1
|
Zirn S, Hemmert W, Roth S, Müller FU, Angermeier J. [Interaural stimulation timing mismatch in listeners provided with a cochlear implant and a hearing aid : A review focusing on quantification and compensation]. HNO 2023:10.1007/s00106-023-01308-8. [PMID: 37219567 DOI: 10.1007/s00106-023-01308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Bimodal provision of patients with asymmetric hearing loss with a hearing aid ipsilaterally and a cochlear implant (CI) contralaterally is probably the most complicated type of CI provision due to a variety of inherent variables. This review article presents all the systematic interaural mismatches between electric and acoustic stimulation that can occur in bimodal listeners. One of these mismatches is the interaural latency offset, i.e., the time difference of activation of the auditory nerve by acoustic and electric stimulation. Methods for quantifying this offset are presented by registering electrically and acoustically evoked potentials and measuring processing delays in the devices. Technical compensation of the interaural latency offset and its positive effect on sound localization ability in bimodal listeners is also described. Finally, most recent findings are discussed which may explain why compensation of the interaural latency offset does not improve speech understanding in noise in bimodal listeners.
Collapse
Affiliation(s)
- Stefan Zirn
- Fakultät Elektrotechnik, Medizintechnik und Informatik, Peter-Osypka-Institut für Medizintechnik (POIM), Hochschule Offenburg, Badstr. 24, 77652, Offenburg, Deutschland.
| | - Werner Hemmert
- Bioinspirierte Informationsverarbeitung, Fakultät Elektrotechnik und Informationstechnik, Technische Universität München, München, Deutschland
| | - Sebastian Roth
- Fakultät Elektrotechnik, Medizintechnik und Informatik, Peter-Osypka-Institut für Medizintechnik (POIM), Hochschule Offenburg, Badstr. 24, 77652, Offenburg, Deutschland
- Bioinspirierte Informationsverarbeitung, Fakultät Elektrotechnik und Informationstechnik, Technische Universität München, München, Deutschland
| | - Franz-Ullrich Müller
- Fakultät Elektrotechnik, Medizintechnik und Informatik, Peter-Osypka-Institut für Medizintechnik (POIM), Hochschule Offenburg, Badstr. 24, 77652, Offenburg, Deutschland
| | - Julian Angermeier
- Fakultät Elektrotechnik, Medizintechnik und Informatik, Peter-Osypka-Institut für Medizintechnik (POIM), Hochschule Offenburg, Badstr. 24, 77652, Offenburg, Deutschland
| |
Collapse
|
2
|
Anderson SR, Kan A, Litovsky RY. Asymmetric temporal envelope sensitivity: Within- and across-ear envelope comparisons in listeners with bilateral cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:3294. [PMID: 36586876 PMCID: PMC9731674 DOI: 10.1121/10.0016365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
For listeners with bilateral cochlear implants (BiCIs), patient-specific differences in the interface between cochlear implant (CI) electrodes and the auditory nerve can lead to degraded temporal envelope information, compromising the ability to distinguish between targets of interest and background noise. It is unclear how comparisons of degraded temporal envelope information across spectral channels (i.e., electrodes) affect the ability to detect differences in the temporal envelope, specifically amplitude modulation (AM) rate. In this study, two pulse trains were presented simultaneously via pairs of electrodes in different places of stimulation, within and/or across ears, with identical or differing AM rates. Results from 11 adults with BiCIs indicated that sensitivity to differences in AM rate was greatest when stimuli were paired between different places of stimulation in the same ear. Sensitivity from pairs of electrodes was predicted by the poorer electrode in the pair or the difference in fidelity between both electrodes in the pair. These findings suggest that electrodes yielding poorer temporal fidelity act as a bottleneck to comparisons of temporal information across frequency and ears, limiting access to the cues used to segregate sounds, which has important implications for device programming and optimizing patient outcomes with CIs.
Collapse
Affiliation(s)
- Sean R Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Alan Kan
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
3
|
Auditory Brainstem Models: Adapting Cochlear Nuclei Improve Spatial Encoding by the Medial Superior Olive in Reverberation. J Assoc Res Otolaryngol 2021; 22:289-318. [PMID: 33861395 DOI: 10.1007/s10162-021-00797-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022] Open
Abstract
Listeners typically perceive a sound as originating from the direction of its source, even as direct sound is followed milliseconds later by reflected sound from multiple different directions. Early-arriving sound is emphasised in the ascending auditory pathway, including the medial superior olive (MSO) where binaural neurons encode the interaural-time-difference (ITD) cue for spatial location. Perceptually, weighting of ITD conveyed during rising sound energy is stronger at 600 Hz than at 200 Hz, consistent with the minimum stimulus rate for binaural adaptation, and with the longer reverberation times at 600 Hz, compared with 200 Hz, in many natural outdoor environments. Here, we computationally explore the combined efficacy of adaptation prior to the binaural encoding of ITD cues, and excitatory binaural coincidence detection within MSO neurons, in emphasising ITDs conveyed in early-arriving sound. With excitatory inputs from adapting, nonlinear model spherical bushy cells (SBCs) of the bilateral cochlear nuclei, a nonlinear model MSO neuron with low-threshold potassium channels reproduces the rate-dependent emphasis of rising vs. peak sound energy in ITD encoding; adaptation is equally effective in the model MSO. Maintaining adaptation in model SBCs, and adjusting membrane speed in model MSO neurons, 'left' and 'right' populations of computationally efficient, linear model SBCs and MSO neurons reproduce this stronger weighting of ITD conveyed during rising sound energy at 600 Hz compared to 200 Hz. This hemispheric population model demonstrates a link between strong weighting of spatial information during rising sound energy, and correct unambiguous lateralisation of a speech source in reverberation.
Collapse
|
4
|
Klug J, Schmors L, Ashida G, Dietz M. Neural rate difference model can account for lateralization of high-frequency stimuli. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:678. [PMID: 32873019 DOI: 10.1121/10.0001602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Lateralization of complex high-frequency sounds is conveyed by interaural level differences (ILDs) and interaural time differences (ITDs) in the envelope. In this work, the authors constructed an auditory model and simulate data from three previous behavioral studies obtained with, in total, over 1000 different amplitude-modulated stimuli. The authors combine a well-established auditory periphery model with a functional count-comparison model for binaural excitatory-inhibitory (EI) interaction. After parameter optimization of the EI-model stage, the hemispheric rate-difference between pairs of EI-model neurons relates linearly with the extent of laterality in human listeners. If a certain ILD and a certain envelope ITD each cause a similar extent of laterality, they also produce a similar rate difference in the same model neurons. After parameter optimization, the model accounts for 95.7% of the variance in the largest dataset, in which amplitude modulation depth, rate of modulation, modulation exponent, ILD, and envelope ITD were varied. The model also accounts for 83% of the variances in each of the other two datasets using the same EI model parameters.
Collapse
Affiliation(s)
- Jonas Klug
- Department of Medical Physics and Acoustics, University of Oldenburg, 26129 Oldenburg, Germany
| | - Lisa Schmors
- Department of Medical Physics and Acoustics, University of Oldenburg, 26129 Oldenburg, Germany
| | - Go Ashida
- Department of Neuroscience, University of Oldenburg, 26129 Oldenburg, Germany
| | - Mathias Dietz
- Department of Medical Physics and Acoustics, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
5
|
Dietz M, Lestang JH, Majdak P, Stern RM, Marquardt T, Ewert SD, Hartmann WM, Goodman DFM. A framework for testing and comparing binaural models. Hear Res 2017; 360:92-106. [PMID: 29208336 DOI: 10.1016/j.heares.2017.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/03/2017] [Accepted: 11/24/2017] [Indexed: 11/19/2022]
Abstract
Auditory research has a rich history of combining experimental evidence with computational simulations of auditory processing in order to deepen our theoretical understanding of how sound is processed in the ears and in the brain. Despite significant progress in the amount of detail and breadth covered by auditory models, for many components of the auditory pathway there are still different model approaches that are often not equivalent but rather in conflict with each other. Similarly, some experimental studies yield conflicting results which has led to controversies. This can be best resolved by a systematic comparison of multiple experimental data sets and model approaches. Binaural processing is a prominent example of how the development of quantitative theories can advance our understanding of the phenomena, but there remain several unresolved questions for which competing model approaches exist. This article discusses a number of current unresolved or disputed issues in binaural modelling, as well as some of the significant challenges in comparing binaural models with each other and with the experimental data. We introduce an auditory model framework, which we believe can become a useful infrastructure for resolving some of the current controversies. It operates models over the same paradigms that are used experimentally. The core of the proposed framework is an interface that connects three components irrespective of their underlying programming language: The experiment software, an auditory pathway model, and task-dependent decision stages called artificial observers that provide the same output format as the test subject.
Collapse
Affiliation(s)
- Mathias Dietz
- National Centre for Audiology, Western University, London, ON, Canada.
| | - Jean-Hugues Lestang
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Piotr Majdak
- Institut für Schallforschung, Österreichische Akademie der Wissenschaften, Wien, Austria
| | | | | | - Stephan D Ewert
- Medizinische Physik, Universität Oldenburg, Oldenburg, Germany
| | | | - Dan F M Goodman
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Clark NR, Lecluyse W, Jürgens T. Analysis of compressive properties of the BioAid hearing aid algorithm. Int J Audiol 2017; 57:S130-S138. [PMID: 28942716 DOI: 10.1080/14992027.2017.1378931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE This technical paper describes a biologically inspired hearing aid algorithm based on a computer model of the peripheral auditory system simulating basilar membrane compression, reflexive efferent feedback and its resulting properties. DESIGN Two evaluations were conducted on the core part of the algorithm, which is an instantaneous compression sandwiched between the attenuation and envelope extraction processes of a relatively slow feedback compressor. STUDY SAMPLE The algorithm's input/output (I/O) function was analysed for different stationary (ambient) sound levels, and the algorithm's response to transient sinusoidal tone complexes was analysed and contrasted to that of a reference dynamic compressor. RESULTS The algorithm's emergent properties are: (1) the I/O function adapts to the average sound level such that processing is linear for levels close to the ambient sound level and (2) onsets of transient signals are marked across time and frequency. CONCLUSION Adaptive linearisation and onset marking, as inherent compressive features of the algorithm, provide potentially beneficial features to hearing-impaired listeners with a relatively simple circuit. The algorithm offers a new, biological perspective on hearing aid amplification.
Collapse
Affiliation(s)
| | - Wendy Lecluyse
- b Department of Children, Young People and Education , University Campus Suffolk , Ipswich , UK , and
| | - Tim Jürgens
- c Medizinische Physik, Forschungszentrum Neurosensorik, and Cluster of Excellence "Hearing4all" , Carl-von-Ossietzky Universität Oldenburg , Oldenburg , Germany
| |
Collapse
|
7
|
Tabuchi H, Laback B. Psychophysical and modeling approaches towards determining the cochlear phase response based on interaural time differences. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:4314. [PMID: 28618834 PMCID: PMC5734621 DOI: 10.1121/1.4984031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The cochlear phase response is often estimated by measuring masking of a tonal target by harmonic complexes with various phase curvatures. Maskers yielding most modulated internal envelope representations after passing the cochlear filter are thought to produce minimum masking, with fast-acting cochlear compression as the main contributor to that effect. Thus, in hearing-impaired (HI) listeners, reduced cochlear compression hampers estimation of the phase response using the masking method. This study proposes an alternative approach, based on the effect of the envelope modulation strength on the sensitivity to interaural time differences (ITDs). To evaluate the general approach, ITD thresholds were measured in seven normal-hearing listeners using 300-ms Schroeder-phase harmonic complexes with nine different phase curvatures. ITD thresholds tended to be lowest for phase curvatures roughly similar to those previously shown to produce minimum masking. However, an unexpected ITD threshold peak was consistently observed for a particular negative phase curvature. An auditory-nerve based ITD model predicted the general pattern of ITD thresholds except for the threshold peak, as well as published envelope ITD data. Model predictions simulating outer hair cell loss support the feasibility of the ITD-based approach to estimate the phase response in HI listeners.
Collapse
|
8
|
Baumgärtel RM, Hu H, Kollmeier B, Dietz M. Extent of lateralization at large interaural time differences in simulated electric hearing and bilateral cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:2338. [PMID: 28464641 DOI: 10.1121/1.4979114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Normal-hearing (NH) listeners are able to localize sound sources with extraordinary accuracy through interaural cues, most importantly interaural time differences (ITDs) in the temporal fine structure. Bilateral cochlear implant (CI) users are also able to localize sound sources, yet generally at lower accuracy than NH listeners. The gap in performance can in part be attributed to current CI systems not faithfully transmitting interaural cues, especially ITDs. With the introduction of binaurally linked CI systems, the presentation of ITD cues for bilateral CI users is foreseeable. The current study therefore investigated extent-of-lateralization percepts elicited in bilateral CI listeners when presented with single-electrode pulse-trains carrying controlled ITD cues. The results were compared against NH listeners listening to broadband stimuli as well as simulations of CI listening. Broadband stimuli in NH listeners were perceived as fully lateralized within the natural ITD range. Using simulated as well as real CI stimuli, however, only a fraction of the full extent of lateralization range was covered by natural ITDs. The maximum extent of lateralization was reached at ITDs as large as twice the natural limit. The results suggest that ITD-enhancement might be a viable option for improving localization abilities with future binaural CI systems.
Collapse
Affiliation(s)
- Regina M Baumgärtel
- Medizinische Physik, Carl von Ossietzky Universität Oldenburg and Cluster of Excellence "Hearing4all," Oldenburg, Germany
| | - Hongmei Hu
- Medizinische Physik, Carl von Ossietzky Universität Oldenburg and Cluster of Excellence "Hearing4all," Oldenburg, Germany
| | - Birger Kollmeier
- Medizinische Physik, Carl von Ossietzky Universität Oldenburg and Cluster of Excellence "Hearing4all," Oldenburg, Germany
| | - Mathias Dietz
- Medizinische Physik, Carl von Ossietzky Universität Oldenburg and Cluster of Excellence "Hearing4all," Oldenburg, Germany
| |
Collapse
|
9
|
Macaulay EJ, Rakerd B, Andrews TJ, Hartmann WM. On the localization of high-frequency, sinusoidally amplitude-modulated tones in free field. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:847. [PMID: 28253653 PMCID: PMC6910042 DOI: 10.1121/1.4976047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
Previous headphone experiments have shown that listeners can lateralize high-frequency sine-wave amplitude-modulated (SAM) tones based on interaural time differences in the envelope. However, when SAM tones are presented to listeners in free field or in a room, diffraction by the head or reflections from room surfaces alter the modulation percentages and change the shapes of the envelopes, potentially degrading the envelope cue. Amplitude modulation is transformed into mixed modulation. This article presents a mathematical transformation between the six spectral parameters for a modulated tone and six mixed-modulation parameters for each ear. The transformation was used to characterize the stimuli in the ear canals of listeners in free-field localization experiments. The mixed modulation parameters were compared with the perceived changes in localization attributable to the modulation for five different listeners, who benefited from the modulation to different extents. It is concluded that individual differences in the response to added modulation were not systematically related to the physical modulation parameters themselves. Instead, they were likely caused by individual differences in processing of envelope interaural time differences.
Collapse
Affiliation(s)
- Eric J Macaulay
- Department of Physics and Astronomy, Michigan State University, 567 Wilson Road, East Lansing, Michigan 48824, USA
| | - Brad Rakerd
- Department of Communicative Sciences and Disorders, Michigan State University, 1026 Red Cedar Road, East Lansing, Michigan 48824, USA
| | - Thomas J Andrews
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, USA
| | - William M Hartmann
- Department of Physics and Astronomy, Michigan State University, 567 Wilson Road, East Lansing, Michigan 48824, USA
| |
Collapse
|
10
|
Dietz M, Wang L, Greenberg D, McAlpine D. Sensitivity to Interaural Time Differences Conveyed in the Stimulus Envelope: Estimating Inputs of Binaural Neurons Through the Temporal Analysis of Spike Trains. J Assoc Res Otolaryngol 2016; 17:313-30. [PMID: 27294694 DOI: 10.1007/s10162-016-0573-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/30/2016] [Indexed: 01/03/2023] Open
Abstract
Sound-source localization in the horizontal plane relies on detecting small differences in the timing and level of the sound at the two ears, including differences in the timing of the modulated envelopes of high-frequency sounds (envelope interaural time differences (ITDs)). We investigated responses of single neurons in the inferior colliculus (IC) to a wide range of envelope ITDs and stimulus envelope shapes. By a novel means of visualizing neural activity relative to different portions of the periodic stimulus envelope at each ear, we demonstrate the role of neuron-specific excitatory and inhibitory inputs in creating ITD sensitivity (or the lack of it) depending on the specific shape of the stimulus envelope. The underlying binaural brain circuitry and synaptic parameters were modeled individually for each neuron to account for neuron-specific activity patterns. The model explains the effects of envelope shapes on sensitivity to envelope ITDs observed in both normal-hearing listeners and in neural data, and has consequences for understanding how ITD information in stimulus envelopes might be maximized in users of bilateral cochlear implants-for whom ITDs conveyed in the stimulus envelope are the only ITD cues available.
Collapse
Affiliation(s)
- Mathias Dietz
- Medizinische Physik and Cluster of Excellence Hearing4all, Universität Oldenburg, 26111, Oldenburg, Germany. .,UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK. .,National Centre for Audiology, Faculty of Health Sciences, Western University, London, N6G 1H1, Ontario, Canada.
| | - Le Wang
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA, 02215, USA
| | - David Greenberg
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - David McAlpine
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.,Dept. of Lingustics, Australian Hearing Hub, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
11
|
Pastore MT, Trahiotis C, Braasch J. The import of within-listener variability to understanding the precedence effect. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:1235-1240. [PMID: 27036259 DOI: 10.1121/1.4944571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to gather behavioral data concerning the precedence effect as manifested by the localization-dominance of the leading elements of compound stimuli. This investigation was motivated by recent findings of Shackleton and Palmer [(2006). J. Assoc. Res. Otolaryngol. 7, 425-442], who measured the electro-physiological responses of single units in the inferior colliculus of the guinea pig. The neural data from Shackleton and Palmer indicated that processing of binaural cues like those relevant to understanding localization dominance is greatly affected by internal, neural noise. In order to evaluate the generality of their physiological results to human perception, the present study measured localization dominance so that behavioral responses within and across sets of samples (i.e., tokens) of frozen noises could be compared. Conceptually consistent with Shackleton and Palmer's neural data, the variability of perceived intracranial lateral positions produced by repeated presentations of the same tokens of noise was greater than the variability of intracranial lateral positions measured across different tokens of noise. This was true for each of the four individual listeners and for each of the 72 stimulus conditions studied. Thus, measured either neuro-physiologically (Shackleton and Palmer, 2006) or behaviorally (this study), the import of within-listener variability appears to be a general, intrinsic aspect of binaural information processing.
Collapse
Affiliation(s)
- M Torben Pastore
- Center for Cognition, Communication & Culture, School of Architecture, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Constantine Trahiotis
- Departments of Neuroscience and Surgery (Otolaryngology), University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Jonas Braasch
- Center for Cognition, Communication & Culture, School of Architecture, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
12
|
Abstract
This special issue contains a collection of 13 papers highlighting the collaborative research and engineering project entitled Advancing Binaural Cochlear Implant Technology-ABCIT-as well as research spin-offs from the project. In this introductory editorial, a brief history of the project is provided, alongside an overview of the studies.
Collapse
Affiliation(s)
- Mathias Dietz
- Medizinische Physik, Universität Oldenburg and Cluster of Excellence "Hearing4all", Germany
| | | |
Collapse
|
13
|
A Neural Model of Auditory Space Compatible with Human Perception under Simulated Echoic Conditions. PLoS One 2015; 10:e0137900. [PMID: 26355676 PMCID: PMC4565656 DOI: 10.1371/journal.pone.0137900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/22/2015] [Indexed: 11/19/2022] Open
Abstract
In a typical auditory scene, sounds from different sources and reflective surfaces summate in the ears, causing spatial cues to fluctuate. Prevailing hypotheses of how spatial locations may be encoded and represented across auditory neurons generally disregard these fluctuations and must therefore invoke additional mechanisms for detecting and representing them. Here, we consider a different hypothesis in which spatial perception corresponds to an intermediate or sub-maximal firing probability across spatially selective neurons within each hemisphere. The precedence or Haas effect presents an ideal opportunity for examining this hypothesis, since the temporal superposition of an acoustical reflection with sounds arriving directly from a source can cause otherwise stable cues to fluctuate. Our findings suggest that subjects’ experiences may simply reflect the spatial cues that momentarily arise under various acoustical conditions and how these cues are represented. We further suggest that auditory objects may acquire “edges” under conditions when interaural time differences are broadly distributed.
Collapse
|