discrimination. Second, NH listeners presented with CI simulations demonstrated better performance than real CI listeners. If the simulations are realistic representations of electrical stimuli, real CI listeners appear to have difficulty processing interaural information in modulated signals.
Collapse
Affiliation(s)
- Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
11
|
Goupell MJ, Litovsky RY. Sensitivity to interaural envelope correlation changes in bilateral cochlear-implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:335-49. [PMID: 25618064 PMCID: PMC4304956 DOI: 10.1121/1.4904491] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Provision of bilateral cochlear implants (CIs) to people who are deaf is partially justified by improved abilities to understand speech in noise when comparing bilateral vs unilateral listening conditions. However, bilateral CI listeners generally show only monaural head shadow with little improvement in speech understanding due to binaural unmasking. Sensitivity to change in interaural envelope correlation, which is related to binaural speech unmasking, was investigated. Bilateral CI users were tested with bilaterally synchronized processors at single, pitch-matched electrode pairs. First, binaural masking level differences (BMLDs) were measured using 1000 pulse-per-second (pps) carriers, yielding BMLDs of 11.1 ± 6.5 and 8.5 ± 4.2 dB for 10- and 50-Hz bandwidth masking noises, respectively. Second, envelope correlation change just-noticeable differences (JNDs) were measured. Stimuli presented at 1000 pps yielded lower JNDs than those presented at 100 pps. Furthermore, perfectly correlated reference stimuli produced lower JNDs than uncorrelated references, and uncorrelated references generally produced immeasurable JNDs. About 25% of JNDs measured in the CI listeners were in the range of JNDs observed in normal-hearing listeners presented CI simulations. In conclusion, CI listeners can perceive changes in interaural envelope correlation, but the poor performance may be a major limiting factor in binaural unmasking tested to date in realistic listening environments.
Collapse
Affiliation(s)
- Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison, Wisconsin 53705
| |
Collapse
|
12
|
van Wieringen A, Wouters J. What can we expect of normally-developing children implanted at a young age with respect to their auditory, linguistic and cognitive skills? Hear Res 2014; 322:171-9. [PMID: 25219955 DOI: 10.1016/j.heares.2014.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 11/26/2022]
Abstract
As a result of neonatal hearing screening and subsequent early cochlear implantation (CI) profoundly deaf children have access to important information to process auditory signals and master spoken language skills at a young age. Nevertheless, auditory, linguistic and cognitive outcome measures still reveal great variability in individual achievements: some children with CI(s) perform within normal limits, while others lag behind. Understanding the causes of this variation would allow clinicians to offer better prognoses to CI candidates and efficient follow-up and rehabilitation. This paper summarizes what we can expect of normally developing children with CI(s) with regard to spoken language, bilateral and binaural auditory perception, speech perception and cognitive skills. Predictive factors of performance and factors influencing variability are presented, as well as some novel data on cognitive functioning and speech perception in quiet and in noise. Subsequently, we discuss technical and non-technical issues which should be considered in the future in order to optimally guide the child with profound hearing difficulties. This article is part of a Special Issue entitled <Lasker Award>.
Collapse
Affiliation(s)
- Astrid van Wieringen
- KU Leuven - University of Leuven, Dept Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49, Bus 721, Leuven, Belgium.
| | - Jan Wouters
- KU Leuven - University of Leuven, Dept Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49, Bus 721, Leuven, Belgium
| |
Collapse
|
13
|
Kan A, Litovsky RY. Binaural hearing with electrical stimulation. Hear Res 2014; 322:127-37. [PMID: 25193553 DOI: 10.1016/j.heares.2014.08.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 07/16/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022]
Abstract
Bilateral cochlear implantation is becoming a standard of care in many clinics. While much benefit has been shown through bilateral implantation, patients who have bilateral cochlear implants (CIs) still do not perform as well as normal hearing listeners in sound localization and understanding speech in noisy environments. This difference in performance can arise from a number of different factors, including the areas of hardware and engineering, surgical precision and pathology of the auditory system in deaf persons. While surgical precision and individual pathology are factors that are beyond careful control, improvements can be made in the areas of clinical practice and the engineering of binaural speech processors. These improvements should be grounded in a good understanding of the sensitivities of bilateral CI patients to the acoustic binaural cues that are important to normal hearing listeners for sound localization and speech in noise understanding. To this end, we review the current state-of-the-art in the understanding of the sensitivities of bilateral CI patients to binaural cues in electric hearing, and highlight the important issues and challenges as they relate to clinical practice and the development of new binaural processing strategies. This article is part of a Special Issue entitled <Lasker Award>.
Collapse
Affiliation(s)
- Alan Kan
- University of Wisconsin-Madison Waisman Center, 1500 Highland Ave, Madison WI 53705, USA.
| | - Ruth Y Litovsky
- University of Wisconsin-Madison Waisman Center, 1500 Highland Ave, Madison WI 53705, USA.
| |
Collapse
|
14
|
Churchill TH, Kan A, Goupell MJ, Litovsky RY. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:1246. [PMID: 25190398 PMCID: PMC4165227 DOI: 10.1121/1.4892764] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Most contemporary cochlear implant (CI) processing strategies discard acoustic temporal fine structure (TFS) information, and this may contribute to the observed deficits in bilateral CI listeners' ability to localize sounds when compared to normal hearing listeners. Additionally, for best speech envelope representation, most contemporary speech processing strategies use high-rate carriers (≥900 Hz) that exceed the limit for interaural pulse timing to provide useful binaural information. Many bilateral CI listeners are sensitive to interaural time differences (ITDs) in low-rate (<300 Hz) constant-amplitude pulse trains. This study explored the trade-off between superior speech temporal envelope representation with high-rate carriers and binaural pulse timing sensitivity with low-rate carriers. The effects of carrier pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition in quiet were examined in eight bilateral CI listeners. Stimuli consisted of speech tokens processed at different electrical stimulation rates, and pulse timings that either preserved or did not preserve acoustic TFS cues. Results showed that CI listeners were able to use low-rate pulse timing cues derived from acoustic TFS when presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli.
Collapse
Affiliation(s)
- Tyler H Churchill
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705
| | - Alan Kan
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland-College Park, College Park, Maryland 20742
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705
| |
Collapse
|
15
|
Ihlefeld A, Kan A, Litovsky RY. Across-frequency combination of interaural time difference in bilateral cochlear implant listeners. Front Syst Neurosci 2014; 8:22. [PMID: 24653681 PMCID: PMC3949319 DOI: 10.3389/fnsys.2014.00022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/29/2014] [Indexed: 11/13/2022] Open
Abstract
The current study examined how cochlear implant (CI) listeners combine temporally interleaved envelope-ITD information across two sites of stimulation. When two cochlear sites jointly transmit ITD information, one possibility is that CI listeners can extract the most reliable ITD cues available. As a result, ITD sensitivity would be sustained or enhanced compared to single-site stimulation. Alternatively, mutual interference across multiple sites of ITD stimulation could worsen dual-site performance compared to listening to the better of two electrode pairs. Two experiments used direct stimulation to examine how CI users can integrate ITDs across two pairs of electrodes. Experiment 1 tested ITD discrimination for two stimulation sites using 100-Hz sinusoidally modulated 1000-pps-carrier pulse trains. Experiment 2 used the same stimuli ramped with 100 ms windows, as a control condition with minimized onset cues. For all stimuli, performance improved monotonically with increasing modulation depth. Results show that when CI listeners are stimulated with electrode pairs at two cochlear sites, sensitivity to ITDs was similar to that seen when only the electrode pair with better sensitivity was activated. None of the listeners showed a decrement in performance from the worse electrode pair. This could be achieved either by listening to the better electrode pair or by truly integrating the information across cochlear sites.
Collapse
Affiliation(s)
- Antje Ihlefeld
- Waisman Center, University of Wisconsin Madison, WI, USA ; Center for Neural Science, New York University New York, NY, USA
| | - Alan Kan
- Waisman Center, University of Wisconsin Madison, WI, USA
| | | |
Collapse
|
16
|
Goupell MJ, Litovsky RY. The effect of interaural fluctuation rate on correlation change discrimination. J Assoc Res Otolaryngol 2014; 15:115-29. [PMID: 24258458 PMCID: PMC3901860 DOI: 10.1007/s10162-013-0426-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022] Open
Abstract
While bilateral cochlear implants (CIs) provide some binaural benefits, these benefits are limited compared to those observed in normal-hearing (NH) listeners. The large frequency-to-electrode allocation bandwidths (BWs) in CIs compared to auditory filter BWs in NH listeners increases the interaural fluctuation rate available for binaural unmasking, which may limit binaural benefits. The purpose of this work was to investigate the effect of interaural fluctuation rate on correlation change discrimination and binaural masking-level differences in NH listeners presented a CI simulation using a pulsed-sine vocoder. In experiment 1, correlation-change just-noticeable differences (JNDs) and tone-in-noise thresholds were measured for narrowband noises with different BWs and center frequencies (CFs). The results suggest that the BW, CF, and/or interaural fluctuation rate are important factors for correlation change discrimination. In experiment 2, the interaural fluctuation rate was systematically varied and dissociated from changes in BW and CF by using a pulsed-sine vocoder. Results indicated that the interaural fluctuation rate did not affect correlation change JNDs for correlated reference noises; however, slow interaural fluctuations increased correlation change JNDs for uncorrelated reference noises. In experiment 3, the BW, CF, and vocoder pulse rate were varied while interaural fluctuation rate was held constant. JNDs increased for increasing BW and decreased for increasing CF. In summary, relatively fast interaural fluctuation rates are not detrimental for detecting changes in interaural correlation. Thus, limiting factors to binaural benefits in CI listeners could be a result of other temporal and/or spectral deficiencies from electrical stimulation.
Collapse
Affiliation(s)
- Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, 20742, USA,
| | | |
Collapse
|
17
|
Lin P, Lu T, Zeng FG. Central masking with bilateral cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:962-969. [PMID: 23363113 PMCID: PMC3574098 DOI: 10.1121/1.4773262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 06/01/2023]
Abstract
Across bilateral cochlear implants, contralateral threshold shift has been investigated as a function of electrode difference between the masking and probe electrodes. For contralateral electric masking, maximum threshold elevations occurred when the position of the masker and probe electrode was approximately place-matched across ears. The amount of masking diminished with increasing masker-probe electrode separation. Place-dependent masking occurred in both sequentially implanted ears, and was not affected by the masker intensity or the time delay from the masker onset. When compared to previous contralateral masking results in normal hearing, the similarities between place-dependent central masking patterns suggest comparable mechanisms of overlapping excitation in the central auditory nervous system.
Collapse
Affiliation(s)
- Payton Lin
- Department of Biomedical Engineering, University of California, Irvine, California 92617, USA.
| | | | | |
Collapse
|
18
|
Schoof T, Green T, Faulkner A, Rosen S. Advantages from bilateral hearing in speech perception in noise with simulated cochlear implants and residual acoustic hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:1017-1030. [PMID: 23363118 DOI: 10.1121/1.4773274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Acoustic simulations were used to study the contributions of spatial hearing that may arise from combining a cochlear implant with either a second implant or contralateral residual low-frequency acoustic hearing. Speech reception thresholds (SRTs) were measured in twenty-talker babble. Spatial separation of speech and noise was simulated using a spherical head model. While low-frequency acoustic information contralateral to the implant simulation produced substantially better SRTs there was no effect of spatial cues on SRT, even when interaural differences were artificially enhanced. Simulated bilateral implants showed a significant head shadow effect, but no binaural unmasking based on interaural time differences, and weak, inconsistent overall spatial release from masking. There was also a small but significant non-spatial summation effect. It appears that typical cochlear implant speech processing strategies may substantially reduce the utility of spatial cues, even in the absence of degraded neural processing arising from auditory deprivation.
Collapse
Affiliation(s)
- Tim Schoof
- Speech, Hearing and Phonetic Sciences, University College London, Chandler House, 2, Wakefield Street, London, UK, WC1N 1PF
| | | | | | | |
Collapse
|
19
|
Abstract
OBJECTIVES This study aimed to characterize horizontal plane sound localization in interfering noise at different signal-to-noise ratios (SNRs) and to compare performance across normal-hearing listeners and users of unilateral and bilateral cochlear implants (CIs). CI users report difficulties with listening in noisy environments. Although their difficulties with speech understanding have been investigated in several studies, the ability to localize sounds in background noise has not extensively been examined, despite the benefits of binaural hearing being greatest in noisy situations. Sound localization is a measure of binaural processing and is thus well suited to assessing the benefit of bilateral implantation. The results will inform clinicians and implant manufacturers how to focus their efforts to improve localization with CIs in noisy situations. DESIGN Six normal-hearing listeners, four unilateral, and 10 bilateral CI users indicated the perceived location of sound sources using a light pointer method. Target sounds were noise pulses played from one of 11 loudspeakers placed between -80 and +80 degrees in the frontal horizontal plane in the free field. Localization was assessed in quiet and in diffuse background noise at SNRs between +10 and -7 dB. Speech reception thresholds were measured and their relation to the localization results examined. RESULTS Localization performance declined with decreasing SNR: target sounds were perceived closer to the median plane and the standard deviation of responses increased. Localization performance across groups was compared using a measure of "Spatial Resolvability" (SR). This measure gives the angular separation between two sound sources that would enable an ideal observer to correctly distinguish them 69.1% of the time. For all participants SR increased with decreasing SNR, that is, at low SNRs the spatial separation between sound sources remained distinguishable only when it was larger. Normal-hearing participants performed best, with SR between 1.4 and 5.1 degrees in quiet. Bilateral CI users showed SR between 8.3 and 43.6 degrees in quiet, corresponding approximately to the spatial resolution of normal-hearing listeners at an SNR of -5 dB. Most bilateral CI users had lost the ability to correctly determine which side the sound came from at an SNR of -3 dB. Overall, the SNR had to be at least +7 dB to achieve localization performance near to that in quiet for all bilateral CI users. No significant correlation was found between spatial resolution and speech reception thresholds, but the speech processor sensitivity setting did significantly affect performance. Unilateral CI users showed the most severe localization problems, with only two of four participants being able to correctly determine which side sounds came from in quiet. CONCLUSIONS This study is the first to examine sound localization with CIs at various SNRs and to compare it with normal hearing. The results confirm that localization with CIs is strongly disrupted in noisy situations. Bilateral CIs were shown to be clearly superior over unilateral CIs for localization in quiet and in noisy situations. With bilateral CIs, localization declined at moderately high absolute noise levels (>63 dB SPL), suggesting that an extension of the acoustic-dynamic range to higher levels would be beneficial. The absence of a relation between speech reception thresholds and spatial resolution highlights the need for additional clinical tests to assess the binaural benefit of a second implant.
Collapse
|
20
|
Ihlefeld A, Litovsky RY. Interaural level differences do not suffice for restoring spatial release from masking in simulated cochlear implant listening. PLoS One 2012; 7:e45296. [PMID: 23028914 PMCID: PMC3447935 DOI: 10.1371/journal.pone.0045296] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/21/2012] [Indexed: 11/18/2022] Open
Abstract
Spatial release from masking refers to a benefit for speech understanding. It occurs when a target talker and a masker talker are spatially separated. In those cases, speech intelligibility for target speech is typically higher than when both talkers are at the same location. In cochlear implant listeners, spatial release from masking is much reduced or absent compared with normal hearing listeners. Perhaps this reduced spatial release occurs because cochlear implant listeners cannot effectively attend to spatial cues. Three experiments examined factors that may interfere with deploying spatial attention to a target talker masked by another talker. To simulate cochlear implant listening, stimuli were vocoded with two unique features. First, we used 50-Hz low-pass filtered speech envelopes and noise carriers, strongly reducing the possibility of temporal pitch cues; second, co-modulation was imposed on target and masker utterances to enhance perceptual fusion between the two sources. Stimuli were presented over headphones. Experiments 1 and 2 presented high-fidelity spatial cues with unprocessed and vocoded speech. Experiment 3 maintained faithful long-term average interaural level differences but presented scrambled interaural time differences with vocoded speech. Results show a robust spatial release from masking in Experiments 1 and 2, and a greatly reduced spatial release in Experiment 3. Faithful long-term average interaural level differences were insufficient for producing spatial release from masking. This suggests that appropriate interaural time differences are necessary for restoring spatial release from masking, at least for a situation where there are few viable alternative segregation cues.
Collapse
Affiliation(s)
- Antje Ihlefeld
- University of Wisconsin Waisman Center, Madison, Wisconsin, United States of America
- New York University, Center for Neural Science, New York, New York, United States of America
| | - Ruth Y. Litovsky
- University of Wisconsin Waisman Center, Madison, Wisconsin, United States of America
| |
Collapse
|
21
|
Litovsky RY, Goupell MJ, Godar S, Grieco-Calub T, Jones GL, Garadat SN, Agrawal S, Kan A, Todd A, Hess C, Misurelli S. Studies on bilateral cochlear implants at the University of Wisconsin's Binaural Hearing and Speech Laboratory. J Am Acad Audiol 2012; 23:476-94. [PMID: 22668767 DOI: 10.3766/jaaa.23.6.9] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This report highlights research projects relevant to binaural and spatial hearing in adults and children. In the past decade we have made progress in understanding the impact of bilateral cochlear implants (BiCIs) on performance in adults and children. However, BiCI users typically do not perform as well as normal hearing (NH) listeners. In this article we describe the benefits from BiCIs compared with a single cochlear implant (CI), focusing on measures of spatial hearing and speech understanding in noise. We highlight the fact that in BiCI listening the devices in the two ears are not coordinated; thus binaural spatial cues that are available to NH listeners are not available to BiCI users. Through the use of research processors that carefully control the stimulus delivered to each electrode in each ear, we are able to preserve binaural cues and deliver them with fidelity to BiCI users. Results from those studies are discussed as well, with a focus on the effect of age at onset of deafness and plasticity of binaural sensitivity. Our work with children has expanded both in number of subjects tested and age range included. We have now tested dozens of children ranging in age from 2 to 14 yr. Our findings suggest that spatial hearing abilities emerge with bilateral experience. While we originally focused on studying performance in free field, where real world listening experiments are conducted, more recently we have begun to conduct studies under carefully controlled binaural stimulation conditions with children as well. We have also studied language acquisition and speech perception and production in young CI users. Finally, a running theme of this research program is the systematic investigation of the numerous factors that contribute to spatial and binaural hearing in BiCI users. By using CI simulations (with vocoders) and studying NH listeners under degraded listening conditions, we are able to tease apart limitations due to the hardware/software of the CI systems from limitations due to neural pathology.
Collapse
Affiliation(s)
- Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
van Hoesel RJ. Contrasting benefits from contralateral implants and hearing aids in cochlear implant users. Hear Res 2012; 288:100-13. [DOI: 10.1016/j.heares.2011.11.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 11/26/2022]
|
23
|
Van Deun L, van Wieringen A, Francart T, Büchner A, Lenarz T, Wouters J. Binaural unmasking of multi-channel stimuli in bilateral cochlear implant users. J Assoc Res Otolaryngol 2011; 12:659-70. [PMID: 21656197 DOI: 10.1007/s10162-011-0275-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 05/24/2011] [Indexed: 11/27/2022] Open
Abstract
Previous work suggests that bilateral cochlear implant users are sensitive to interaural cues if experimental speech processors are used to preserve accurate interaural information in the electrical stimulation pattern. Binaural unmasking occurs in adults and children when an interaural delay is applied to the envelope of a high-rate pulse train. Nevertheless, for speech perception, binaural unmasking benefits have not been demonstrated consistently, even with coordinated stimulation at both ears. The present study aimed at bridging the gap between basic psychophysical performance on binaural signal detection tasks on the one hand and binaural perception of speech in noise on the other hand. Therefore, binaural signal detection was expanded to multi-channel stimulation and biologically relevant interaural delays. A harmonic complex, consisting of three sinusoids (125, 250, and 375 Hz), was added to three 125-Hz-wide noise bands centered on the sinusoids. When an interaural delay of 700 μs was introduced, an average BMLD of 3 dB was established. Outcomes are promising in view of real-life benefits. Future research should investigate the generalization of the observed benefits for signal detection to speech perception in everyday listening situations and determine the importance of coordination of bilateral speech processors and accentuation of envelope cues.
Collapse
|
24
|
Lu T, Litovsky R, Zeng FG. Binaural unmasking with multiple adjacent masking electrodes in bilateral cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:3934-45. [PMID: 21682415 PMCID: PMC3135149 DOI: 10.1121/1.3570948] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 03/02/2011] [Accepted: 03/04/2011] [Indexed: 05/25/2023]
Abstract
Bilateral cochlear implant (BiCI) users gain an advantage in noisy situations from a second implant, but their bilateral performance falls short of normal hearing listeners. Channel interactions due to overlapping electrical fields between electrodes can impair speech perception, but its role in limiting binaural hearing performance has not been well characterized. To address the issue, binaural masking level differences (BMLD) for a 125 Hz tone in narrowband noise were measured using a pair of pitch-matched electrodes while simultaneously presenting the same masking noise to adjacent electrodes, representing a more realistic stimulation condition compared to prior studies that used only a single electrode pair. For five subjects, BMLDs averaged 8.9 ± 1.0 dB (mean ± s.e.) in single electrode pairs but dropped to 2.1 ± 0.4 dB when presenting noise on adjacent masking electrodes, demonstrating a negative impact of the additional maskers. Removing the masking noise from only the pitch-matched electrode pair not only lowered thresholds but also resulted in smaller BMLDs. The degree of channel interaction estimated from auditory nerve evoked potentials in three subjects was significantly and negatively correlated with BMLD. The data suggest that if the amount of channel interactions can be reduced, BiCI users may experience some performance improvements related to binaural hearing.
Collapse
Affiliation(s)
- Thomas Lu
- Department of Otolaryngology - Head and Neck Surgery, University of California, Irvine, California 92697, USA.
| | | | | |
Collapse
|
25
|
|