Zelle D, Bader K, Dierkes L, Gummer AW, Dalhoff E. Derivation of input-output functions from distortion-product otoacoustic emission level maps.
THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020;
147:3169. [PMID:
32486784 DOI:
10.1121/10.0001142]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Distortion-product otoacoustic emissions (DPOAEs) emerge from the cochlea when elicited with two tones of frequencies f1 and f2. DPOAEs mainly consist of two components, a nonlinear-distortion and a coherent-reflection component. Input-output (I/O) functions of DPOAE pressure at the cubic difference frequency, fDP=2f1-f2, enable the computation of estimated distortion-product thresholds (EDPTs), offering a noninvasive approach to estimate auditory thresholds. However, wave interference between the DPOAE components and suboptimal stimulus-level pairs reduces the accuracy of EDPTs. Here, the amplitude P of the nonlinear-distortion component is extracted from short-pulse DPOAE time signals. DPOAE level maps representing the growth behavior of P in L1,L2 space are recorded for 21 stimulus-level pairs and 14 frequencies with f2=1 to 14 kHz (f2/f1=1.2) from 20 ears. Reproducing DPOAE growth behavior using a least-squares fit approach enables the derivation of ridge-based I/O functions from model level maps. Objective evaluation criteria assess the fit results and provide EDPTs, which correlate significantly with auditory thresholds (p < 0.001). In conclusion, I/O functions derived from model level maps provide EDPTs with high precision but without the need of predefined optimal stimulus-level pairs.
Collapse