1
|
Kamerer AM, Harris SE, Wichman CS, Rasetshwane DM, Neely ST. The relationship and interdependence of auditory thresholds, proposed behavioural measures of hidden hearing loss, and physiological measures of auditory function. Int J Audiol 2025; 64:11-24. [PMID: 39180321 PMCID: PMC11779596 DOI: 10.1080/14992027.2024.2391986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVES Standard diagnostic measures focus on threshold elevation but hearing concerns may occur independently of threshold elevation - referred to as "hidden hearing loss" (HHL). A deeper understanding of HHL requires measurements that locate dysfunction along the auditory pathway. This study aimed to describe the relationship and interdependence between certain behavioural and physiological measures of auditory function that are thought to be indicative of HHL. DESIGN Data were collected on a battery of behavioural and physiological measures of hearing. Threshold-dependent variance was removed from each measure prior to generating a multiple regression model of the behavioural measures using the physiological measures. STUDY SAMPLE 224 adults in the United States with audiometric thresholds ≤65 dB HL. RESULTS Thresholds accounted for between 21 and 60% of the variance in our behavioural measures and 5-51% in our physiological measures of hearing. There was no evidence that the behavioural measures of hearing could be predicted by the selected physiological measures. CONCLUSIONS Several proposed behavioural measures for HHL: thresholds-in-noise, frequency-modulation detection, and speech recognition in difficult listening conditions, are influenced by hearing sensitivity and are not predicted by outer hair cell or auditory nerve physiology. Therefore, these measures may not be able to assess threshold-independent hearing disorders.
Collapse
|
2
|
Kumar DS, Konadath S. Effect of Level and Frequency of Forward Masker on Auditory Brainstem Response. Am J Audiol 2024; 33:1237-1245. [PMID: 39418572 DOI: 10.1044/2024_aja-24-00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
PURPOSE Forward masking (FM) is characterized by the perception of a signal being reduced or wholly masked due to a preceding sound (masker) of the same or different frequencies that offers a challenge for the auditory system to resolve. Considering that the off-frequency masker is expected to undergo linear processing compared to the on-frequency masker at the signal place, it reflects the peripheral auditory systems' compressive response. Thus, the present study focused on employing FM electrophysiological analogous such as auditory brainstem responses (ABR) to the behavioral masking experiments to objectively measure the frequency and level of processing in the auditory system, from the periphery to the brainstem level. METHOD The study was an observational research on 21 female volunteers. ABR was obtained using a tone-on-tone FM paradigm for 1000- and 4000-Hz probe stimuli. An experiment used two forward maskers, on-frequency and off-frequency, with varying levels from 50 to 70 dB SPL. RESULTS A progressive shift for Vth peak latency and reduction in response amplitude was observed in proportion to the increase of masker level for both the probe stimuli and the masking experiments. However, ABR responses in neither masking condition were observed to differ between 60 and 70 dB SPL. CONCLUSION FM ABR experiments are an assessment tool for estimating frequency and level processing in the auditory system, providing good efficiency, reliability, and less subject bias compared to behavioral measures.
Collapse
Affiliation(s)
- Durga S Kumar
- Department of Audiology, All India Institute of Speech and Hearing, Mysore
| | - Sreeraj Konadath
- Department of Audiology, All India Institute of Speech and Hearing, Mysore
| |
Collapse
|
3
|
Ji J, Wang X, Jing X, Zhu M, Pan H, Jia D, Zhao C, Yong X, Xu Y, Zhao G, Sun PZH, Li G, Chen S. ABR-Attention: An Attention-Based Model for Precisely Localizing Auditory Brainstem Response. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3179-3188. [PMID: 39159023 DOI: 10.1109/tnsre.2024.3445936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Auditory Brainstem Response (ABR) is an evoked potential in the brainstem's neural centers in response to sound stimuli. Clinically, characteristic waves, especially Wave V latency, extracted from ABR can objectively indicate auditory loss and diagnose diseases. Several methods have been developed for the extraction of characteristic waves. To ensure the effectiveness of the method, most of the methods are time-consuming and rely on the heavy workloads of clinicians. To reduce the workload of clinicians, automated extraction methods have been developed. However, the above methods also have limitations. This study introduces a novel deep learning network for automatic extraction of Wave V latency, named ABR-Attention. ABR-Attention model includes a self-attention module, first and second-derivative attention module, and regressor module. Experiments are conducted on the accuracy with 10-fold cross-validation, the effects on different sound pressure levels (SPLs), the effects of different error scales and the effects of ablation. ABR-Attention shows efficacy in extracting Wave V latency of ABR, with an overall accuracy of 96.76 ± 0.41 % and an error scale of 0.1ms, and provides a new solution for objective localization of ABR characteristic waves.
Collapse
|
4
|
Haider HF, Ribeiro D, Ribeiro SF, Trigueiros N, Caria H, Borrego L, Pinto I, Papoila AL, Hoare DJ, Paço J. Audiological biomarkers of tinnitus in an older Portuguese population. Front Aging Neurosci 2022; 14:933117. [PMID: 36092804 PMCID: PMC9449802 DOI: 10.3389/fnagi.2022.933117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Tinnitus is a phantom sound perceived in the absence of external acoustic stimulation. It is described in a variety of ways (e.g., buzzing, ringing, and roaring) and can be a single sound or a combination of different sounds. Our study evaluated associations between audiological parameters and the presence or severity of tinnitus, to improve tinnitus diagnosis, treatment, and prognosis. Our sample included 122 older participants (63 women and 59 men), aged 55–75 years from the Portuguese population, with or without sensory presbycusis and with or without tinnitus. All participants underwent a clinical evaluation through a structured interview, Ear, Nose, and Throat observation, and audiological evaluation (standard and extended audiometry, psychoacoustic tinnitus evaluation, auditory brainstem responses, and distortion product otoacoustic emissions). The Tinnitus Handicap Inventory was used to measure tinnitus symptom severity. Our data confirmed that the odds of developing tinnitus were significantly higher in the presence of noise exposure and hearing loss. Also, participants who had abrupt tinnitus onset and moderate or severe hyperacusis featured higher odds of at least moderate tinnitus. However, it was in the ABR that we obtained the most exciting and promising results, namely, in wave I, which was the common denominator in all findings. The increase in wave I amplitude is a protective factor to the odds of having tinnitus. Concerning the severity of tinnitus, the logistic regression model showed that for each unit of increase in the mean ratio V/I of ABR, the likelihood of having at least moderate tinnitus was 10% higher. Advancing knowledge concerning potential tinnitus audiological biomarkers can be crucial for the adequate diagnosis and treatment of tinnitus.
Collapse
Affiliation(s)
- Haúla F. Haider
- ENT Department, CUF Tejo Hospital – NOVA Medical School, Faculty of Medical Sciences, NOVA University Lisbon, Lisbon, Portugal
- Comprehensive Health Research Centre, NOVA Medical School, Faculty of Medical Sciences, Lisbon, Portugal
| | - Diogo Ribeiro
- Comprehensive Health Research Centre, NOVA Medical School, Faculty of Medical Sciences, Lisbon, Portugal
- NOVA Medical School, Faculty of Medical Sciences, NOVA University Lisbon, Lisbon, Portugal
- *Correspondence: Diogo Ribeiro,
| | - Sara F. Ribeiro
- ENT Department, CUF Tejo Hospital – NOVA Medical School, Faculty of Medical Sciences, NOVA University Lisbon, Lisbon, Portugal
| | - Nuno Trigueiros
- ENT Department, Hospital Pedro Híspano, Matosinhos, Portugal
| | - Helena Caria
- BTR Unit, Deafness Research Group, BioISI, Faculty of Sciences, University of Lisbon (FCUL), Lisbon, Portugal
- ESS/IPS – Biomedical Sciences Department, School of Health, Polytechnic Institute of Setubal, Setúbal, Portugal
| | - Luís Borrego
- NOVA Medical School, Faculty of Medical Sciences, NOVA University Lisbon, Lisbon, Portugal
- Department of Immunoallergy, CUF Descobertas Hospital, Lisbon, Portugal
| | - Iola Pinto
- Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal
- Centro de Matemática e Aplicações, NOVA School of Science and Technology, FCT NOVA, Costa da Caparica, Portugal
| | - Ana L. Papoila
- NOVA Medical School, Faculty of Medical Sciences, NOVA University Lisbon, Lisbon, Portugal
| | - Derek J. Hoare
- School of Medicine, NIHR Nottingham Biomedical Research Centre, Hearing Sciences, Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, United Kingdom
| | - João Paço
- ENT Department, CUF Tejo Hospital – NOVA Medical School, Faculty of Medical Sciences, NOVA University Lisbon, Lisbon, Portugal
| |
Collapse
|
5
|
Harris KC, Bao J. Optimizing non-invasive functional markers for cochlear deafferentation based on electrocochleography and auditory brainstem responses. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2802. [PMID: 35461487 PMCID: PMC9034896 DOI: 10.1121/10.0010317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Accumulating evidence suggests that cochlear deafferentation may contribute to suprathreshold deficits observed with or without elevated hearing thresholds, and can lead to accelerated age-related hearing loss. Currently there are no clinical diagnostic tools to detect human cochlear deafferentation in vivo. Preclinical studies using a combination of electrophysiological and post-mortem histological methods clearly demonstrate cochlear deafferentation including myelination loss, mitochondrial damages in spiral ganglion neurons (SGNs), and synaptic loss between inner hair cells and SGNs. Since clinical diagnosis of human cochlear deafferentation cannot include post-mortem histological quantification, various attempts based on functional measurements have been made to detect cochlear deafferentation. So far, those efforts have led to inconclusive results. Two major obstacles to the development of in vivo clinical diagnostics include a lack of standardized methods to validate new approaches and characterize the normative range of repeated measurements. In this overview, we examine strategies from previous studies to detect cochlear deafferentation from electrocochleography and auditory brainstem responses. We then summarize possible approaches to improve these non-invasive functional methods for detecting cochlear deafferentation with a focus on cochlear synaptopathy. We identify conceptual approaches that should be tested to associate unique electrophysiological features with cochlear deafferentation.
Collapse
Affiliation(s)
- Kelly C Harris
- Department of Otolaryngology, Head & Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, South Carolina 29425, USA
| | - Jianxin Bao
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio 44272, USA
| |
Collapse
|
6
|
Bao J, Jegede SL, Hawks JW, Dade B, Guan Q, Middaugh S, Qiu Z, Levina A, Tsai TH. Detecting Cochlear Synaptopathy Through Curvature Quantification of the Auditory Brainstem Response. Front Cell Neurosci 2022; 16:851500. [PMID: 35356798 PMCID: PMC8959412 DOI: 10.3389/fncel.2022.851500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The sound-evoked electrical compound potential known as auditory brainstem response (ABR) represents the firing of a heterogenous population of auditory neurons in response to sound stimuli, and is often used for clinical diagnosis based on wave amplitude and latency. However, recent ABR applications to detect human cochlear synaptopathy have led to inconsistent results, mainly due to the high variability of ABR wave-1 amplitude. Here, rather than focusing on the amplitude of ABR wave 1, we evaluated the use of ABR wave curvature to detect cochlear synaptic loss. We first compared four curvature quantification methods using simulated ABR waves, and identified that the cubic spline method using five data points produced the most accurate quantification. We next evaluated this quantification method with ABR data from an established mouse model with cochlear synaptopathy. The data clearly demonstrated that curvature measurement is more sensitive and consistent in identifying cochlear synaptic loss in mice compared to the amplitude and latency measurements. We further tested this curvature method in a different mouse model presenting with otitis media. The change in curvature profile due to middle ear infection in otitis media is different from the profile of mice with cochlear synaptopathy. Thus, our study suggests that curvature quantification can be used to address the current ABR variability issue, and may lead to additional applications in the clinic diagnosis of hearing disorders.
Collapse
Affiliation(s)
- Jianxin Bao
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH, United States
- *Correspondence: Jianxin Bao,
| | - Segun Light Jegede
- Department of Mathematical Sciences, Kent State University, Kent, OH, United States
| | - John W. Hawks
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH, United States
| | - Bethany Dade
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH, United States
| | - Qiang Guan
- Department of Computer Science, Kent State University, Kent, OH, United States
| | - Samantha Middaugh
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Ziyu Qiu
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH, United States
| | - Anna Levina
- Department of Mathematical Sciences, Kent State University, Kent, OH, United States
| | - Tsung-Heng Tsai
- Department of Mathematical Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
7
|
Wang H, Li B, Lu Y, Han K, Sheng H, Zhou J, Qi Y, Wang X, Huang Z, Song L, Hua Y. Real-time threshold determination of auditory brainstem responses by cross-correlation analysis. iScience 2021; 24:103285. [PMID: 34765914 PMCID: PMC8571499 DOI: 10.1016/j.isci.2021.103285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Auditory brainstem response (ABR) serves as an objective indication of auditory perception at a given sound level and is nowadays widely used in hearing function assessment. Despite efforts for automation over decades, ABR threshold determination by machine algorithms remains unreliable and thereby one still relies on visual identification by trained personnel. Here, we described a procedure for automatic threshold determination that can be used in both animal and human ABR tests. The method terminates level averaging of ABR recordings upon detection of time-locked waveform through cross-correlation analysis. The threshold level was then indicated by a dramatic increase in the sweep numbers required to produce “qualified” level averaging. A good match was obtained between the algorithm outcome and the human readouts. Moreover, the method varies the level averaging based on the cross-correlation, thereby adapting to the signal-to-noise ratio of sweep recordings. These features empower a robust and fully automated ABR test. Automatic threshold determination of auditory brainstem response (ABR) Detection of “clear” responses from iteratively averaged level representation Wide application in both animal and human ABR tests Stop on-going level averaging based on detection outcome
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China
| | - Yan Lu
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Han
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China
| | - Haibin Sheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jialei Zhou
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yumeng Qi
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhiwu Huang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yunfeng Hua
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Jiang Y, Samuel OW, Zhang H, Chen S, Li G. Towards effective assessment of normal hearing function from ABR using a time-variant sweep-tone stimulus approach. Physiol Meas 2021; 42. [PMID: 33238252 DOI: 10.1088/1361-6579/abcdf2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/25/2020] [Indexed: 11/12/2022]
Abstract
Objective. The auditory brainstem response (ABR) audiometry is a means of assessing the functional status of the auditory neural pathway in the clinic. The conventional click ABR test lacks good neural synchrony and it mainly evaluates high-frequency hearing while the common tone-burst ABR test only detects hearing loss of a certain frequency at a time. Additionally, the existing chirp stimuli are designed based on average data of cochlear characteristics, ignoring individual differences amongst subjects.Approach. Therefore, this study designed a new stimulus approach based on a sweep-tone concept with a time variant and spectrum characteristics that could be customized based on an individual's cochlear characteristics. To validate the efficiency of the proposed method, we compared its performance with the click and tone-bursts using ABR recordings from 11 normal-hearing adults.Main results. Experimental results showed that the proposed sweep-tone ABR achieved a higher amplitude compared with those elicited by the click and tone-bursts. When the stimulus level or rate was varied, the sweep-tone ABR consistently elicited a larger response than the corresponding click ABR. Moreover, the sweep-tone ABR appeared earlier than the click ABR under the same conditions. Specifically, the mean wave V peak-to-peak amplitude of the sweep-tone ABR was 1.3 times that of the click ABR at 70 dB nHL (normal hearing level) and a rate of 20 s-1, in which the former saved 40% of test time.Significance. In summary, the proposed sweep-tone approach is found to be more efficient than the traditional click and tone-burst in eliciting ABR.
Collapse
Affiliation(s)
- Yanbing Jiang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), and the SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, People's Republic of China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, People's Republic of China.,Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, People's Republic of China
| | - Oluwarotimi Williams Samuel
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), and the SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, People's Republic of China.,Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, People's Republic of China
| | - Haoshi Zhang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), and the SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, People's Republic of China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, People's Republic of China.,Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, People's Republic of China
| | - Shixiong Chen
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), and the SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, People's Republic of China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, People's Republic of China.,Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, People's Republic of China
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), and the SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, People's Republic of China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, People's Republic of China.,Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, People's Republic of China
| |
Collapse
|
9
|
郑 宗, 刘 红, 杨 善, 杜 立. [Association between the inter-aural latency difference of brainstem auditory evoked potential wave V and neonatal hyperbilirubinemia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:499-504. [PMID: 34020741 PMCID: PMC8140336 DOI: 10.7499/j.issn.1008-8830.2102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To study brainstem auditory evoked potential (BAEP) in neonates with hyperbilirubinemia using short auditory stimuli (60 dBnHL), and to investigate the differences in the inter-aural latency difference (ILD) of wave V between neonates with different total serum bilirubin (TSB) levels. METHODS A prospective study was conducted in neonates with hyperbilirubinemia who were admitted to the Department of Neonatology, Yuhuan People's Hospital of Zhejiang Province, from May 2019 to October 2020. The neonates were divided into a severe group (n=50) and a mild group (n=50) according to their TSB levels. The mild group was divided into two subgroups: 7-10 days (n=20) and 11-14 days (n=20) according to their age. ILD was compared between the neonates with different TSB levels, and its diagnostic value was analyzed. RESULTS Compared with the mild group, the severe group had significantly higher proportions of neonates with abnormal hearing threshold and abnormal ILD (P < 0.05) and a significantly larger ILD of wave V (P < 0.05). The latency of wave V (left ear) in the 7-10 days subgroup was significantly longer than that in the 11-14 days subgroup (P < 0.05), but there was no significant difference in the ILD of wave V between the two groups (P > 0.05). The receiver operating characteristic (ROC) analysis showed that ILD had predictive value for hearing impairment caused by neonatal hyperbilirubinemia (P < 0.05), with an area under the ROC curve of 0.727 as well as a sensitivity of 52.4% and a specificity of 90.9% at the optimal cut-off value of 0.365 ms. CONCLUSIONS Serum bilirubin in neonates affects the ILD of BAEP wave V, especially in those with severe hyperbilirubinemia. ILD at the optimal cut-off value of ≥0.4 ms shows potential value in the diagnosis of hearing impairment caused by neonatal hyperbilirubinemia.
Collapse
Affiliation(s)
- 宗 郑
- 浙江省玉环市人民医院新生儿科, 浙江台州 317600Department of Pediatrics, People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China
| | - 红艳 刘
- 浙江省玉环市人民医院新生儿科, 浙江台州 317600Department of Pediatrics, People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China
| | - 善浦 杨
- 浙江省玉环市人民医院新生儿科, 浙江台州 317600Department of Pediatrics, People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China
| | - 立中 杜
- 浙江大学医学院附属儿童医院新生儿科, 浙江杭州 310000
| |
Collapse
|
10
|
Macrostructural Changes of the Acoustic Radiation in Humans with Hearing Loss and Tinnitus Revealed with Fixel-Based Analysis. J Neurosci 2021; 41:3958-3965. [PMID: 33795427 DOI: 10.1523/jneurosci.2996-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/08/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Age-related hearing loss is the most prevalent sensory impairment in the older adult population and is related to noise-induced damage or age-related deterioration of the peripheral auditory system. Hearing loss may affect the central auditory pathway in the brain, which is a continuation of the peripheral auditory system located in the ear. A debilitating symptom that frequently co-occurs with hearing loss is tinnitus. Strikingly, investigations into the impact of acquired hearing loss, with and without tinnitus, on the human central auditory pathway are sparse. This study used diffusion-weighted imaging (DWI) to investigate changes in the largest central auditory tract, the acoustic radiation, related to hearing loss and tinnitus. Participants with hearing loss, with and without tinnitus, and a control group were included. Both conventional diffusion tensor analysis and higher-order fixel-based analysis were applied. The fixel-based analysis was used as a novel framework providing insight into the axonal density and macrostructural morphologic changes of the acoustic radiation in hearing loss and tinnitus. The results show tinnitus-related atrophy of the left acoustic radiation near the medial geniculate body. This finding may reflect a decrease in myelination of the auditory pathway, instigated by more profound peripheral deafferentation or reflecting a preexisting marker of tinnitus vulnerability. Furthermore, age was negatively correlated with the axonal density in the bilateral acoustic radiation. This loss of fiber density with age may contribute to poorer speech understanding observed in older adults.SIGNIFICANCE STATEMENT Age-related hearing loss is the most prevalent sensory impairment in the older adult population. Older individuals are subject to the cumulative effects of aging and noise exposure on the auditory system. A debilitating symptom that frequently co-occurs with hearing loss is tinnitus: the perception of a phantom sound. In this large DWI-study, we provide evidence that in hearing loss, the additional presence of tinnitus is related to degradation of the acoustic radiation. Additionally, older age was related to axonal loss in the acoustic radiation. It appears that older adults have the aggravating circumstances of age, hearing loss, and tinnitus on central auditory processing, which may partly be because of the observed deterioration of the acoustic radiation with age.
Collapse
|
11
|
Chen C, Zhan L, Pan X, Wang Z, Guo X, Qin H, Xiong F, Shi W, Shi M, Ji F, Wang Q, Yu N, Xiao R. Automatic Recognition of Auditory Brainstem Response Characteristic Waveform Based on Bidirectional Long Short-Term Memory. Front Med (Lausanne) 2021; 7:613708. [PMID: 33505982 PMCID: PMC7829202 DOI: 10.3389/fmed.2020.613708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/03/2020] [Indexed: 01/15/2023] Open
Abstract
Background: Auditory brainstem response (ABR) testing is an invasive electrophysiological auditory function test. Its waveforms and threshold can reflect auditory functional changes in the auditory centers in the brainstem and are widely used in the clinic to diagnose dysfunction in hearing. However, identifying its waveforms and threshold is mainly dependent on manual recognition by experimental persons, which could be primarily influenced by individual experiences. This is also a heavy job in clinical practice. Methods: In this work, human ABR was recorded. First, binarization is created to mark 1,024 sampling points accordingly. The selected characteristic area of ABR data is 0-8 ms. The marking area is enlarged to expand feature information and reduce marking error. Second, a bidirectional long short-term memory (BiLSTM) network structure is established to improve relevance of sampling points, and an ABR sampling point classifier is obtained by training. Finally, mark points are obtained through thresholding. Results: The specific structure, related parameters, recognition effect, and noise resistance of the network were explored in 614 sets of ABR clinical data. The results show that the average detection time for each data was 0.05 s, and recognition accuracy reached 92.91%. Discussion: The study proposed an automatic recognition of ABR waveforms by using the BiLSTM-based machine learning technique. The results demonstrated that the proposed methods could reduce recording time and help doctors in making diagnosis, suggesting that the proposed method has the potential to be used in the clinic in the future.
Collapse
Affiliation(s)
- Cheng Chen
- School of Computer and Communication Engineering, University of Science & Technology Beijing, Beijing, China
| | - Li Zhan
- College of Otolaryngology Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Chinese PLA General Hospital, Beijing, China
| | - Xiaoxin Pan
- School of Computer and Communication Engineering, University of Science & Technology Beijing, Beijing, China
| | - Zhiliang Wang
- School of Computer and Communication Engineering, University of Science & Technology Beijing, Beijing, China
| | - Xiaoyu Guo
- School of Computer and Communication Engineering, University of Science & Technology Beijing, Beijing, China
| | - Handai Qin
- College of Otolaryngology Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Chinese PLA General Hospital, Beijing, China
| | - Fen Xiong
- College of Otolaryngology Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Chinese PLA General Hospital, Beijing, China
| | - Wei Shi
- College of Otolaryngology Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Chinese PLA General Hospital, Beijing, China
| | - Min Shi
- College of Otolaryngology Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Chinese PLA General Hospital, Beijing, China
| | - Fei Ji
- College of Otolaryngology Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Chinese PLA General Hospital, Beijing, China
| | - Qiuju Wang
- College of Otolaryngology Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Chinese PLA General Hospital, Beijing, China
| | - Ning Yu
- College of Otolaryngology Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Chinese PLA General Hospital, Beijing, China
| | - Ruoxiu Xiao
- School of Computer and Communication Engineering, University of Science & Technology Beijing, Beijing, China
- Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
12
|
Tan J, Luo J, Wang X, Jiang Y, Zeng X, Chen S, Li P. Analysis of Click and Swept-Tone Auditory Brainstem Response Results for Moderate and Severe Sensorineural Hearing Loss. Audiol Neurootol 2020; 25:336-344. [PMID: 32906132 DOI: 10.1159/000507691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/02/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Auditory brainstem response (ABR) is one of the commonly used methods in clinical settings to evaluate the hearing sensitivity and auditory function. The current ABR measurement usually adopts click sound as the stimuli. However, there may be partial ABR amplitude attenuation due to the delay characteristics of the cochlear traveling wave along the basilar membrane. To solve that problem, a swept-tone method was proposed, in which the show-up time of different frequency components was adjusted to compensate the delay characteristics of the cochlear basilar membrane; therefore, different ABR subcomponents of different frequencies were synchronized. METHODS The normal hearing group, moderate sensorineural hearing loss group, and severe sensorineural hearing loss group underwent click ABR and swept-tone ABR with different stimulus intensities. The latencies and amplitudes of waves I, III, and V in 2 detections were recorded. RESULTS It was found that the latency of each of the recorded I, III, and V waves detected by swept-tone ABR was shorter than that by click ABR in both the control group and experimental groups. In addition, the amplitude of each of the recorded I, III, and V waves, except V waves under 60 dB nHL in the moderate sensorineural hearing loss group, detected by swept-tone ABR was larger than that by click ABR. The results also showed that the swept-tone ABR could measure the visible V waves at lower stimulus levels in the severe sensorineural hearing loss group. CONCLUSION Swept-tone improves the ABR waveforms and helps to obtain more accurate threshold to some extent. Therefore, the proposed swept-tone ABR may provide a new solution for better morphology of ABR waveform, which can help to make more accurate diagnosis about the hearing functionality in the clinic.
Collapse
Affiliation(s)
- Jingqian Tan
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Luo
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin Wang
- The CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanbing Jiang
- The CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiangli Zeng
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shixiong Chen
- The CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| |
Collapse
|
13
|
Suthakar K, Liberman MC. A simple algorithm for objective threshold determination of auditory brainstem responses. Hear Res 2019; 381:107782. [PMID: 31437652 DOI: 10.1016/j.heares.2019.107782] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/05/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
The auditory brainstem response (ABR) is a sound-evoked neural response commonly used to assess auditory function in humans and laboratory animals. ABR thresholds are typically chosen by visual inspection, leaving the procedure susceptible to user bias. We sought to develop an algorithm to automate determination of ABR thresholds to eliminate such biases and to standardize approaches across investigators and laboratories. Two datasets of mouse ABR waveforms obtained from previously published studies of normal ears as well as ears with varying degrees of cochlear-based threshold elevations (Maison et al., 2013; Sergeyenko et al., 2013) were reanalyzed using an algorithm based on normalized cross-covariation of adjacent level presentations. Correlation-coefficient vs. level data for each ABR level series were fit with both a sigmoidal and two-term power function. From these fits, threshold was interpolated at different criterion values of correlation-coefficient ranging from 0 to 0.5. The criterion value of 0.35 was selected by comparing visual thresholds to computed thresholds across all frequencies tested. With such a criterion, the mean algorithm-computed thresholds were comparable to the visual thresholds noted by two independent observers for each data set. The success of the algorithm was also qualitatively assessed by comparing averaged waveforms at the thresholds determined by the two methods, and quantitatively assessed by comparing peak 1 amplitude growth functions expressed as dB re each of the two threshold measures. Application of a cross-covariance analysis to ABR waveforms can emulate visual thresholding decisions made by highly trained observers. Unlike previous applications of similar methodologies using template matching, our algorithm performs only intrinsic comparisons within ABR sets, and therefore is more robust to equipment and investigator differences in assessing waveforms, as evidenced by similar results across the two datasets.
Collapse
Affiliation(s)
- Kirupa Suthakar
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA.
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Garrett M, Verhulst S. Applicability of subcortical EEG metrics of synaptopathy to older listeners with impaired audiograms. Hear Res 2019; 380:150-165. [DOI: 10.1016/j.heares.2019.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 01/12/2023]
|
15
|
Brown AD, Anbuhl KL, Gilmer JI, Tollin DJ. Between-ear sound frequency disparity modulates a brain stem biomarker of binaural hearing. J Neurophysiol 2019; 122:1110-1122. [PMID: 31314646 PMCID: PMC6766741 DOI: 10.1152/jn.00057.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/22/2022] Open
Abstract
The auditory brain stem response (ABR) is an evoked potential that indexes a cascade of neural events elicited by sound. In the present study we evaluated the influence of sound frequency on a derived component of the ABR known as the binaural interaction component (BIC). Specifically, we evaluated the effect of acoustic interaural (between-ear) frequency mismatch on BIC amplitude. Goals were to 1) increase basic understanding of sound features that influence this long-studied auditory potential and 2) gain insight about the persistence of the BIC with interaural electrode mismatch in human users of bilateral cochlear implants, presently a limitation on the prospective utility of the BIC in audiological settings. Data were collected in an animal model that is audiometrically similar to humans, the chinchilla (Chinchilla lanigera; 6 females). Frequency disparities and amplitudes of acoustic stimuli were varied over broad ranges, and associated variation of BIC amplitude was quantified. Subsequently, responses were simulated with the use of established models of the brain stem pathway thought to underlie the BIC. Collectively, the data demonstrate that at high sound intensities (≥85 dB SPL), the acoustically elicited BIC persisted with interaurally disparate stimulation (click frequencies ≥1.5 octaves apart). However, sharper tuning emerged at moderate sound intensities (65 dB SPL), with the largest BIC occurring for stimulus frequencies within ~0.8 octaves, equivalent to ±1 mm in cochlear place. Such responses were consistent with simulated responses of the presumed brain stem generator of the BIC, the lateral superior olive. The data suggest that leveraging focused electrical stimulation strategies could improve BIC-based bilateral cochlear implant fitting outcomes.NEW & NOTEWORTHY Traditional hearing tests evaluate each ear independently. Diagnosis and treatment of binaural hearing dysfunction remains a basic challenge for hearing clinicians. We demonstrate in an animal model that the prospective utility of a noninvasive electrophysiological signature of binaural function, the binaural interaction component (BIC), depends strongly on the intensity of auditory stimulation. Data suggest that more informative BIC measurements could be obtained with clinical protocols leveraging stimuli restricted in effective bandwidth.
Collapse
Affiliation(s)
- Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Kelsey L Anbuhl
- Center for Neural Science, New York University, New York, New York
| | - Jesse I Gilmer
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
- Neuroscience Training Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel J Tollin
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
- Neuroscience Training Program, University of Colorado School of Medicine, Aurora, Colorado
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
16
|
Garrett M, Debener S, Verhulst S. Acquisition of Subcortical Auditory Potentials With Around-the-Ear cEEGrid Technology in Normal and Hearing Impaired Listeners. Front Neurosci 2019; 13:730. [PMID: 31379484 PMCID: PMC6646709 DOI: 10.3389/fnins.2019.00730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022] Open
Abstract
Even though the principles of recording brain electrical activity remain unchanged since their discovery, their acquisition has seen major improvements. The cEEGrid, a recently developed flex-printed multi-channel sensory array, can be placed around the ear and successfully record well-known cortical electrophysiological potentials such as late auditory evoked potentials (AEPs) or the P300. Due to its fast and easy application as well as its long-lasting signal recording window, the cEEGrid technology offers great potential as a flexible and ‘wearable’ solution for the acquisition of neural correlates of hearing. Early potentials of auditory processing such as the auditory brainstem response (ABR) are already used in clinical assessment of sensorineural hearing disorders and envelope following responses (EFR) have shown promising results in the diagnosis of suprathreshold hearing deficits. This study evaluates the suitability of the cEEGrid electrode configuration to capture these AEPs. cEEGrid potentials were recorded and compared to cap-EEG potentials for young normal-hearing listeners and older listeners with high-frequency sloping audiograms to assess whether the recordings are adequately sensitive for hearing diagnostics. ABRs were elicited by presenting clicks (70 and 100-dB peSPL) and stimulation for the EFRs consisted of 120 Hz amplitude-modulated white noise carriers presented at 70-dB SPL. Data from nine bipolar cEEGrid channels and one classical cap-EEG montage (earlobes to vertex) were analysed and outcome measures were compared. Results show that the cEEGrid is able to record ABRs and EFRs with comparable shape to those recorded using a conventional cap-EEG recording montage and the same amplifier. Signal strength is lower but can still produce responses above the individual neural electrophysiological noise floor. This study shows that the application of the cEEGrid can be extended to the acquisition of early auditory evoked potentials.
Collapse
Affiliation(s)
- Markus Garrett
- Department of Medical Physics and Acoustics, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence "Hearing4all", Oldenburg, Germany
| | - Stefan Debener
- Cluster of Excellence "Hearing4all", Oldenburg, Germany.,Neuropsychology Laboratory, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Sarah Verhulst
- Department of Information Technology, Hearing Technology @ WAVES, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Bramhall N, Beach EF, Epp B, Le Prell CG, Lopez-Poveda EA, Plack CJ, Schaette R, Verhulst S, Canlon B. The search for noise-induced cochlear synaptopathy in humans: Mission impossible? Hear Res 2019; 377:88-103. [DOI: 10.1016/j.heares.2019.02.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
|
18
|
Milloy V, Fournier P, Benoit D, Noreña A, Koravand A. Auditory Brainstem Responses in Tinnitus: A Review of Who, How, and What? Front Aging Neurosci 2017; 9:237. [PMID: 28785218 PMCID: PMC5519563 DOI: 10.3389/fnagi.2017.00237] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/06/2017] [Indexed: 12/27/2022] Open
Abstract
The auditory brainstem response (ABR) in tinnitus subjects has been extensively investigated over the last decade with the hopes of finding possible abnormalities related to the pathology. Despite this effort, the use of the ABR for tinnitus diagnosis or as an outcome measure is under debate. The present study reviewed published literature on ABR and tinnitus. The authors searched PubMed, MedLine, Embase, PsycINFO, and CINAHL, and identified additional records through manually searching reference lists and gray literature. There were 4,566 articles identified through database searching and 151 additional studies through the manual search (4,717 total): 2,128 articles were removed as duplicates, and 2,567 records did not meet eligibility criteria. From the final 22 articles that were included, ABR results from 1,240 tinnitus subjects and 664 control subjects were compiled and summarized with a focus on three main areas: the participant characteristics, the methodology used, and the outcome measures of amplitude and/or latency of waves I, III, and V. The results indicate a high level of heterogeneity between the studies for all the assessed areas. Amplitude and latency differences between tinnitus and controls were not consistent between studies. Nevertheless, the longer latency and reduced amplitude of wave I for the tinnitus group with normal hearing compared to matched controls was the most consistent finding across studies. These results support the need for greater stratification of the tinnitus population and the importance of a standardized ABR method to make comparisons between studies possible.
Collapse
Affiliation(s)
- Victoria Milloy
- School of Rehabilitation Sciences, University of OttawaOttawa, ON, Canada
| | - Philippe Fournier
- Centre National de la Recherche Scientifique, Aix-Marseille UniversityMarseille, France
| | - Daniel Benoit
- School of Rehabilitation Sciences, University of OttawaOttawa, ON, Canada
| | - Arnaud Noreña
- Centre National de la Recherche Scientifique, Aix-Marseille UniversityMarseille, France
| | - Amineh Koravand
- School of Rehabilitation Sciences, University of OttawaOttawa, ON, Canada
| |
Collapse
|
19
|
Verhulst S, Jagadeesh A, Mauermann M, Ernst F. Individual Differences in Auditory Brainstem Response Wave Characteristics: Relations to Different Aspects of Peripheral Hearing Loss. Trends Hear 2016; 20:2331216516672186. [PMID: 27837052 PMCID: PMC5117250 DOI: 10.1177/2331216516672186] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
Little is known about how outer hair cell loss interacts with noise-induced and age-related auditory nerve degradation (i.e., cochlear synaptopathy) to affect auditory brainstem response (ABR) wave characteristics. Given that listeners with impaired audiograms likely suffer from mixtures of these hearing deficits and that ABR amplitudes have successfully been used to isolate synaptopathy in listeners with normal audiograms, an improved understanding of how different hearing pathologies affect the ABR source generators will improve their sensitivity in hearing diagnostics. We employed a functional model for human ABRs in which different combinations of hearing deficits were simulated and show that high-frequency cochlear gain loss steepens the slope of the ABR Wave-V latency versus intensity and amplitude versus intensity curves. We propose that grouping listeners according to a ratio of these slope metrics (i.e., the ABR growth ratio) might offer a way to factor out the outer hair cell loss deficit and maximally relate individual differences for constant ratios to other peripheral hearing deficits such as cochlear synaptopathy. We compared the model predictions to recorded click-ABRs from 30 participants with normal or high-frequency sloping audiograms and confirm the predicted relationship between the ABR latency growth curve and audiogram slope. Experimental ABR amplitude growth showed large individual differences and was compared with the Wave-I amplitude, Wave-V/I ratio, or the interwaveI-W latency in the same listeners. The model simulations along with the ABR recordings suggest that a hearing loss profile depicting the ABR growth ratio versus the Wave-I amplitude or Wave-V/I ratio might be able to differentiate outer hair cell deficits from cochlear synaptopathy in listeners with mixed pathologies.
Collapse
Affiliation(s)
- Sarah Verhulst
- Cluster of Excellence Hearing4all and Medizinische Physik, Department of Medical Physics and Acoustics, Oldenburg University, Oldenburg, Germany
- Department of Information Technology, Ghent University, Technologiepark, Zwijnaarde, Belgium
| | - Anoop Jagadeesh
- Cluster of Excellence Hearing4all and Medizinische Physik, Department of Medical Physics and Acoustics, Oldenburg University, Oldenburg, Germany
| | - Manfred Mauermann
- Cluster of Excellence Hearing4all and Medizinische Physik, Department of Medical Physics and Acoustics, Oldenburg University, Oldenburg, Germany
| | - Frauke Ernst
- Cluster of Excellence Hearing4all and Medizinische Physik, Department of Medical Physics and Acoustics, Oldenburg University, Oldenburg, Germany
| |
Collapse
|