1
|
Cai X, Liu Y, Luo G, Yu Z, Jiang C, Xu C. Ultrasound-assisted immunotherapy for malignant tumour. Front Immunol 2025; 16:1547594. [PMID: 40433381 PMCID: PMC12106521 DOI: 10.3389/fimmu.2025.1547594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Malignant tumour represents a significant global public health concern. The advent of immunotherapy has brought about a revolutionary shift in the landscape of tumour treatment, offering a ray of hope to patients across the globe. Immunotherapy strategies have demonstrated considerable promise in clinical trials. However, the immunosuppressive environment within the tumour microenvironment has constituted a significant obstacle to the advancement of immunotherapies. It is therefore imperative to develop more efficacious and personalised approaches. The utilisation of non-invasive ultrasound-assisted immunotherapy represents a promising strategy. Ultrasound has the capacity to induce an immune response and stimulate other drugs to achieve a specific response, thereby reducing the toxic side effects of treatment and enhancing the outcome of immunotherapy. This paper presents a systematic introduction to the various mechanisms related to ultrasound and reviews the recent advancements of ultrasound-assisted tumour immunotherapy, including ultrasonic ablation, combined application with contrast agents, and sonodynamic therapy.
Collapse
Affiliation(s)
- Xiaowen Cai
- School of Applied Biology, Shenzhen City Polytechnic, Shenzhen, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yujie Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Guosheng Luo
- School of Applied Biology, Shenzhen City Polytechnic, Shenzhen, China
| | - Zhanwang Yu
- School of Applied Biology, Shenzhen City Polytechnic, Shenzhen, China
| | - Cheng Jiang
- School of Applied Biology, Shenzhen City Polytechnic, Shenzhen, China
| | - Chuanshan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Baek BS, Park H, Choi JW, Lee EY, Seong SY. HIFU-CCL19/21 Axis Enhances Dendritic Cell Vaccine Efficacy in the Tumor Microenvironment. Pharmaceutics 2025; 17:65. [PMID: 39861713 PMCID: PMC11769570 DOI: 10.3390/pharmaceutics17010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Effectively targeting treatment-resistant tumor cells, particularly cancer stem cells (CSCs) involved in tumor recurrence, remains a major challenge in immunotherapy. This study examines the potential of combining mechanical high-intensity focused ultrasound (M-HIFU) with dendritic cell (DC) vaccines to enhance immune responses against OLFM4-expressing tumors, a CSC marker linked to immune evasion and tumor growth. METHODS M-HIFU was applied to induce immunogenic cell death by mechanically disrupting tumor cells, releasing tumor-associated antigens and creating an immunostimulatory environment. DC vaccines loaded with OLFM4 were then administered to boost the immune response within this primed environment. RESULTS The combination of M-HIFU and DC vaccine significantly inhibited tumor growth and metastasis, with enhanced T-cell activation and increased recruitment of immune cells due to elevated chemokines CCL19 and CCL21. This synergy promoted immune memory, reducing the likelihood of recurrence. CONCLUSIONS M-HIFU effectively promotes the migration of DC vaccines through CCL19/21, presenting a promising approach for cancer treatment. Further studies are recommended to optimize this combination for clinical applications, with potential to improve patient outcomes in challenging cancer types.
Collapse
Affiliation(s)
- Bum-Seo Baek
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Gangwon, Republic of Korea; (B.-S.B.); (H.P.); (J.-W.C.); (E.-Y.L.)
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyunmi Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Gangwon, Republic of Korea; (B.-S.B.); (H.P.); (J.-W.C.); (E.-Y.L.)
| | - Ji-Woong Choi
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Gangwon, Republic of Korea; (B.-S.B.); (H.P.); (J.-W.C.); (E.-Y.L.)
| | - Eun-Young Lee
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Gangwon, Republic of Korea; (B.-S.B.); (H.P.); (J.-W.C.); (E.-Y.L.)
| | - Seung-Yong Seong
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Gangwon, Republic of Korea; (B.-S.B.); (H.P.); (J.-W.C.); (E.-Y.L.)
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Shaperon Inc., Ltd., Seoul 06373, Republic of Korea
| |
Collapse
|
3
|
Chen WC, Chang TC, Perera L, Cheng MH, Hong JJ, Cheng CM. Pilot study on the impact of HIFU treatment on miRNA profiles in vaginal secretions of uterine fibroids and adenomyosis patients. Int J Hyperthermia 2024; 41:2418426. [PMID: 39462514 DOI: 10.1080/02656736.2024.2418426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND High intensity focused ultrasound (HIFU) ablation treatment for uterine fibroids and adenomyosis has been long developed. The aim of this study is to investigate miRNA profile changes in vaginal secretions after HIFU treatment and their clinical relevance. METHODS We prospectively collected vaginal secretions samples from 8 patients (1 with adenomyosis and 7 with fibroids) before and after HIFU treatment. RNA was isolated and miRNA profiles were analyzed using next-generation sequencing (NGS) sequencing. RESULTS Our study showed miRNA profile change in vaginal secretion samples after HIFU treatment for uterine fibroids/adenomyosis, with 33 miRNAs upregulated and 6 downregulated overall. In fibroid cases, 31 miRNAs were upregulated and 7 downregulated, while in adenomyosis case, 41 miRNAs were upregulated and 71 downregulated. Four miRNAs (hsa-miR-7977, hsa-miR-155-5p, hsa-miR-191-5p, hsa-miR-223-3p) showed significant differences after HIFU treatment in fibroid cases, except in case 5 with the lowest treatment sonications (425 sonications) and energy input (170000 J). hsa-miR-7977 consistently showed downregulation after HIFU treatment. hsa-miR-155-5p were downregulated in case 4 with lowest treatment efficiency (2439.64 J/cm3), while they were upregulated in other cases. hsa-miR-191-5p and hsa-miR-223-3p were downregulated in cases 4 and 7, with case 7 influenced by high sonication and energy due to multiple fibroids. CONCLUSIONS HIFU treatment altered miRNA profiles in fibroids/adenomyosis patients. Notably, hsa-miR-7977, hsa-miR-155-5p, hsa-miR-191-5p, and hsa-miR-223-3p showed significant changes in fibroid cases, except in low-energy treatments. hsa-miR-7977 consistently decreased post-treatment, while hsa-miR-155-5p decreased in the least efficient cases. Further research is needed for validation.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, New Taipei City Municipal Tucheng Hospital, New Taipei City, Taiwan
- International Intercollegiate Ph.D. Program & Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
- HIFU Treatment Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ting-Chang Chang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- HIFU Treatment Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lynn Perera
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mei-Hsiu Cheng
- Taiwan Business Development Department, Inti Taiwan, Inc, Hsinchu, Taiwan
| | - Jun-Jie Hong
- Taiwan Business Development Department, Inti Taiwan, Inc, Hsinchu, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
4
|
Wang P, Chen J, Zhong R, Xia Y, Wu Z, Zhang C, Yao H. Recent advances of ultrasound-responsive nanosystems in tumor immunotherapy. Eur J Pharm Biopharm 2024; 198:114246. [PMID: 38479562 DOI: 10.1016/j.ejpb.2024.114246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
Immunotherapy has revolutionized cancer treatment by boosting the immune system and preventing disease escape mechanisms. Despite its potential, challenges like limited response rates and adverse immune effects impede its widespread clinical adoption. Ultrasound (US), known for its safety and effectiveness in tumor diagnosis and therapy, has been shown to significantly enhance immunotherapy when used with nanosystems. High-intensity focused ultrasound (HIFU) can obliterate tumor cells and elicit immune reactions through the creation of immunogenic debris. Low-intensity focused ultrasound (LIFU) bolsters tumor immunosuppression and mitigates metastasis risk by concentrating dendritic cells. Ultrasonic cavitation (UC) produces microbubbles that can transport immune enhancers directly, thus strengthening the immune response and therapeutic impact. Sonodynamic therapy (SDT) merges nanotechnology with immunotherapy, using specialized sonosensitizers to kill cancer cells and stimulate immune responses, increasing treatment success. This review discusses the integration of ultrasound-responsive nanosystems in tumor immunotherapy, exploring future opportunities and current hurdles.
Collapse
Affiliation(s)
- Penghui Wang
- Department of Ultrasound Medicine, Rui'an people's Hospital (The Third Affiliated Hospital of Wenzhou Medical University), Rui'an 325200, China
| | - Ji Chen
- Department of Ultrasound Medicine, Rui'an people's Hospital (The Third Affiliated Hospital of Wenzhou Medical University), Rui'an 325200, China
| | - Runming Zhong
- Department of Ultrasound Medicine, Rui'an people's Hospital (The Third Affiliated Hospital of Wenzhou Medical University), Rui'an 325200, China
| | - Yuanyuan Xia
- Center For Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou 215004, China
| | - Zhina Wu
- Department of Ultrasound Medicine, Rui'an people's Hospital (The Third Affiliated Hospital of Wenzhou Medical University), Rui'an 325200, China
| | - Chunye Zhang
- Center For Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou 215004, China
| | - Hai Yao
- Center For Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou 215004, China.
| |
Collapse
|
5
|
Sharma D, Xuan Leong K, Palhares D, Czarnota GJ. Radiation combined with ultrasound and microbubbles: A potential novel strategy for cancer treatment. Z Med Phys 2023; 33:407-426. [PMID: 37586962 PMCID: PMC10517408 DOI: 10.1016/j.zemedi.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 08/18/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Several emerging technologies are helping to battle cancer. Cancer therapies have been effective at killing cancer cells, but a large portion of patients still die to this disease every year. As such, more aggressive treatments of primary cancers are employed and have been shown to be capable of saving a greater number of lives. Recent research advances the field of cancer therapy by employing the use of physical methods to alter tumor biology. It uses microbubbles to enhance radiation effect by damaging tumor vasculature followed by tumor cell death. The technique can specifically target tumor volumes by conforming ultrasound fields capable of microbubbles stimulation and localizing it to avoid vascular damage in surrounding tissues. Thus, this new application of ultrasound-stimulated microbubbles (USMB) can be utilized as a novel approach to cancer therapy by inducing vascular disruption resulting in tumor cell death. Using USMB alongside radiation has showed to augment the anti-vascular effect of radiation, resulting in enhanced tumor response. Recent work with nanobubbles has shown vascular permeation into intracellular space, extending the use of this new treatment method to potentially further improve the therapeutic effect of the ultrasound-based therapy. The significant enhancement of localized tumor cell kill means that radiation-based treatments can be made more potent with lower doses of radiation. This technique can manifest a greater impact on radiation oncology practice by increasing treatment effectiveness significantly while reducing normal tissue toxicity. This review article summarizes the past and recent advances in USMB enhancement of radiation treatments. The review mainly focuses on preclinical findings but also highlights some clinical findings that use USMB as a therapeutic modality in cancer therapy.
Collapse
Affiliation(s)
- Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kai Xuan Leong
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Daniel Palhares
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
The role of anti-tumor immunity of focused ultrasound for the malignancies: depended on the different ablation categories. Int J Clin Oncol 2022; 27:1543-1553. [PMID: 35943643 DOI: 10.1007/s10147-022-02219-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
Abstract
Improving anti-tumor immunity has promising outcomes in eradicating malignant tumors. Tumor cells can escape from immune surveillance and killing; therefore, various strategies are continuously developing to inhibit immune escape. Focused ultrasound (FUS) has recently emerged to play an important role in immune modulation. After FUS therapy, various tumor antigens and related signals are released. The non-thermal effect of FUS strengthens the blood and lymph circulation, increases cell permeability, and helps in crossing the physical barrier like the blood-brain barrier and blood-tumor barrier. However, the different ablation of FUS is proposed to have a different anti-tumor immune effect. Therefore, we categorized the FUS ablation into thermal and non-thermal ablation and summarized possible anti-tumor immunity mechanisms.
Collapse
|
7
|
Lafond M, Lambin T, Drainville RA, Dupré A, Pioche M, Melodelima D, Lafon C. Pancreatic Ductal Adenocarcinoma: Current and Emerging Therapeutic Uses of Focused Ultrasound. Cancers (Basel) 2022; 14:2577. [PMID: 35681557 PMCID: PMC9179649 DOI: 10.3390/cancers14112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) diagnosis accompanies a somber prognosis for the patient, with dismal survival odds: 5% at 5 years. Despite extensive research, PDAC is expected to become the second leading cause of mortality by cancer by 2030. Ultrasound (US) has been used successfully in treating other types of cancer and evidence is flourishing that it could benefit PDAC patients. High-intensity focused US (HIFU) is currently used for pain management in palliative care. In addition, clinical work is being performed to use US to downstage borderline resectable tumors and increase the proportion of patients eligible for surgical ablation. Focused US (FUS) can also induce mechanical effects, which may elicit an anti-tumor response through disruption of the stroma and can be used for targeted drug delivery. More recently, sonodynamic therapy (akin to photodynamic therapy) and immunomodulation have brought new perspectives in treating PDAC. The aim of this review is to summarize the current state of those techniques and share our opinion on their future and challenges.
Collapse
Affiliation(s)
- Maxime Lafond
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Thomas Lambin
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - Robert Andrew Drainville
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Aurélien Dupré
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Mathieu Pioche
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - David Melodelima
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Cyril Lafon
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| |
Collapse
|
8
|
Omata D, Munakata L, Maruyama K, Suzuki R. Ultrasound and microbubble-mediated drug delivery and immunotherapy. J Med Ultrason (2001) 2022:10.1007/s10396-022-01201-x. [PMID: 35403931 DOI: 10.1007/s10396-022-01201-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
Abstract
Ultrasound induces the oscillation and collapse of microbubbles such as those of an ultrasound contrast agent, where these behaviors generate mechanical and thermal effects on cells and tissues. These, in turn, induce biological responses in cells and tissues, such as cellular signaling, endocytosis, or cell death. These physiological effects have been used for therapeutic purposes. Most pharmaceutical agents need to pass through the blood vessel walls and reach the parenchyma cells to produce therapeutic effects in drug delivery. Therefore, the blood vessel walls act as an obstacle to drug delivery. The combination of ultrasound and microbubbles is a promising strategy to enhance vascular permeability, improving drug transport from blood to tissues. This combination has also been applied to gene and protein delivery, such as cytokines and antigens for immunotherapy. Immunotherapy, in particular, is an attractive technique for cancer treatment as it induces a cancer cell-specific response. However, sufficient anti-tumor effects have not been achieved with the conventional cancer immunotherapy. Recently, new therapies based on immunomodulation with immune checkpoint inhibitors have been reported. Immunomodulation can be regarded as a new strategy for cancer immunotherapy. It was also reported that mechanical and thermal effects induced by the combination of ultrasound and microbubbles could suppress tumor growth by promoting the cancer-immunity cycle via immunomodulation in the tumor microenvironment. In this review, we provide an overview of the application of ultrasound and microbubble combination for drug delivery and activation of the immune system in the microenvironment of tumor tissue.
Collapse
Affiliation(s)
- Daiki Omata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Lisa Munakata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kazuo Maruyama
- Department of Theranostics, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, 2-21-1, Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, 2-21-1, Kaga, Itabashi-ku, Tokyo, 173-0003, Japan.
| |
Collapse
|
9
|
Rix A, Girbig R, Porte C, Lederle W, Leenaars C, Kiessling F. Development of a Systematic Review Protocol and a Scoping Review of Ultrasound-Induced Immune Effects in Peripheral Tumors. Mol Imaging Biol 2022; 24:288-297. [PMID: 34845660 PMCID: PMC8983530 DOI: 10.1007/s11307-021-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE Publication numbers reporting that ultrasound can stimulate immune reactions in tumors steadily increase. However, the presented data are partially conflicting, and mechanisms are difficult to identify from single publications. These shortcomings can be addressed by a systematic review and meta-analysis of current literature. As a first step, we here present the methodology and protocol for a systematic review to answer the following research question: Does ultrasound alter the immune reaction of peripheral solid tumors in humans and animals compared to control conditions without ultrasound? PROCEDURES We designed a protocol to perform a systematic review and meta-analysis. The suitability of the protocol to detect and sort relevant literature was tested using a subset of publications. We extracted study characteristics, ultrasound parameters, and study outcomes to pre-evaluate the differences between publications and present the data as a scoping review. RESULTS From 6532 publications detected by our preliminary literature search, 320 were selected for testing our systematic review protocol. Of the latter, 15 publications were eligible for data extraction. There, we found large differences between study characteristics (e.g., tumor type, age) and ultrasound settings (e.g., wavelength 0.5-9.5 MHz, acoustic pressure 0.0001-15,000 W/cm2). Finally, study outcomes included reports on cells of the innate (e.g., dendritic cells, macrophages) and adaptive immune system (e.g., CD8-/CD4-positive T cells). CONCLUSION We designed a protocol to identify relevant literature and perform a systematic review and meta-analysis. The differences between extracted features between publications show the necessity for a comprehensive search and selection strategy in the systematic review to get a complete overview of the literature. Meta-analyses of the extracted outcomes can then enable evidence-based conclusions.
Collapse
Affiliation(s)
- Anne Rix
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany.
| | - Renée Girbig
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Céline Porte
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Wiltrud Lederle
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Cathalijn Leenaars
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Centre, 6525 GA, Nijmegen, The Netherlands
- Department of Population Health Science, Unit Animals in Science and Society, Utrecht University, 3508 TD, Utrecht, The Netherlands
- Institute for Laboratory Animal Science, Hannover Medical School, 30625, Hannover, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| |
Collapse
|
10
|
Zafar A, Hasan M, Tariq T, Dai Z. Enhancing Cancer Immunotherapeutic Efficacy with Sonotheranostic Strategies. Bioconjug Chem 2021; 33:1011-1034. [PMID: 34793138 DOI: 10.1021/acs.bioconjchem.1c00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunotherapy has revolutionized the modality for establishing a firm immune response and immunological memory. However, intrinsic limitations of conventional low responsive poor T cell infiltration and immune related adverse effects urge the coupling of cancer nanomedicines with immunotherapy for boosting antitumor response under ultrasound (US) sensitization to mimic dose-limiting toxicities for safe and effective therapy against advanced cancer. US is composed of high-frequency sound waves that mediate targeted spatiotemporal control over release and internalization of the drug. The unconventional US triggered immunogenic nanoengineered arena assists the limited immunogenic dose, limiting toxicities and efficacies. In this Review, we discuss current prospects of enhanced immunotherapy using nanomedicine under US. We highlight how nanotechnology designs and incorporates nanomedicines for the reprogramming of systematic immunity in the tumor microenvironment. We also emphasize the mechanical and biological potential of US, encompassing sonosensitizer activation for enhanced immunotherapeutic efficacies. Finally, the smartly converging combinational platform of US stimulated cancer nanomedicines for amending immunotherapy is summarized. This Review will widen scientists' ability to explore and understand the limiting factors for combating cancer in a precisely customized way.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Tuba Tariq
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Bao Y, Chen J, Huang P, Tong W. Synergistic Effects of Acoustics-based Therapy and Immunotherapy in Cancer Treatment. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2021-0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Cancer is an intractable disease and has ability to escape immunological recognition. Cancer immunotherapy to enhance the autogenous immune response to cancer tissue is reported to be the most promising method for cancer treatment. After the release of damage-associated molecular patterns, dendritic cells come mature and then recruit activated T cells to induce immune response. To trigger the release of cancer associated antigens, cancer acoustics-based therapy has various prominent advantages and has been reported in various research. In this review, we classified the acoustics-based therapy into sonopyrolysis-, sonoporation-, and sonoluminescence-based therapy. Then, detailed mechanisms of these therapies are discussed to show the status of cancer immunotherapy induced by acoustics-based therapy in quo. Finally, we express some future prospects in this research field and make some predictions of its development direction
Collapse
Affiliation(s)
- Yuheng Bao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jifan Chen
- Department of Ultrasound in Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Kim D, Lee SS, Moon H, Park SY, Lee HJ. PD-L1 Targeting Immune-Microbubble Complex Enhances Therapeutic Index in Murine Colon Cancer Models. Pharmaceuticals (Basel) 2020; 14:ph14010006. [PMID: 33374574 PMCID: PMC7822446 DOI: 10.3390/ph14010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 12/26/2022] Open
Abstract
Cancer immunotherapy has revolutionized the way different neoplasms are treated. Among the different variations of cancer immunotherapy, the checkpoint inhibitors targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis have been validated and are currently used in the clinics. Nevertheless, these therapeutic antibodies are associated with significant side effects and are known to induce immune-related toxicities. To address these issues, we have developed an immune-microbubble complex (IMC) which not only reduces the toxicities associated with the antibodies but also enhances the therapeutic efficacy when combined with focused ultrasound. The concept of IMCs could be applied to any type of antibody-based treatment regimens to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Daehyun Kim
- Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea;
- Department of Radiology, Seoul National University Bundang Hospital, 82 Gumi-ro 173, Bundang-gu, Seongnam 13620, Korea
- IMGT Co., Ltd., Seongnam 13605, Korea; (S.S.L.); (H.M.); (S.Y.P.)
| | - Seung Soo Lee
- IMGT Co., Ltd., Seongnam 13605, Korea; (S.S.L.); (H.M.); (S.Y.P.)
| | - Hyungwon Moon
- IMGT Co., Ltd., Seongnam 13605, Korea; (S.S.L.); (H.M.); (S.Y.P.)
| | - So Yeon Park
- IMGT Co., Ltd., Seongnam 13605, Korea; (S.S.L.); (H.M.); (S.Y.P.)
| | - Hak Jong Lee
- Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea;
- Department of Radiology, Seoul National University Bundang Hospital, 82 Gumi-ro 173, Bundang-gu, Seongnam 13620, Korea
- IMGT Co., Ltd., Seongnam 13605, Korea; (S.S.L.); (H.M.); (S.Y.P.)
- Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-31-994-7077
| |
Collapse
|
13
|
Xiong J, Jiang B, Luo Y, Zou J, Gao X, Xu D, Du Y, Hao L. Multifunctional Nanoparticles Encapsulating Astragalus Polysaccharide and Gold Nanorods in Combination with Focused Ultrasound for the Treatment of Breast Cancer. Int J Nanomedicine 2020; 15:4151-4169. [PMID: 32606670 PMCID: PMC7305853 DOI: 10.2147/ijn.s246447] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose Focused ultrasound (FUS) is a noninvasive method to produce thermal and mechanical destruction along with an immune-stimulatory effect against cancer. However, FUS ablation alone appears insufficient to generate consistent antitumor immunity. In this study, a multifunctional nanoparticle was designed to boost FUS-induced immune effects and achieve systemic, long-lasting antitumor immunity, along with imaging and thermal enhancement. Materials and Methods PEGylated PLGA nanoparticles encapsulating astragalus polysaccharides (APS) and gold nanorods (AuNRs) were constructed by a simple double emulsion method, characterized, and tested for cytotoxicity. The abilities of PA imaging and thermal-synergetic ablation efficiency were analyzed in vitro and in vivo. The immune-synergistic effect on dendritic cell (DC) differentiation in vitro and the immune response in vivo were also evaluated. Results The obtained APS/AuNR/PLGA-PEG nanoparticles have an average diameter of 255.00±0.1717 nm and an APS-loading efficiency of 54.89±2.07%, demonstrating their PA imaging capability and high biocompatibility both in vitro and in vivo. In addition, the as-prepared nanoparticles achieved a higher necrosis cell rate and induced apoptosis rate in an in vitro cell suspension assay, greater necrosis area and decreased energy efficiency factor (EEF) in an in vivo rabbit liver assay, and remarkable thermal-synergic performance. In particular, the nanoparticles upregulated the expression of MHC-II, CD80 and CD86 on cocultured DCs in vitro, followed by declining phagocytic function and enhanced interleukin (IL)-12 and interferon (INF)-γ production. Furthermore, they boosted the production of tumor necrosis factor (TNF)-α, IFN-γ, IL-4, IL-10, and IgG1 (P< 0.001) but not IgG2a. Immune promotion peaked on day 3 after FUS in vivo. Conclusion The multifunctional APS/AuNR/PLGA-PEG nanoparticles can serve as an excellent synergistic agent for FUS therapy, facilitating real-time imaging, promoting thermal ablation effects, and boosting FUS-induced immune effects, which have the potential to be used for further clinical FUS treatment.
Collapse
Affiliation(s)
- Jie Xiong
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Binglei Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yong Luo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuan Gao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Die Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yan Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Ultrasonography Department, The Fourth People's Hospital of Chongqing, Central Hospital of Chongqing University, Chongqing 400014, People's Republic of China
| | - Lan Hao
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
14
|
White SB, Zhang Z, Chen J, Gogineni VR, Larson AC. Early Immunologic Response of Irreversible Electroporation versus Cryoablation in a Rodent Model of Pancreatic Cancer. J Vasc Interv Radiol 2018; 29:1764-1769. [DOI: 10.1016/j.jvir.2018.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/25/2022] Open
|
15
|
Kotewall N, Lang BHH. High-intensity focused ultrasound ablation as a treatment for benign thyroid diseases: the present and future. Ultrasonography 2018; 38:135-142. [PMID: 30690961 PMCID: PMC6443589 DOI: 10.14366/usg.18040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
High-intensity focused ultrasound (HIFU) is a promising ablation technique for benign thyroid nodules. Current evidence has found good short- to medium-term outcomes, similar to those of better-established ablation techniques such as radiofrequency and laser ablation. The fact that it does not require insertion of a needle into the target makes HIFU a truly non-invasive treatment. Although it is not without risks, its low risk profile makes it an attractive alternative to surgery. There is much room for future development, starting from expanding the current indications to enhancing energy delivery. Relapsed Graves disease and papillary microcarcinoma are diseases that can benefit from HIFU treatment. Its role in the mediation of immune responses and synergistic effects with immunotherapy are promising in the fight against metastatic cancers.
Collapse
Affiliation(s)
- Nicholas Kotewall
- Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
| | - Brian H H Lang
- Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Chavez M, Silvestrini MT, Ingham ES, Fite BZ, Mahakian LM, Tam SM, Ilovitsh A, Monjazeb AM, Murphy WJ, Hubbard NE, Davis RR, Tepper CG, Borowsky AD, Ferrara KW. Distinct immune signatures in directly treated and distant tumors result from TLR adjuvants and focal ablation. Theranostics 2018; 8:3611-3628. [PMID: 30026870 PMCID: PMC6037035 DOI: 10.7150/thno.25613] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/15/2018] [Indexed: 11/05/2022] Open
Abstract
Both adjuvants and focal ablation can alter the local innate immune system and trigger a highly effective systemic response. Our goal is to determine the impact of these treatments on directly treated and distant disease and the mechanisms for the enhanced response obtained by combinatorial treatments. Methods: We combined RNA-sequencing, flow cytometry and TCR-sequencing to dissect the impact of immunotherapy and of immunotherapy combined with ablation on local and systemic immune components. Results: With administration of a toll-like receptor agonist agonist (CpG) alone or CpG combined with same-site ablation, we found dramatic differences between the local and distant tumor environments, where the directly treated tumors were skewed to high expression of F4/80, Cd11b and Tnf and the distant tumors to enhanced Cd11c, Cd3 and Ifng. When ablation was added to immunotherapy, 100% (n=20/20) of directly treated tumors and 90% (n=18/20) of distant tumors were responsive. Comparing the combined ablation-immunotherapy treatment to immunotherapy alone, we find three major mechanistic differences. First, while ablation alone enhanced intratumoral antigen cross-presentation (up to ~8% of CD45+ cells), systemic cross-presentation of tumor antigen remained low. Combining same-site ablation with CpG amplified cross-presentation in the draining lymph node (~16% of CD45+ cells) compared to the ablation-only (~0.1% of CD45+ cells) and immunotherapy-only cohorts (~10% of CD45+ cells). Macrophages and DCs process and present this antigen to CD8+ T-cells, increasing the number of unique T-cell receptor rearrangements in distant tumors. Second, type I interferon (IFN) release from tumor cells increased with the ablation-immunotherapy treatment as compared with ablation or immunotherapy alone. Type I IFN release is synergistic with toll-like receptor activation in enhancing cytokine and chemokine expression. Expression of genes associated with T-cell activation and stimulation (Eomes, Prf1 and Icos) was 27, 56 and 89-fold higher with ablation-immunotherapy treatment as compared to the no-treatment controls (and 12, 32 and 60-fold higher for immunotherapy-only treatment as compared to the no-treatment controls). Third, we found that the ablation-immunotherapy treatment polarized macrophages and dendritic cells towards a CD169 subset systemically, where CD169+ macrophages are an IFN-enhanced subpopulation associated with dead-cell antigen presentation. Conclusion: While the local and distant responses are distinct, CpG combined with ablative focal therapy drives a highly effective systemic immune response.
Collapse
Affiliation(s)
- Michael Chavez
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Matthew T. Silvestrini
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Elizabeth S. Ingham
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Brett Z. Fite
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Lisa M. Mahakian
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Sarah M. Tam
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Asaf Ilovitsh
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Arta M. Monjazeb
- University of California, Davis, Department of Radiation Oncology, 4501 X Street, Sacramento, CA 95817
| | - William J. Murphy
- University of California, Davis, Department of Dermatology, 2921 Stockton Blvd., Institute for Regenerative Cures, Suite 1630, Sacramento, CA 95817, USA
| | - Neil E. Hubbard
- University of California, Davis, Center for Comparative Medicine, Davis, CA 95616, USA
| | - Ryan R. Davis
- University of California, Davis School of Medicine, Department of Biochemistry and Molecular Medicine, 4645 Second Avenue, Sacramento, CA 95817, USA
| | - Clifford G. Tepper
- University of California, Davis School of Medicine, Department of Biochemistry and Molecular Medicine, 4645 Second Avenue, Sacramento, CA 95817, USA
| | - Alexander D. Borowsky
- University of California, Davis, Center for Comparative Medicine, Davis, CA 95616, USA
| | - Katherine W. Ferrara
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA
| |
Collapse
|
17
|
Rajendrakumar SK, Uthaman S, Cho CS, Park IK. Nanoparticle-Based Phototriggered Cancer Immunotherapy and Its Domino Effect in the Tumor Microenvironment. Biomacromolecules 2018; 19:1869-1887. [DOI: 10.1021/acs.biomac.8b00460] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, South Korea
| |
Collapse
|
18
|
Silvestrini MT, Ingham ES, Mahakian LM, Kheirolomoom A, Liu Y, Fite BZ, Tam SM, Tucci ST, Watson KD, Wong AW, Monjazeb AM, Hubbard NE, Murphy WJ, Borowsky AD, Ferrara KW. Priming is key to effective incorporation of image-guided thermal ablation into immunotherapy protocols. JCI Insight 2017; 2:e90521. [PMID: 28352658 DOI: 10.1172/jci.insight.90521] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Focal therapies play an important role in the treatment of cancers where palliation is desired, local control is needed, or surgical resection is not feasible. Pairing immunotherapy with such focal treatments is particularly attractive; however, there is emerging evidence that focal therapy can have a positive or negative impact on the efficacy of immunotherapy. Thermal ablation is an appealing modality to pair with such protocols, as tumors can be rapidly debulked (cell death occurring within minutes to hours), tumor antigens can be released locally, and treatment can be conducted and repeated without the concerns of radiation-based therapies. In a syngeneic model of epithelial cancer, we found that 7 days of immunotherapy (TLR9 agonist and checkpoint blockade), prior to thermal ablation, reduced macrophages and myeloid-derived suppressor cells and enhanced IFN-γ-producing CD8+ T cells, the M1 macrophage fraction, and PD-L1 expression on CD45+ cells. Continued treatment with immunotherapy alone or with immunotherapy combined with ablation (primed ablation) then resulted in a complete response in 80% of treated mice at day 90, and primed ablation expanded CD8+ T cells as compared with all control groups. When the tumor burden was increased by implantation of 3 orthotopic tumors, successive primed ablation of 2 discrete lesions resulted in survival of 60% of treated mice as compared with 25% of mice treated with immunotherapy alone. Alternatively, when immunotherapy was begun immediately after thermal ablation, the abscopal effect was diminished and none of the mice within the cohort exhibited a complete response. In summary, we found that immunotherapy begun before ablation can be curative and can enhance efficacy in the presence of a high tumor burden. Two mechanisms have potential to impact the efficacy of immunotherapy when begun immediately after thermal ablation: mechanical changes in the tumor microenvironment and inflammatory-mediated changes in immune phenotype.
Collapse
Affiliation(s)
| | | | | | | | - Yu Liu
- Department of Biomedical Engineering
| | | | | | | | | | | | | | | | - William J Murphy
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, California, USA
| | | | | |
Collapse
|
19
|
Cirincione R, Di Maggio FM, Forte GI, Minafra L, Bravatà V, Castiglia L, Cavalieri V, Borasi G, Russo G, Lio D, Messa C, Gilardi MC, Cammarata FP. High-Intensity Focused Ultrasound- and Radiation Therapy-Induced Immuno-Modulation: Comparison and Potential Opportunities. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:398-411. [PMID: 27780661 DOI: 10.1016/j.ultrasmedbio.2016.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 05/12/2023]
Abstract
In recent years, high-intensity focused ultrasound (HIFU) has emerged as a new and promising non-invasive and non-ionizing ablative technique for the treatment of localized solid tumors. Extensive pre-clinical and clinical studies have evidenced that, in addition to direct destruction of the primary tumor, HIFU-thermoablation may elicit long-term systemic host anti-tumor immunity. In particular, an important consequence of HIFU treatment includes the release of tumor-associated antigens (TAAs), the secretion of immuno-suppressing factors by cancer cells and the induction of cytotoxic T lymphocyte (CTL) activity. Radiation therapy (RT) is the main treatment modality used for many types of tumors and about 50% of all cancer patients receive RT, often used in combination with surgery and chemotherapy. It is well known that RT can modulate anti-tumor immune responses, modifying micro-environment and stimulating inflammatory factors that can greatly affect cell invasion, bystander effects, radiation tissue complications (such as fibrosis), genomic instability and thus, intrinsic cellular radio-sensitivity. To date, various combined therapeutic strategies (such as immuno-therapy) have been performed in order to enhance RT success in treating locally advanced and recurrent tumors. Recent works suggested the combined use of HIFU and RT treatments to increase the tumor cell radio-sensitivity, in order to synergize the effects reaching the maximum results with minimal doses of ionizing radiation (IR). Here, we highlight the opposite immuno-modulation roles of RT and HIFU, providing scientific reasons to test, by experimental approaches, the use of HIFU immune-stimulatory capacity to improve tumor radio-sensitivity, to reduce the RT induced inflammatory response and to decrease the dose-correlated side effects in normal tissues.
Collapse
Affiliation(s)
| | - Federica Maria Di Maggio
- IBFM CNR, Cefalù, Palermo, Italy; Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | | | | | - Valentina Bravatà
- IBFM CNR, Cefalù, Palermo, Italy; Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | | | - Vincenzo Cavalieri
- Laboratory of Molecular Biology and Functional Genomics, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | | | | | - Domenico Lio
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Cristina Messa
- IBFM CNR, Cefalù, Palermo, Italy; Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy; Nuclear Medicine Center, San Gerardo Hospital, Monza, Italy
| | - Maria Carla Gilardi
- IBFM CNR, Cefalù, Palermo, Italy; Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy; Nuclear Medicine, San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
20
|
Yuan SM, Li H, Yang M, Zha H, Sun H, Li XR, Li AF, Gu Y, Duan L, Luo JY, Li CY, Wang Y, Wang ZB, He TC, Zhou L. High intensity focused ultrasound enhances anti-tumor immunity by inhibiting the negative regulatory effect of miR-134 on CD86 in a murine melanoma model. Oncotarget 2016; 6:37626-37. [PMID: 26485753 PMCID: PMC4741953 DOI: 10.18632/oncotarget.5285] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/16/2015] [Indexed: 12/30/2022] Open
Abstract
HIFU has been demonstrated to enhance anti-tumor immunity, however, the mechanism of which has not been well elucidated. Emerging evidence indicates that miRNAs play important roles in immune response. In this study, we used the B16F10 melanoma allograft mouse model to investigate the role of miRNAs in HIFU-enhanced anti-tumor immunity. We found that HIFU treatment decreased circulating B16F10 cells and pulmonary metastasis nodules while increased IFN-γ and TNF-α in the peripheral blood and cumulative mouse survival, which was associated with inhibition of miR-134 expression and activation of CD86 expression in tumor tissues. Further, we determined that miR-134 directly binds to the 3′UTR of CD86 mRNA to suppress its expression in B16F10 cells. When B16F10 cells transfected with miR-134 were co-cultured with normal splenic lymphocytes, the secretion of IFN-γ and TNF-α from lymphocytes was reduced and B16F10 cell survival was increased. HIFU exposure efficiently decreased miR-134 while increased CD86 expression in B16F10 cells in vitro. CD86 knockdown with siRNA markedly rescued the viability of HIFU-treated B16F10 cells that co-cultured with lymphocytes. Altogether, our results suggest that HIFU down-regulates miR-134 to release the inhibition of miR-134 on CD86 in melanoma cells, thereby enhancing anti-tumor immune response.
Collapse
Affiliation(s)
- Shi-Mei Yuan
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Huan Li
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Min Yang
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - He Zha
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hui Sun
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xue-Ru Li
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ai-Fang Li
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yue Gu
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liang Duan
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jin-Yong Luo
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Chong-Yan Li
- State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yan Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Zhi-Biao Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Tong-Chuan He
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lan Zhou
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
21
|
Ran LF, Xie XP, Xia JZ, Xie FL, Fan YM, Wu F. Specific antitumour immunity of HIFU-activated cytotoxic T lymphocytes after adoptive transfusion in tumour-bearing mice. Int J Hyperthermia 2015; 32:204-10. [DOI: 10.3109/02656736.2015.1112438] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Copelan A, Hartman J, Chehab M, Venkatesan AM. High-Intensity Focused Ultrasound: Current Status for Image-Guided Therapy. Semin Intervent Radiol 2015; 32:398-415. [PMID: 26622104 PMCID: PMC4640913 DOI: 10.1055/s-0035-1564793] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Image-guided high-intensity focused ultrasound (HIFU) is an innovative therapeutic technology, permitting extracorporeal or endocavitary delivery of targeted thermal ablation while minimizing injury to the surrounding structures. While ultrasound-guided HIFU was the original image-guided system, MR-guided HIFU has many inherent advantages, including superior depiction of anatomic detail and superb real-time thermometry during thermoablation sessions, and it has recently demonstrated promising results in the treatment of both benign and malignant tumors. HIFU has been employed in the management of prostate cancer, hepatocellular carcinoma, uterine leiomyomas, and breast tumors, and has been associated with success in limited studies for palliative pain management in pancreatic cancer and bone tumors. Nonthermal HIFU bioeffects, including immune system modulation and targeted drug/gene therapy, are currently being explored in the preclinical realm, with an emphasis on leveraging these therapeutic effects in the care of the oncology patient. Although still in its early stages, the wide spectrum of therapeutic capabilities of HIFU offers great potential in the field of image-guided oncologic therapy.
Collapse
Affiliation(s)
- Alexander Copelan
- Department of Diagnostic Radiology, William Beaumont Hospital, Royal Oak, Michigan
| | - Jason Hartman
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Monzer Chehab
- Department of Diagnostic Radiology, William Beaumont Hospital, Royal Oak, Michigan
| | - Aradhana M. Venkatesan
- Section of Abdominal Imaging, Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
23
|
Caruso JP, Cohen-Inbar O, Bilsky MH, Gerszten PC, Sheehan JP. Stereotactic radiosurgery and immunotherapy for metastatic spinal melanoma. Neurosurg Focus 2015; 38:E6. [PMID: 25727228 DOI: 10.3171/2014.11.focus14716] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The management of metastatic spinal melanoma involves maximizing local control, preventing recurrence, and minimizing treatment-associated toxicity and spinal cord damage. Additionally, therapeutic measures should promote mechanical stability, facilitate rehabilitation, and promote quality of life. These objectives prove difficult to achieve given melanoma's elusive nature, radioresistant and chemoresistant histology, vascular character, and tendency for rapid and early metastasis. Different therapeutic modalities exist for metastatic spinal melanoma treatment, including resection (definitive, debulking, or stabilization procedures), stereotactic radiosurgery, and immunotherapeutic techniques, but no single treatment modality has proven fully effective. The authors present a conceptual overview and critique of these techniques, assessing their effectiveness, separately and combined, in the treatment of metastatic spinal melanoma. They provide an up-to-date guide for multidisciplinary treatment strategies. Protocols that incorporate specific, goal-defined surgery, immunotherapy, and stereotactic radiosurgery would be beneficial in efforts to maximize local control and minimize toxicity.
Collapse
|
24
|
Hoogenboom M, Eikelenboom D, den Brok MH, Heerschap A, Fütterer JJ, Adema GJ. Mechanical high-intensity focused ultrasound destruction of soft tissue: working mechanisms and physiologic effects. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1500-17. [PMID: 25813532 DOI: 10.1016/j.ultrasmedbio.2015.02.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/14/2015] [Accepted: 02/16/2015] [Indexed: 05/11/2023]
Abstract
The best known method of high-intensity focused ultrasound is thermal ablation, but interest in non-thermal, mechanical destruction is increasing. The advantages of mechanical ablation are that thermal protein denaturation remains limited and less damage is created to the surrounding tissue by thermal diffusion. The two main techniques for mechanical fragmentation of tissue are histotripsy and boiling histotripsy. These techniques can be used for complete liquefaction of tumor tissue into submicron fragments, after which the fragmented tissue can be easily removed by natural (immunologic) responses. Interestingly it seems that there is a correlation between the degree of destruction and tissue specific characteristics based on the treatment settings used. In this review article, the technical aspects of these two techniques are described, and an overview of the in vivo pathologic and immunologic responses is provided.
Collapse
Affiliation(s)
- Martijn Hoogenboom
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Dylan Eikelenboom
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn H den Brok
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jurgen J Fütterer
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Gosse J Adema
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Kaproth-Joslin KA, Nicola R, Dogra VS. The History of US: From Bats and Boats to the Bedside and Beyond: RSNA Centennial Article. Radiographics 2015; 35:960-70. [PMID: 25822324 DOI: 10.1148/rg.2015140300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Katherine A Kaproth-Joslin
- From the Department of Imaging Science, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642
| | | | | |
Collapse
|