1
|
Alsadiq H, Alhay Z. Mechanical Properties of Medical Microbubbles and Echogenic Liposomes-A Review. MICROMACHINES 2025; 16:588. [PMID: 40428713 PMCID: PMC12114231 DOI: 10.3390/mi16050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/13/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
Lipid-shelled microbubbles (MBs) and echogenic liposomes (ELIPs) have been proposed as acoustofluidic theranostic agents after having been proven to be efficient in diagnostics as ultrasonic contrast agents. Their mechanical properties-such as shell stiffness, friction, and resonance frequency-are critical to their performance, stability, oscillatory dynamics, and response to sonication. A precise characterization of these properties is essential for optimizing their biomedical applications, however the current methods vary significantly in their sensitivity and accuracy. This review examines the experimental and theoretical methodologies used to quantify the mechanical properties of MBs and ELIPs, discusses how each approach estimates shell stiffness and friction, and outlines the strengths and limitations inherent to each technique. Additionally, the effects of parameters such as temperature and lipid composition on MB and ELIP mechanical behavior are examined. Four characterization methods are analyzed, including frequency-dependent attenuation, optical observation, atomic force microscopy (AFM), and laser scattering, their advantages and limitations are critically assessed. Additionally, the factors that influence the mechanical properties of the MBs and ELIPs, such as temperature and lipid composition, are examined. Frequency-dependent attenuation was shown to provide reliable shell elasticity estimates but is influenced by nonlinear oscillations, AFM confirms that microbubble stiffness is size-dependent with smaller bubbles exhibiting higher shell stiffness, and theoretical models such as modified Rayleigh-Plesset equations increasingly incorporate viscoelastic shell properties to improve prediction accuracy. However, many of these models still assume radial symmetry and neglect inter-bubble interactions, which can lead to inaccurate elasticity values when applied to dense suspensions. In such cases, using modified frameworks like the Sarkar model, which incorporates damping and surface tension explicitly, may provide more reliable estimates under nonlinear conditions. Additionally, lipid composition and temperature significantly affect shell mechanics, with higher temperatures generally reducing stiffness. On the other hand, inconsistencies in experimental protocols hinder direct comparison across studies, highlighting the need for standardized characterization methods and improved computational modeling.
Collapse
Affiliation(s)
- Hussain Alsadiq
- Department of Mechanical Engineering, University of Prince Mugrin, Medinah 42241, Saudi Arabia
| | - Zahra Alhay
- Health Sciences Center, University of Oklahoma, Oklahoma City, OK 73104, USA;
| |
Collapse
|
2
|
Daeichin V, Inzunza-Ibarra MA, Lum JS, Borden MA, Murray TW. Photoacoustic Impulse Response of Lipid-Coated Ultrasound Contrast Agents. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2311-2314. [PMID: 33460371 PMCID: PMC8210856 DOI: 10.1109/tuffc.2021.3052140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The utility of ultrasound imaging and therapy with microbubbles may be greatly enhanced by determining their impulse-response dynamics as a function of size and composition. Prior methods for microbubble characterization utilizing high-speed cameras, acoustic transducers and laser-based techniques typically scan a limited frequency range. Here, we report on the use of a novel photoacoustic technique to measure the impulse response of single microbubbles. Individual microbubbles are driven with a broadband photoacoustic wave generated by a nanosecond-pulse laser illuminating an optical absorber. The resulting microbubble oscillations were detected by following transmission of a second laser as it passes twice through the microbubble. The system could even resolve oscillations resulting from a single-shot. As a proof-of-concept study, the size-dependent, linear impulse response of lipid-coated microbubbles was characterized using this technique. This unique method of microbubble characterization with exceptional spatiotemporal resolution opens new avenues for capturing and analyzing microbubble system dynamics.
Collapse
|
3
|
Versluis M, Stride E, Lajoinie G, Dollet B, Segers T. Ultrasound Contrast Agent Modeling: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2117-2144. [PMID: 32546411 DOI: 10.1016/j.ultrasmedbio.2020.04.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 05/21/2023]
Abstract
Ultrasound is extensively used in medical imaging, being safe and inexpensive and operating in real time. Its scope of applications has been widely broadened by the use of ultrasound contrast agents (UCAs) in the form of microscopic bubbles coated by a biocompatible shell. Their increased use has motivated a large amount of research to understand and characterize their physical properties as well as their interaction with the ultrasound field and their surrounding environment. Here we review the theoretical models that have been proposed to study and predict the behavior of UCAs. We begin with a brief introduction on the development of UCAs. We then present the basics of free-gas-bubble dynamics upon which UCA modeling is based. We review extensively the linear and non-linear models for shell elasticity and viscosity and present models for non-spherical and asymmetric bubble oscillations, especially in the presence of surrounding walls or tissue. Then, higher-order effects such as microstreaming, shedding and acoustic radiation forces are considered. We conclude this review with promising directions for the modeling and development of novel agents.
Collapse
Affiliation(s)
- Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands.
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Guillaume Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands
| | - Benjamin Dollet
- Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes, Grenoble, France
| | - Tim Segers
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands
| |
Collapse
|
4
|
Al-Jawadi S, Thakur SS. Ultrasound-responsive lipid microbubbles for drug delivery: A review of preparation techniques to optimise formulation size, stability and drug loading. Int J Pharm 2020; 585:119559. [PMID: 32574685 DOI: 10.1016/j.ijpharm.2020.119559] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 02/08/2023]
Abstract
Lipid-shelled microbubbles have received extensive interest to enhance ultrasound-responsive drug delivery outcomes due to their high biocompatibility. While therapeutic effectiveness of microbubbles is well established, there remain limitations in sample homogeneity, stability profile and drug loading properties which restrict these formulations from seeing widespread use in the clinical setting. In this review, we evaluate and discuss the most encouraging leads in lipid microbubble design and optimisation. We examine current applications in drug delivery for the systems and subsequently detail shell compositions and preparation strategies that improve monodispersity while retaining ultrasound responsiveness. We review how excipients and storage techniques help maximise stability and introduce different characterisation and drug loading techniques and evaluate their impact on formulation performance. The review concludes with current quality control measures in place to ensure lipid microbubbles can be reproducibly used in drug delivery.
Collapse
Affiliation(s)
- Sana Al-Jawadi
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Sachin S Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
5
|
Pellow C, Acconcia C, Zheng G, Goertz DE. Threshold-dependent nonlinear scattering from porphyrin nanobubbles for vascular and extravascular applications. ACTA ACUST UNITED AC 2018; 63:215001. [DOI: 10.1088/1361-6560/aae571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Efthymiou K, Pelekasis N, Butler MB, Thomas DH, Sboros V. The effect of resonance on transient microbubble acoustic response: Experimental observations and numerical simulations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:1392. [PMID: 29604664 DOI: 10.1121/1.5026021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A large number of acoustic signals from single lipid-shelled Definity® (Lantheus Medical Imaging, N. Billerica, MA) microbubbles have been measured using a calibrated microacoustic system, and a unique transient characteristic of resonance has been identified in the onset of scatter. Comparison of the numerically obtained response of microbubbles with acoustic measurements provides good agreement for a soft shell that is characterized by small area dilatation modulus and strain softening behavior, and identifies time to maximum radial excursion and scatter as a robust marker of resonance during transient response. As the sound amplitude increases a two-population pattern emerges in the time delay vs the fundamental acoustic scatter plots, consisting of an initial part pertaining to microbubbles with less than resonant rest radii, which corresponds to the weaker second harmonic resonance, and the dominant resonant envelope pertaining to microbubbles with resonant and greater than resonant rest radii, which corresponds to the primary and subharmonic resonances. Consequently, a wider resonant spectrum is observed. It is a result of the strain softening nature of soft lipid shells, based on which the microbubble sizes corresponding to the above resonances decrease as the sound amplitude increases. This bares an impact on the selection of an optimal microbubble size pertaining to subharmonic imaging.
Collapse
Affiliation(s)
- K Efthymiou
- Department of Mechanical Engineering, University of Thessally, Volos 38334, Greece
| | - N Pelekasis
- Department of Mechanical Engineering, University of Thessally, Volos 38334, Greece
| | - M B Butler
- Department of Physics, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - D H Thomas
- University of California, Los Angeles (UCLA) Radiation Oncology, UCLA, Los Angeles, California 90095, USA
| | - V Sboros
- Department of Physics, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| |
Collapse
|
7
|
Xia L, Karandish F, Kumar KN, Froberg J, Kulkarni P, Gange KN, Choi Y, Mallik S, Sarkar K. Acoustic Characterization of Echogenic Polymersomes Prepared From Amphiphilic Block Copolymers. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:447-457. [PMID: 29229268 DOI: 10.1016/j.ultrasmedbio.2017.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/06/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Polymersomes are a class of artificial vesicles prepared from amphiphilic polymers. Like lipid vesicles (liposomes), they too can encapsulate hydrophilic and hydrophobic drug molecules in the aqueous core and the hydrophobic bilayer respectively, but are more stable than liposomes. Although echogenic liposomes have been widely investigated for simultaneous ultrasound imaging and controlled drug delivery, the potential of the polymersomes remains unexplored. We prepared two different echogenic polymersomes from the amphiphilic copolymers polyethylene glycol-poly-DL-lactic acid (PEG-PLA) and polyethylene glycol-poly-L-lactic acid (PEG-PLLA), incorporating multiple freeze-dry cycles in the synthesis protocol to ensure their echogenicity. We investigated acoustic behavior with potential applications in biomedical imaging. We characterized the polymeric vesicles acoustically with three different excitation frequencies of 2.25, 5 and 10 MHz at 500 kPa. The polymersomes exhibited strong echogenicity at all three excitation frequencies (about 50- and 25-dB enhancements in fundamental and subharmonic, respectively, at 5-MHz excitation from 20 µg/mL polymers in solution). Unlike echogenic liposomes, they emitted strong subharmonic responses. The scattering results indicated their potential as contrast agents, which was also confirmed by clinical ultrasound imaging.
Collapse
Affiliation(s)
- Lang Xia
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC
| | - Fataneh Karandish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| | - Krishna Nandan Kumar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC
| | - James Froberg
- Department of Physics, North Dakota State University, Fargo, North Dakota
| | - Prajakta Kulkarni
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| | - Kara N Gange
- Department of Health, Exercise, and Nutrition Sciences, North Dakota State University, Fargo, North Dakota
| | - Yongki Choi
- Department of Physics, North Dakota State University, Fargo, North Dakota
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC.
| |
Collapse
|
8
|
Lajoinie G, Lee JY, Owen J, Kruizinga P, de Jong N, van Soest G, Stride E, Versluis M. Laser-driven resonance of dye-doped oil-coated microbubbles: Experimental study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:4832. [PMID: 28679262 DOI: 10.1121/1.4985560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photoacoustic (PA) imaging offers several attractive features as a biomedical imaging modality, including excellent spatial resolution and functional information such as tissue oxygenation. A key limitation, however, is the contrast to noise ratio that can be obtained from tissue depths greater than 1-2 mm. Microbubbles coated with an optically absorbing shell have been proposed as a possible contrast agent for PA imaging, offering greater signal amplification and improved biocompatibility compared to metallic nanoparticles. A theoretical description of the dynamics of a coated microbubble subject to laser irradiation has been developed previously. The aim of this study was to test the predictions of the model. Two different types of oil-coated microbubbles were fabricated and then exposed to both pulsed and continuous wave (CW) laser irradiation. Their response was characterized using ultra high-speed imaging. Although there was considerable variability across the population, good agreement was found between the experimental results and theoretical predictions in terms of the frequency and amplitude of microbubble oscillation following pulsed excitation. Under CW irradiation, highly nonlinear behavior was observed which may be of considerable interest for developing different PA imaging techniques with greatly improved contrast enhancement.
Collapse
Affiliation(s)
- Guillaume Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jeong-Yu Lee
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Joshua Owen
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Pieter Kruizinga
- Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Nico de Jong
- Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Gijs van Soest
- Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Eleanor Stride
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
9
|
Mulvana H, Browning RJ, Luan Y, de Jong N, Tang MX, Eckersley RJ, Stride E. Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:232-251. [PMID: 27810805 DOI: 10.1109/tuffc.2016.2613991] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The high efficiency with which gas microbubbles can scatter ultrasound compared with the surrounding blood pool or tissues has led to their widespread employment as contrast agents in ultrasound imaging. In recent years, their applications have been extended to include super-resolution imaging and the stimulation of localized bio-effects for therapy. The growing exploitation of contrast agents in ultrasound and in particular these recent developments have amplified the need to characterize and fully understand microbubble behavior. The aim in doing so is to more fully exploit their utility for both diagnostic imaging and potential future therapeutic applications. This paper presents the key characteristics of microbubbles that determine their efficacy in diagnostic and therapeutic applications and the corresponding techniques for their measurement. In each case, we have presented information regarding the methods available and their respective strengths and limitations, with the aim of presenting information relevant to the selection of appropriate characterization methods. First, we examine methods for determining the physical properties of microbubble suspensions and then techniques for acoustic characterization of both suspensions and single microbubbles. The next section covers characterization of microbubbles as therapeutic agents, including as drug carriers for which detailed understanding of their surface characteristics and drug loading capacity is required. Finally, we discuss the attempts that have been made to allow comparison across the methods employed by various groups to characterize and describe their microbubble suspensions and promote wider discussion and comparison of microbubble behavior.
Collapse
|
10
|
Raymond JL, Luan Y, Peng T, Huang SL, McPherson DD, Versluis M, de Jong N, Holland CK. Loss of gas from echogenic liposomes exposed to pulsed ultrasound. Phys Med Biol 2016; 61:8321-8339. [PMID: 27811382 DOI: 10.1088/0031-9155/61/23/8321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The destruction of echogenic liposomes (ELIP) in response to pulsed ultrasound excitations has been studied acoustically previously. However, the mechanism underlying the loss of echogenicity due to cavitation nucleated by ELIP has not been fully clarified. In this study, an ultra-high speed imaging approach was employed to observe the destruction phenomena of single ELIP exposed to ultrasound bursts at a center frequency of 6 MHz. We observed a rapid size reduction during the ultrasound excitation in 139 out of 397 (35%) ultra- high-speed recordings. The shell dilation rate, which is defined as the microbubble wall velocity divided by the instantaneous radius, [Formula: see text] /R, was extracted from the radius versus time response of each ELIP, and was found to be correlated with the deflation. Fragmentation and surface mode vibrations were also observed and are shown to depend on the applied acoustic pressure and initial radius. Results from this study can be utilized to optimize the theranostic application of ELIP, e.g. by tuning the size distribution or the excitation frequency.
Collapse
Affiliation(s)
- Jason L Raymond
- Biomedical Engineering Program, University of Cincinnati, Cardiovascular Center 3940, 231 Albert Sabin Way, Cincinnati, OH 45267-0586, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lajoinie G, De Cock I, Coussios CC, Lentacker I, Le Gac S, Stride E, Versluis M. In vitro methods to study bubble-cell interactions: Fundamentals and therapeutic applications. BIOMICROFLUIDICS 2016; 10:011501. [PMID: 26865903 PMCID: PMC4733084 DOI: 10.1063/1.4940429] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/05/2016] [Indexed: 05/08/2023]
Abstract
Besides their use as contrast agents for ultrasound imaging, microbubbles are increasingly studied for a wide range of therapeutic applications. In particular, their ability to enhance the uptake of drugs through the permeabilization of tissues and cell membranes shows great promise. In order to fully understand the numerous paths by which bubbles can interact with cells and the even larger number of possible biological responses from the cells, thorough and extensive work is necessary. In this review, we consider the range of experimental techniques implemented in in vitro studies with the aim of elucidating these microbubble-cell interactions. First of all, the variety of cell types and cell models available are discussed, emphasizing the need for more and more complex models replicating in vivo conditions together with experimental challenges associated with this increased complexity. Second, the different types of stabilized microbubbles and more recently developed droplets and particles are presented, followed by their acoustic or optical excitation methods. Finally, the techniques exploited to study the microbubble-cell interactions are reviewed. These techniques operate over a wide range of timescales, or even off-line, revealing particular aspects or subsequent effects of these interactions. Therefore, knowledge obtained from several techniques must be combined to elucidate the underlying processes.
Collapse
Affiliation(s)
- Guillaume Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Ine De Cock
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University , Ghent, Belgium
| | | | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University , Ghent, Belgium
| | - Séverine Le Gac
- MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Eleanor Stride
- Institute of Biomedical Engineering, University of Oxford , Oxford, United Kingdom
| | - Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| |
Collapse
|
12
|
Helfield B, Chen X, Qin B, Villanueva FS. Individual lipid encapsulated microbubble radial oscillations: Effects of fluid viscosity. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:204-14. [PMID: 26827018 PMCID: PMC4714991 DOI: 10.1121/1.4939123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ultrasound-stimulated microbubble dynamics have been shown to be dependent on intrinsic bubble properties, including size and shell characteristics. The effect of the surrounding environment on microbubble response, however, has been less investigated. In particular, microbubble optimization studies are generally conducted in water/saline, characterized by a 1 cP viscosity, for application in the vasculature (i.e., 4 cP). In this study, ultra-high speed microscopy was employed to investigate fluid viscosity effects on phospholipid encapsulated microbubble oscillations at 1 MHz, using a single, eight-cycle pulse at peak negative pressures of 100 and 250 kPa. Microbubble oscillations were shown to be affected by fluid viscosity in a size- and pressure-dependent manner. In general, the oscillation amplitudes exhibited by microbubbles between 3 and 6 μm in 1 cP fluid were larger than in 4 cP fluid, reaching a maximum of 1.7-fold at 100 kPa for microbubbles 3.8 μm in diameter and 1.35-fold at 250 kPa for microbubbles 4.8 μm in diameter. Simulation results were in broad agreement at 250 kPa, however generally underestimated the effect of fluid viscosity at 100 kPa. This is the first experimental demonstration documenting the effects of surrounding fluid viscosity on microbubble oscillations, resulting in behavior not entirely predicted by current microbubble models.
Collapse
Affiliation(s)
- Brandon Helfield
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| | - Bin Qin
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|