1
|
Guérit F, Middlebrooks JC, Richardson ML, Arneja A, Harland AJ, Gransier R, Wouters J, Carlyon RP. Tonotopic Selectivity in Cats and Humans: Electrophysiology and Psychophysics. J Assoc Res Otolaryngol 2022; 23:513-534. [PMID: 35697952 PMCID: PMC9437197 DOI: 10.1007/s10162-022-00851-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/02/2022] [Indexed: 01/06/2023] Open
Abstract
We describe a scalp-recorded measure of tonotopic selectivity, the "cortical onset response" (COR) and compare the results between humans and cats. The COR results, in turn, were compared with psychophysical masked-detection thresholds obtained using similar stimuli and obtained from both species. The COR consisted of averaged responses elicited by 50-ms tone-burst probes presented at 1-s intervals against a continuous noise masker. The noise masker had a bandwidth of 1 or 1/8th octave, geometrically centred on 4000 Hz for humans and on 8000 Hz for cats. The probe frequency was either - 0.5, - 0.25, 0, 0.25 or 0.5 octaves re the masker centre frequency. The COR was larger for probe frequencies more distant from the centre frequency of the masker, and this effect was greater for the 1/8th-octave than for the 1-octave masker. This pattern broadly reflected the masked excitation patterns obtained psychophysically with similar stimuli in both species. However, the positive signal-to-noise ratio used to obtain reliable COR measures meant that some aspects of the data differed from those obtained psychophysically, in a way that could be partly explained by the upward spread of the probe's excitation pattern. Our psychophysical measurements also showed that the auditory filter width obtained at 8000 Hz using notched-noise maskers was slightly wider in cat than previous measures from humans. We argue that although conclusions from COR measures differ in some ways from conclusions based on psychophysics, the COR measures provide an objective, noninvasive, valid measure of tonotopic selectivity that does not require training and that may be applied to acoustic and cochlear-implant experiments in humans and laboratory animals.
Collapse
Affiliation(s)
- Francois Guérit
- grid.5335.00000000121885934Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, England
| | - John C. Middlebrooks
- grid.266093.80000 0001 0668 7243Department of Otolaryngology, University of California at Irvine, Irvine, CA USA
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA USA
- grid.266093.80000 0001 0668 7243Department of Cognitive Sciences, University of California at Irvine, Irvine, CA USA
- grid.266093.80000 0001 0668 7243Department of Biomedical Engineering, University of California at Irvine, Irvine, CA USA
| | - Matthew L. Richardson
- grid.266093.80000 0001 0668 7243Department of Otolaryngology, University of California at Irvine, Irvine, CA USA
| | - Akshat Arneja
- grid.266093.80000 0001 0668 7243Department of Cognitive Sciences, University of California at Irvine, Irvine, CA USA
| | - Andrew J. Harland
- grid.5335.00000000121885934Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, England
| | - Robin Gransier
- Dept. of Neurosciences, ExpORL, Leuven, Louvain, KU Belgium
| | - Jan Wouters
- Dept. of Neurosciences, ExpORL, Leuven, Louvain, KU Belgium
| | - Robert P. Carlyon
- grid.5335.00000000121885934Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, England
| |
Collapse
|
2
|
Maxwell BN, Richards VM, Carney LH. Neural fluctuation cues for simultaneous notched-noise masking and profile-analysis tasks: Insights from model midbrain responses. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:3523. [PMID: 32486827 PMCID: PMC7229985 DOI: 10.1121/10.0001226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/05/2020] [Accepted: 04/21/2020] [Indexed: 05/19/2023]
Abstract
Results of simultaneous notched-noise masking are commonly interpreted as reflecting the bandwidth of underlying auditory filters. This interpretation assumes that listeners detect a tone added to notched-noise based on an increase in energy at the output of an auditory filter. Previous work challenged this assumption by showing that randomly and independently varying (roving) the levels of each stimulus interval does not substantially worsen listener thresholds [Lentz, Richards, and Matiasek (1999). J. Acoust. Soc. Am. 106, 2779-2792]. Lentz et al. further challenged this assumption by showing that filter bandwidths based on notched-noise results were different from those based on a profile-analysis task [Green (1983). Am. Psychol. 38, 133-142; (1988). (Oxford University Press, New York)], although these estimates were later reconciled by emphasizing spectral peaks of the profile-analysis stimulus [Lentz (2006). J. Acoust. Soc. Am. 120, 945-956]. Here, a single physiological model is shown to account for performance in fixed- and roving-level notched-noise tasks and the Lentz et al. profile-analysis task. This model depends on peripheral neural fluctuation cues that are transformed into the average rates of model inferior colliculus neurons. Neural fluctuations are influenced by peripheral filters, synaptic adaptation, cochlear amplification, and saturation of inner hair cells, an element not included in previous theories of envelope-based cues for these tasks. Results suggest reevaluation of the interpretation of performance in these paradigms.
Collapse
Affiliation(s)
- Braden N Maxwell
- Departments of Biomedical Engineering and Neuroscience, 601 Elmwood Avenue, University of Rochester, Rochester, New York 14642, USA
| | - Virginia M Richards
- Department of Cognitive Sciences, University of California, 3151 Social Science Plaza, Irvine, California 92697-5100, USA
| | - Laurel H Carney
- Departments of Biomedical Engineering and Neuroscience, 601 Elmwood Avenue, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
3
|
Walker KM, Gonzalez R, Kang JZ, McDermott JH, King AJ. Across-species differences in pitch perception are consistent with differences in cochlear filtering. eLife 2019; 8:41626. [PMID: 30874501 PMCID: PMC6435318 DOI: 10.7554/elife.41626] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
Pitch perception is critical for recognizing speech, music and animal vocalizations, but its neurobiological basis remains unsettled, in part because of divergent results across species. We investigated whether species-specific differences exist in the cues used to perceive pitch and whether these can be accounted for by differences in the auditory periphery. Ferrets accurately generalized pitch discriminations to untrained stimuli whenever temporal envelope cues were robust in the probe sounds, but not when resolved harmonics were the main available cue. By contrast, human listeners exhibited the opposite pattern of results on an analogous task, consistent with previous studies. Simulated cochlear responses in the two species suggest that differences in the relative salience of the two pitch cues can be attributed to differences in cochlear filter bandwidths. The results support the view that cross-species variation in pitch perception reflects the constraints of estimating a sound’s fundamental frequency given species-specific cochlear tuning.
Collapse
Affiliation(s)
- Kerry Mm Walker
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Ray Gonzalez
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Joe Z Kang
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Josh H McDermott
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States.,Program in Speech and Hearing Biosciences and Technology, Harvard University, Cambridge, United States
| | - Andrew J King
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
A Crucial Test of the Population Separation Model of Auditory Stream Segregation in Macaque Primary Auditory Cortex. J Neurosci 2017; 37:10645-10655. [PMID: 28954867 DOI: 10.1523/jneurosci.0792-17.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 11/21/2022] Open
Abstract
An important aspect of auditory scene analysis is auditory stream segregation-the organization of sound sequences into perceptual streams reflecting different sound sources in the environment. Several models have been proposed to account for stream segregation. According to the "population separation" (PS) model, alternating ABAB tone sequences are perceived as a single stream or as two separate streams when "A" and "B" tones activate the same or distinct frequency-tuned neuronal populations in primary auditory cortex (A1), respectively. A crucial test of the PS model is whether it can account for the observation that A and B tones are generally perceived as a single stream when presented synchronously, rather than in an alternating pattern, even if they are widely separated in frequency. Here, we tested the PS model by recording neural responses to alternating (ALT) and synchronous (SYNC) tone sequences in A1 of male macaques. Consistent with predictions of the PS model, a greater effective tonotopic separation of A and B tone responses was observed under ALT than under SYNC conditions, thus paralleling the perceptual organization of the sequences. While other models of stream segregation, such as temporal coherence, are not excluded by the present findings, we conclude that PS is sufficient to account for the perceptual organization of ALT and SYNC sequences and thus remains a viable model of auditory stream segregation.SIGNIFICANCE STATEMENT According to the population separation (PS) model of auditory stream segregation, sounds that activate the same or separate neural populations in primary auditory cortex (A1) are perceived as one or two streams, respectively. It is unclear, however, whether the PS model can account for the perception of sounds as a single stream when they are presented synchronously. Here, we tested the PS model by recording neural responses to alternating (ALT) and synchronous (SYNC) tone sequences in macaque A1. A greater effective separation of tonotopic activity patterns was observed under ALT than under SYNC conditions, thus paralleling the perceptual organization of the sequences. Based on these findings, we conclude that PS remains a plausible neurophysiological model of auditory stream segregation.
Collapse
|
5
|
Sekiya K, Takahashi M, Murakami S, Kakigi R, Okamoto H. Broadened population-level frequency tuning in the auditory cortex of tinnitus patients. J Neurophysiol 2017; 117:1379-1384. [PMID: 28053240 PMCID: PMC5350267 DOI: 10.1152/jn.00385.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 11/22/2022] Open
Abstract
Although subjective tinnitus is one of the most common public health concerns that impair the quality of life of many individuals, no standard treatment or objective diagnostic method currently exists. We herein revealed that population-level frequency tuning was significantly broader in the tinnitus ear than in the nontinnitus ear. The results of the present study provide an insight into the development of an objective diagnostic method for subjective tinnitus. Tinnitus is a phantom auditory perception without an external sound source and is one of the most common public health concerns that impair the quality of life of many individuals. However, its neural mechanisms remain unclear. We herein examined population-level frequency tuning in the auditory cortex of unilateral tinnitus patients with similar hearing levels in both ears using magnetoencephalography. We compared auditory-evoked neural activities elicited by a stimulation to the tinnitus and nontinnitus ears. Objective magnetoencephalographic data suggested that population-level frequency tuning corresponding to the tinnitus ear was significantly broader than that corresponding to the nontinnitus ear in the human auditory cortex. The results obtained support the hypothesis that pathological alterations in inhibitory neural networks play an important role in the perception of subjective tinnitus. NEW & NOTEWORTHY Although subjective tinnitus is one of the most common public health concerns that impair the quality of life of many individuals, no standard treatment or objective diagnostic method currently exists. We herein revealed that population-level frequency tuning was significantly broader in the tinnitus ear than in the nontinnitus ear. The results of the present study provide an insight into the development of an objective diagnostic method for subjective tinnitus.
Collapse
Affiliation(s)
- Kenichi Sekiya
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Otolaryngology, Head, and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan; and
| | - Mariko Takahashi
- Department of Otolaryngology, Head, and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan; and
| | - Shingo Murakami
- Department of Otolaryngology, Head, and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan; and
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Hidehiko Okamoto
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan; .,The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| |
Collapse
|