1
|
van Boxel SCJ, Vermorken BL, Volpe B, Guinand N, Perez-Fornos A, Devocht EMJ, van de Berg R. The vestibular implant: effects of stimulation parameters on the electrically-evoked vestibulo-ocular reflex. Front Neurol 2024; 15:1483067. [PMID: 39574507 PMCID: PMC11579865 DOI: 10.3389/fneur.2024.1483067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/02/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction The vestibular implant is a neuroprosthesis which offers a potential treatment approach for patients suffering from vestibulopathy. Investigating the influence of electrical stimulation parameters is essential to improve the vestibular implant response. Optimization of the response focuses on the electrically evoked vestibulo-ocular reflex. It aims to facilitate high peak eye velocities and adequate alignment of the eye movement responses. In this study, the basic stimulation parameters of the vestibular implant were tested for their effect on the electrically evoked vestibulo-ocular reflex. Methods Four stimulation parameters, including the stimulation amplitude, phase duration, stimulus rate and speed of change of stimulation, were systematically tested in a cohort of nine subjects with a vestibulo-cochlear implant. These parameters were tested to evaluate their effect on fitting settings (i.e., threshold of activation, upper comfortable limit and dynamic range) as well as on the electrically evoked vestibulo-ocular reflex (peak eye velocity and alignment). Results It was confirmed that, in addition to current amplitude, the peak eye velocity of the response can be increased by increasing the phase duration and pulse rate. Both parameters have little effect on the alignment of the eye response. However, a longer phase duration decreased the range between the threshold of activation and the upper comfortable limit of the electrical stimulation (i.e., dynamic range). Furthermore, these results show that next to the amplitude of the stimulation, the speed of change in stimulation has a determinative positive effect on the peak eye velocity. Conclusion The observations in this study imply that the vestibular implant response, in terms of peak eye velocity, can be optimized with a higher pulse rate and longer phase duration. However, this comes at a trade-off between the dynamic range and power consumption. This study provides essential insights for fitting strategies in future vestibular implant care.
Collapse
Affiliation(s)
- Stan C. J. van Boxel
- Division of Vestibular Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, Netherlands
| | - Bernd L. Vermorken
- Division of Vestibular Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, Netherlands
| | - Benjamin Volpe
- Division of Vestibular Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, Netherlands
| | - Nils Guinand
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Angélica Perez-Fornos
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Elke M. J. Devocht
- Division of Vestibular Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, Netherlands
| | - Raymond van de Berg
- Division of Vestibular Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
2
|
Garadat SN, Colesa DJ, Swiderski DL, Raphael Y, Pfingst BE. Estimating health of the implanted cochlea using psychophysical strength-duration functions and electrode configuration. Hear Res 2022; 414:108404. [PMID: 34883366 PMCID: PMC8761176 DOI: 10.1016/j.heares.2021.108404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 02/03/2023]
Abstract
It is generally believed that the efficacy of cochlear implants is partly dependent on the condition of the stimulated neural population. Cochlear pathology is likely to affect the manner in which neurons respond to electrical stimulation, potentially resulting in differences in perception of electrical stimuli across cochlear implant recipients and across the electrode array in individual cochlear implant users. Several psychophysical and electrophysiological measures have been shown to predict cochlear health in animals and were used to assess conditions near individual stimulation sites in humans. In this study, we examined the relationship between psychophysical strength-duration functions and spiral ganglion neuron density in two groups of guinea pigs with cochlear implants who had minimally-overlapping cochlear health profiles. One group was implanted in a hearing ear (N = 10) and the other group was deafened by cochlear perfusion of neomycin, inoculated with an adeno-associated viral vector with an Ntf3-gene insert (AAV.Ntf3) and implanted (N = 14). Psychophysically measured strength-duration functions for both monopolar and tripolar electrode configurations were then compared for the two treatment groups. Results were also compared to their histological outcomes. Overall, there were considerable differences between the two treatment groups in terms of their psychophysical performance as well as the relation between their functional performance and histological data. Animals in the neomycin-deafened, neurotrophin-treated, and implanted group (NNI) exhibited steeper strength-duration function slopes; slopes were positively correlated with SGN density (steeper slopes in animals that had higher SGN densities). In comparison, the implanted hearing (IH) group had shallower slopes and there was no relation between slopes and spiral ganglion density. Across all animals, slopes were negatively correlated with ensemble spontaneous activity levels (shallower slopes with higher ensemble spontaneous activity levels). We hypothesize that differences in strength-duration function slopes between the two treatment groups were related to the condition of the inner hair cells, which generate spontaneous activity that could affect the across-fiber synchrony and/or the size of the population of neural elements responding to electrical stimulation. In addition, it is likely that spiral ganglion neuron peripheral processes were present in the IH group, which could affect membrane properties of the stimulated neurons. Results suggest that the two treatment groups exhibited distinct patterns of variation in conditions near the stimulating electrodes that altered detection thresholds. Overall, the results of this study suggest a complex relationship between psychophysical detection thresholds for cochlear implant stimulation and nerve survival in the implanted cochlea. This relationship seems to depend on the characteristics of the electrical stimulus, the electrode configuration, and other biological features of the implanted cochlea such as the condition of the inner hair cells and the peripheral processes.
Collapse
Affiliation(s)
- Soha N Garadat
- Department of Hearing and Speech Sciences, The University of Jordan, Amman 11942, Jordan; Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109-5616, USA.
| | - Deborah J Colesa
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Donald L Swiderski
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Bryan E Pfingst
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109-5616, USA
| |
Collapse
|
3
|
Heshmat A, Sajedi S, Schrott-Fischer A, Rattay F. Polarity Sensitivity of Human Auditory Nerve Fibers Based on Pulse Shape, Cochlear Implant Stimulation Strategy and Array. Front Neurosci 2021; 15:751599. [PMID: 34955717 PMCID: PMC8692583 DOI: 10.3389/fnins.2021.751599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Neural health is of great interest to determine individual degeneration patterns for improving speech perception in cochlear implant (CI) users. Therefore, in recent years, several studies tried to identify and quantify neural survival in CI users. Among all proposed techniques, polarity sensitivity is a promising way to evaluate the neural status of auditory nerve fibers (ANFs) in CI users. Nevertheless, investigating neural health based on polarity sensitivity is a challenging and complicated task that involves various parameters, and the outcomes of many studies show contradictory results of polarity sensitivity behavior. Our computational study benefits from an accurate three-dimensional finite element model of a human cochlea with realistic human ANFs and determined ANF degeneration pattern of peripheral part with a diminishing of axon diameter and myelination thickness based on degeneration levels. In order to see how different parameters may impact the polarity sensitivity behavior of ANFs, we investigated polarity behavior under the application of symmetric and asymmetric pulse shapes, monopolar and multipolar CI stimulation strategies, and a perimodiolar and lateral CI array system. Our main findings are as follows: (1) action potential (AP) initiation sites occurred mainly in the peripheral site in the lateral system regardless of stimulation strategies, pulse polarities, pulse shapes, cochlear turns, and ANF degeneration levels. However, in the perimodiolar system, AP initiation sites varied between peripheral and central processes, depending on stimulation strategies, pulse shapes, and pulse polarities. (2) In perimodiolar array, clusters formed in threshold values based on cochlear turns and degeneration levels for multipolar strategies only when asymmetric pulses were applied. (3) In the perimodiolar array, a declining trend in polarity (anodic threshold/cathodic threshold) with multipolar strategies was observed between intact or slight degenerated cases and more severe degenerated cases, whereas in the lateral array, cathodic sensitivity was noticed for intact and less degenerated cases and anodic sensitivity for cases with high degrees of degeneration. Our results suggest that a combination of asymmetric pulse shapes, focusing more on multipolar stimulation strategies, as well as considering the distances to the modiolus wall, allows us to distinguish the degeneration patterns of ANFs across the cochlea.
Collapse
Affiliation(s)
- Amirreza Heshmat
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria.,Laboratory for Inner Ear Biology, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sogand Sajedi
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Anneliese Schrott-Fischer
- Laboratory for Inner Ear Biology, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Frank Rattay
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
4
|
He S, Xu L, Skidmore J, Chao X, Riggs WJ, Wang R, Vaughan C, Luo J, Shannon M, Warner C. Effect of Increasing Pulse Phase Duration on Neural Responsiveness of the Electrically Stimulated Cochlear Nerve. Ear Hear 2021; 41:1606-1618. [PMID: 33136636 PMCID: PMC7529657 DOI: 10.1097/aud.0000000000000876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study is to (1) investigate the effects of increasing the pulse phase duration (PPD) on the neural response of the electrically stimulated cochlear nerve (CN) in children with CN deficiency (CND) and (2) compare the results from the CND population to those measured in children with normal-sized CNs. DESIGN Study participants included 30 children with CND and 30 children with normal-sized CNs. All participants used a Cochlear Nucleus device in the test ear. For each subject, electrically evoked compound action potential (eCAP) input/output (I/O) functions evoked by single biphasic pulses with different PPDs were recorded at three electrode locations across the electrode array. PPD durations tested in this study included 50, 62, 75, and 88 μsec/phase. For each electrode tested for each study participant, the amount of electrical charge corresponding to the maximum comfortable level measured for the 88 μsec PPD was used as the upper limit of stimulation. The eCAP amplitude measured at the highest electrical charge level, the eCAP threshold (i.e., the lowest level that evoked an eCAP), and the slope of the eCAP I/O function were measured. Generalized linear mixed effect models with study group, electrode location, and PPD as the fixed effects and subject as the random effect were used to compare these dependent variables measured at different electrode locations and PPDs between children with CND and children with normal-sized CNs. RESULTS Children with CND had smaller eCAP amplitudes, higher eCAP thresholds, and smaller slopes of the eCAP I/O function than children with normal-sized CNs. Children with CND who had fewer electrodes with a measurable eCAP showed smaller eCAP amplitudes and flatter eCAP I/O functions than children with CND who had more electrodes with eCAPs. Increasing the PPD did not show a statistically significant effect on any of these three eCAP parameters in the two subject groups tested in this study. CONCLUSIONS For the same amount of electrical charge, increasing the PPD from 50 to 88 μsec for a biphasic pulse with a 7 μsec interphase gap did not significantly affect CN responsiveness to electrical stimulation in human cochlear implant users. Further studies with different electrical pulse configurations are warranted to determine whether evaluating the eCAP sensitivity to changes in the PPD can be used as a testing paradigm to estimate neural survival of the CN for individual cochlear implant users.
Collapse
Affiliation(s)
- Shuman He
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, 915 Olentangy River Road, Columbus, OH 43212
- Department of Audiology, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205
| | - Lei Xu
- Department of Auditory Implantation, Shandong Provincial ENT Hospital Affiliated to Shandong University, Duanxing W. Rd, Huaiyin, Jinan, Shandong Province, P.R. China 250022
| | - Jeffrey Skidmore
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, 915 Olentangy River Road, Columbus, OH 43212
| | - Xiuhua Chao
- Department of Auditory Implantation, Shandong Provincial ENT Hospital Affiliated to Shandong University, Duanxing W. Rd, Huaiyin, Jinan, Shandong Province, P.R. China 250022
| | - William J. Riggs
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, 915 Olentangy River Road, Columbus, OH 43212
- Department of Audiology, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205
| | - Ruijie Wang
- Department of Auditory Implantation, Shandong Provincial ENT Hospital Affiliated to Shandong University, Duanxing W. Rd, Huaiyin, Jinan, Shandong Province, P.R. China 250022
| | - Chloe Vaughan
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, 915 Olentangy River Road, Columbus, OH 43212
| | - Jianfen Luo
- Department of Auditory Implantation, Shandong Provincial ENT Hospital Affiliated to Shandong University, Duanxing W. Rd, Huaiyin, Jinan, Shandong Province, P.R. China 250022
| | - Michelle Shannon
- Department of Audiology, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205
| | - Cynthia Warner
- Department of Audiology, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205
| |
Collapse
|
5
|
Zhou N, Zhu Z, Dong L, Galvin J. Sensitivity to Pulse Phase Duration as a Marker of Neural Health Across Cochlear Implant Recipients and Electrodes. J Assoc Res Otolaryngol 2021; 22:177-192. [PMID: 33559041 PMCID: PMC7943680 DOI: 10.1007/s10162-021-00784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/03/2021] [Indexed: 11/19/2022] Open
Abstract
In cochlear implants, loudness has been shown to grow more slowly with increasing pulse phase duration (PPD) than with pulse amplitude (PA), possibly due to “leaky” charge integration. This leakiness has been recently quantified in terms of “charge integration efficiency,” defined as the log difference between the PPD dynamic range and PA dynamic range (both expressed in charge units), relative to a common threshold anchor. Such leakiness may differ across electrodes and/or test ears, and may reflect underlying neural health. In this study, we examined the across-site variation of charge integration in recipients of Cochlear© devices. PPD and PA dynamic ranges were measured relative to two threshold anchors with either a 25- or 50-microsecond PPD. Strength-duration functions, previously shown to relate to survival of spiral ganglion cells and peripheral processes, were compared to charge integration efficiency on selected electrodes. Results showed no significant or systematic relationship between the across-site variation in charge integration efficiency and electrode position or threshold levels. Charge integration efficiency was poorer with the 50-μs threshold anchor, suggesting that greater leakiness was associated with larger PPD dynamic ranges. Poorer and more variable charge integration efficiency across electrodes was associated with longer duration of any hearing loss, consistent with the idea that poor integration is related to neural degeneration. More variable integration efficiency was also associated with poorer speech recognition performance across test ears. The slopes of the strength-duration functions at maximum acceptable loudness were significantly correlated with charge integration efficiency. However, the strength-duration slopes were not predictive of duration of any hearing loss or speech recognition performance in our participants. As such, charge integration efficiency may be a better candidate to measure leakiness in neural populations across the electrode array, as well as the general health of the auditory nerve in human cochlear implant recipients.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27834, USA
| | - Zhen Zhu
- Department of Engineering, East Carolina University, Greenville, NC, 27834, USA
| | - Lixue Dong
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27834, USA
| | - John Galvin
- House Ear Institute, 2100 W. Third St., Suite 101, Los Angeles, CA, 90057, USA.
| |
Collapse
|
6
|
Jiang C, de Rijk SR, Malliaras GG, Bance ML. Electrochemical impedance spectroscopy of human cochleas for modeling cochlear implant electrical stimulus spread. APL MATERIALS 2020; 8:091102. [PMID: 32929397 PMCID: PMC7470452 DOI: 10.1063/5.0012514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/14/2020] [Indexed: 05/07/2023]
Abstract
Cochlear implants (CIs) have tremendously helped people with severe to profound hearing loss to gain access to sound and oral-verbal communication. However, the electrical stimulus in the cochlea spreads easily and widely, since the perilymph and endolymph (i.e., intracochlear fluids) are essentially electrolytes, leading to an inability to focus stimulation to discrete portions of the auditory nerve, which blurs the neural signal. Here, we characterize the complex transimpedances of human cadaveric cochleas to investigate how electrical stimulus spread is distributed from 10 Hz to 100 kHz. By using electrochemical impedance spectroscopy (EIS), both the resistive and capacitive elements of human cochleas are measured and modeled with an electrical circuit model, identifying spread-induced and spread-independent impedance components. Based on this electrical circuit model, we implement a Laplace transform to simulate the theoretical shapes of the spread signals. The model is validated by experimentally applying the simulated stimulus as a real stimulus to the cochlea and measuring the shapes of the spread signals, with relative errors of <0.6% from the model. Based on this model, we show the relationship between stimulus pulse duration and electrical stimulus spread. This EIS technique to characterize the transimpedances of human cochleas provides a new way to predict the spread signal under an arbitrary electrical stimulus, thus providing preliminary guidance to the design of CI stimuli for different CI users and coding strategies.
Collapse
Affiliation(s)
| | - S. R. de Rijk
- Department of Clinical Neurosciences, University
of Cambridge, Cambridge CB2 0AH, United Kingdom
| | - G. G. Malliaras
- Division of Electrical Engineering, Department of
Engineering, University of Cambridge, Cambridge CB3 0FA, United
Kingdom
- Authors to whom correspondence should be addressed:
and
| | - M. L. Bance
- Authors to whom correspondence should be addressed:
and
| |
Collapse
|
7
|
Zhou N, Dong L, Galvin JJ. A behavioral method to estimate charge integration efficiency in cochlear implant users. J Neurosci Methods 2020; 342:108802. [PMID: 32522551 DOI: 10.1016/j.jneumeth.2020.108802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND In cochlear implants, pulse amplitude (PA) or pulse phase duration (PPD) can be used to increase loudness. Loudness grows more slowly with increasing PPD, resulting in a larger dynamic range (DR), possibly reflecting "leaky" charge integration associated with neural degeneration due to hearing loss. Here, we propose a method to estimate charge integration efficiency for CI users. NEW METHOD The DR was measured with increasing PA or PPD, relative to a common threshold anchor with a short PPD (25μs/ph); DRs were converted to the common unit of charge (nC). Charge integration efficiency was calculated as the dB difference in DR with increasing PPD or PA. Loudness growth functions were also compared as PA or PPD was increased relative to the common threshold. RESULTS Ten CI ears were tested; all participants were adult users of Cochlear© devices. DR was significantly larger when PPD was increased, requiring (on average) 70 % more charge than when PA was increased. A significant correlation (p = 0.007) was observed between duration of deafness and charge integration efficiency, largely driven by a participant with long auditory deprivation in both ears. Loudness growth was slower when PPD was increased, consistent with previous studies. Comparison to Existing Methods. The present method offers a quick behavioral test with which to measure charge integration efficiency, which may be a useful measure of neural health. DISCUSSION Charge integration efficiency may be used to probe neural health independent of absolute detection thresholds, which mostly reflect the proximity of electrodes to neural populations.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC 27834, United States
| | - Lixue Dong
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC 27834, United States
| | - John J Galvin
- House Ear Institute, 2100 W. 3rd St., Los Angeles, CA 90057, United States.
| |
Collapse
|
8
|
Ramped pulse shapes are more efficient for cochlear implant stimulation in an animal model. Sci Rep 2020; 10:3288. [PMID: 32094368 PMCID: PMC7039949 DOI: 10.1038/s41598-020-60181-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/03/2020] [Indexed: 01/20/2023] Open
Abstract
In all commercial cochlear implant (CI) devices, the electric stimulation is performed with a rectangular pulse that generally has two phases of opposite polarity. To date, developing new stimulation strategies has relied on the efficacy of this shape. Here, we investigate the potential of a novel stimulation paradigm that uses biophysically-inspired electrical ramped pulses. Using electrically-evoked auditory brainstem response (eABR) recordings in mice, we found that less charge, but higher current level amplitude, is needed to evoke responses with ramped shapes that are similar in amplitude to responses obtained with rectangular shapes. The most charge-efficient pulse shape had a rising ramp over both phases, supporting findings from previous in vitro studies. This was also true for longer phase durations. Our study presents the first physiological data on CI-stimulation with ramped pulse shapes. By reducing charge consumption ramped pulses have the potential to produce more battery-efficient CIs and may open new perspectives for designing other efficient neural implants in the future.
Collapse
|
9
|
Mesnildrey Q, Macherey O, Herzog P, Venail F. Impedance measures for a better understanding of the electrical stimulation of the inner ear. J Neural Eng 2018; 16:016023. [PMID: 30523898 DOI: 10.1088/1741-2552/aaecff] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The performance of cochlear implant (CI) listeners is limited by several factors among which the lack of spatial selectivity of the electrical stimulation. Recently, many studies have explored the use of multipolar strategies where several electrodes are stimulated simultaneously to focus the electrical field in a restricted region of the cochlea. OBJECTIVE These strategies are based on several assumptions concerning the electrical properties of the inner ear that need validation. The first, often implicit, assumption is that the medium is purely resistive and that the current waveforms produced by several electrodes sum linearly. The second assumption relates to the estimation of the contribution of each electrode to the overall electrical field. These individual contributions are usually obtained by stimulating each electrode and measuring the resulting voltage with the other inactive electrodes (i.e. the impedance matrix). However, measuring the voltage on active electrodes (i.e. the diagonal of the matrix) is not straightforward because of the polarization of the electrode-fluid interface. In existing multipolar strategies, the diagonal terms of the matrix are therefore inferred using linear extrapolation from measurements made at neighboring electrodes. APPROACH In experiment 1, several impedance measurements were carried out in vitro and in eight CI users using sinusoidal and pulsatile waveforms to test the resistivity and linearity hypotheses. In experiment 2, we used an equivalent electrical model including a constant phase element in order to isolate the polarization component of the contact impedance. MAIN RESULTS In experiment 1, high-resolution voltage recordings (1.1 MHz sampling) showed the resistivity assumption to be valid at 46.4 kHz, the highest frequency tested. However, these measures also revealed the presence of parasitic capacitive effects at high frequency that could be deleterious to multipolar strategies. Experiment 2 showed that the electrical model provides a better account of the high-resolution impedance measurements than previous approaches in the CI field that used resistor-capacitance circuit models. SIGNIFICANCE These results validate the main hypotheses underlying the use of multipolar stimulation but also suggest possible modifications to their implementation, including the use of an impedance model and the modification of the electrical pulse waveform.
Collapse
Affiliation(s)
- Quentin Mesnildrey
- Aix Marseille Univ., CNRS, Centrale Marseille, LMA, 4 impasse Nikola TESLA, CS 40006, F-13453, Marseille Cedex 13, France
| | | | | | | |
Collapse
|
10
|
Zhou N, Dong L. Evaluating Multipulse Integration as a Neural-Health Correlate in Human Cochlear-Implant Users: Relationship to Psychometric Functions for Detection. Trends Hear 2018; 21:2331216517690108. [PMID: 28150534 PMCID: PMC5308440 DOI: 10.1177/2331216517690108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In electrical hearing, multipulse integration (MPI) describes the rate at which detection threshold decreases with increasing stimulation rate in a fixed-duration pulse train. In human subjects, MPI has been shown to be dependent on the psychophysically estimated spread of neural excitation at a high stimulation rate, with broader spread predicting greater integration. The first aim of the present study was to replicate this finding using alternative methods for measuring MPI and spread of neural excitation. The second aim was to test the hypothesis that MPI is related to the slope of the psychometric function for detection. Specifically, a steep d' versus stimulus level function would predict shallow MPI since the amount of current reduction necessary to compensate for an increase in stimulation rate to maintain threshold would be small. The MPI function was measured by obtaining adaptive detection thresholds at 160 and 640 pulses per second. Spread of neural excitation was measured by forward-masked psychophysical tuning curves. All psychophysical testing was performed in a monopolar stimulation mode (MP 1 + 2). Results showed that MPI was correlated with the slopes of the tuning curves, with broader tuning predicting steeper MPI, confirming the earlier finding. However, there was no relationship between MPI and the slopes of the psychometric functions. These results suggest that a broad stimulation of the cochlea facilitates MPI. MPI however is not related to the estimated neural excitation growth with current level near the behavioral threshold, at least in monopolar stimulation.
Collapse
Affiliation(s)
- Ning Zhou
- 1 Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
| | - Lixue Dong
- 1 Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
| |
Collapse
|
11
|
Evaluating Multipulse Integration as a Neural-Health Correlate in Human Cochlear Implant Users: Effects of Stimulation Mode. J Assoc Res Otolaryngol 2017; 19:99-111. [PMID: 29086155 DOI: 10.1007/s10162-017-0643-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 10/09/2017] [Indexed: 01/04/2023] Open
Abstract
Previous psychophysical studies have shown that a steep detection-threshold-versus-stimulation-rate function (multipulse integration; MPI) is associated with laterally positioned electrodes producing a broad neural excitation pattern. These findings are consistent with steep MPI depending on either a certain width of neural excitation allowing a large population of neurons operating at a low point on their dynamic range to respond to an increase in stimulation rate or a certain slope of excitation pattern that allows recruitment of neurons at the excitation periphery. Results of the current study provide additional support for these mechanisms by demonstrating significantly flattened MPI functions in narrow bipolar than monopolar stimulation. The study further examined the relationship between the steepness of the psychometric functions for detection (d' versus log current level) and MPI. In contrast to findings in monopolar stimulation, current data measured in bipolar stimulation suggest that steepness of the psychometric functions explained a moderate amount of the across-site variance in MPI. Steepness of the psychometric functions, however, cannot explain why MPI flattened in bipolar stimulation, since slopes of the psychometric functions were comparable in the two stimulation modes. Lastly, our results show that across-site mean MPI measured in monopolar and bipolar stimulation correlated with speech recognition in opposite signs, with steeper monopolar MPI being associated with poorer performance but steeper bipolar MPI being associated with better performance. If steeper MPI requires broad stimulation of the cochlea, the correlation between monopolar MPI and speech recognition can be interpreted as the detrimental effect of poor spectral resolution on speech recognition. Assuming bipolar stimulation produces narrow excitation, and MPI measured in bipolar stimulation reflects primarily responses of the on-site neurons, the correlation between bipolar MPI and speech recognition can be understood in light of the importance of neural survival for speech recognition.
Collapse
|
12
|
Chatterjee M, Kulkarni AM. Recovery from forward masking in cochlear implant listeners depends on stimulation mode, level, and electrode location. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:3190. [PMID: 28682084 PMCID: PMC5482749 DOI: 10.1121/1.4983156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/27/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
Psychophysical recovery from forward masking was measured in adult cochlear implant users of CochlearTM and Advanced BionicsTM devices, in monopolar and in focused (bipolar and tripolar) stimulation modes, at four electrode sites across the arrays, and at two levels (loudness balanced across modes and electrodes). Results indicated a steeper psychophysical recovery from forward masking in monopolar over bipolar and tripolar modes, modified by differential effects of electrode and level. The interactions between factors varied somewhat across devices. It is speculated that psychophysical recovery from forward masking may be driven by different populations of neurons in the different modes, with a broader stimulation pattern resulting in a greater likelihood of response by healthier and/or faster-recovering neurons within the stimulated population. If a more rapid recovery from prior stimulation reflects responses of neurons not necessarily close to the activating site, the spectral pattern of the incoming acoustic signal may be distorted. These results have implications for speech processor implementations using different degrees of focusing of the electric field. The primary differences in the shape of the recovery function were observed in the earlier portion (between 2 and 45 ms) of recovery, which is significant in terms of the speech envelope.
Collapse
Affiliation(s)
- Monita Chatterjee
- Auditory Prostheses & Perception Laboratory, Center for Hearing Research, Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Aditya M Kulkarni
- Auditory Prostheses & Perception Laboratory, Center for Hearing Research, Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| |
Collapse
|
13
|
Analytical solution for time-dependent potentials in a fiber stimulated by an external electrode. Med Biol Eng Comput 2016; 54:1719-1725. [DOI: 10.1007/s11517-016-1459-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
|