1
|
Parra Raad J, Lock D, Liu YY, Solomon M, Peralta L, Christensen-Jeffries K. Optically Validated Microvascular Phantom for Super-Resolution Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1833-1843. [PMID: 39475744 DOI: 10.1109/tuffc.2024.3484770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Super-resolution ultrasound (SRUS) visualizes microvasculature beyond the ultrasound (US) diffraction limit (wavelength( )/2) by localizing and tracking spatially isolated microbubble (MB) contrast agents. SRUS phantoms typically consist of simple tube structures, where diameter channels below m are not available. Furthermore, these phantoms are generally fragile and unstable, have limited ground truth validation, and their simple structure limits the evaluation of SRUS algorithms. To aid SRUS development, robust and durable phantoms with known and physiologically relevant microvasculature are needed for repeatable SRUS testing. This work proposes a method to fabricate durable microvascular phantoms that allow optical gauging for SRUS validation. The methodology used a microvasculature negative print embedded in a Polydimethylsiloxane (PDMS) to fabricate a microvascular phantom. Branching microvascular phantoms with variable microvascular density were demonstrated with optically validated vessel diameters down to m ( ; m). SRUS imaging was performed and validated with optical measurements. The average SRUS error was m ( ) with a standard deviation error of m. The average error decreased to m ( ) once the number of localized MBs surpassed 1000 per estimated diameter. In addition, less than 10% variance of acoustic and optical properties and the mechanical toughness of the phantoms measured a year after fabrication demonstrated their long-term durability. This work presents a method to fabricate durable and optically validated complex microvascular phantoms which can be used to quantify SRUS performance and facilitate its further development.
Collapse
|
2
|
Progress and opportunities in Gellan gum-based materials: A review of preparation, characterization and emerging applications. Carbohydr Polym 2023; 311:120782. [PMID: 37028862 DOI: 10.1016/j.carbpol.2023.120782] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Gellan gum, a microbial exopolysaccharide, is biodegradable and has potential to fill several key roles in many fields from food to pharmacy, biomedicine and tissue engineering. In order to improve the physicochemical and biological properties of gellan gum, some researchers take advantage of numerous hydroxyl groups and the free carboxyl present in each repeating unit. As a result, design and development of gellan-based materials have advanced significantly. The goal of this review is to provide a summary of the most recent, high-quality research trends that have used gellan gum as a polymeric component in the design of numerous cutting-edge materials with applications in various fields.
Collapse
|
3
|
Liu Y, Maruvada S. Development and characterization of polyurethane-based tissue and blood mimicking materials for high intensity therapeutic ultrasound. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3043. [PMID: 35649924 DOI: 10.1121/10.0010385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
A polyurethane-based tissue mimicking material (TMM) and blood mimicking material (BMM) for the acoustic and thermal characterization of high intensity therapeutic ultrasound (HITU) devices has been developed. Urethane powder and other chemicals were dispersed into either a high temperature hydrogel matrix (gellan gum) or degassed water to form the TMM and BMM, respectively. The ultrasonic properties of both TMM and BMM, including attenuation coefficient, speed of sound, acoustical impedance, and backscatter coefficient, were characterized at room temperature. The thermal conductivity and diffusivity, BMM viscosity, and TMM Young's modulus were also measured. Importantly, the attenuation coefficient has a nearly linear frequency dependence, as is the case for most soft tissues and blood at 37 °C. Their mean values are 0.61f1.2 dB cm-1 (TMM) and 0.2f1.1 dB cm-1 (BMM) based on measurements from 1 to 8 MHz using a time delay spectrometry (TDS) system. Most of the other relevant physical parameters are also close to the reported values of soft tissues and blood. These polyurethane-based TMM and BMM are appropriate for developing standardized dosimetry techniques, validating numerical models, and determining the safety and efficacy of HITU devices.
Collapse
Affiliation(s)
- Yunbo Liu
- Division of Applied Mechanics, Office of Science and Engineering Lab, Center for Devices and Radiology, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, USA
| | - Subha Maruvada
- Division of Applied Mechanics, Office of Science and Engineering Lab, Center for Devices and Radiology, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, USA
| |
Collapse
|
4
|
Panfilova A, van Sloun RJG, Wijkstra H, Sapozhnikov OA, Mischi M. A review on B/A measurement methods with a clinical perspective. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:2200. [PMID: 33940890 DOI: 10.1121/10.0003627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The nonlinear parameter of ultrasound B/A has shown to be a useful diagnostic parameter, reflecting medium content, structure, and temperature. Despite its recognized values, B/A is not yet used as a diagnostic tool in the clinic due to the limitations of current measurement and imaging techniques. This review presents an extensive and comprehensive overview of the techniques developed for B/A measurement of liquid and liquid-like media (e.g., tissue), identifying the methods that are most promising from a clinical perspective. This work summarizes the progress made in the field and the typical challenges on the way to B/A estimation. Limitations and problems with the current techniques are identified, suggesting directions that may lead to further improvement. Since the basic theory of the physics behind the measurement strategies is presented, it is also suited for a reader who is new to nonlinear ultrasound.
Collapse
Affiliation(s)
- Anastasiia Panfilova
- Electrical Engineering Department, Faculty of Electrical Engineering, Eindhoven University of Technology, Groene Loper 35612 AE, Eindhoven, The Netherlands
| | - Ruud J G van Sloun
- Electrical Engineering Department, Faculty of Electrical Engineering, Eindhoven University of Technology, Groene Loper 35612 AE, Eindhoven, The Netherlands
| | - Hessel Wijkstra
- Electrical Engineering Department, Faculty of Electrical Engineering, Eindhoven University of Technology, Groene Loper 35612 AE, Eindhoven, The Netherlands
| | - Oleg A Sapozhnikov
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Massimo Mischi
- Electrical Engineering Department, Faculty of Electrical Engineering, Eindhoven University of Technology, Groene Loper 35612 AE, Eindhoven, The Netherlands
| |
Collapse
|
5
|
Peek AT, Hunter C, Kreider W, Khokhlova TD, Rosnitskiy PB, Yuldashev PV, Sapozhnikov OA, Khokhlova VA. Bilayer aberration-inducing gel phantom for high intensity focused ultrasound applications. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:3569. [PMID: 33379925 PMCID: PMC8097711 DOI: 10.1121/10.0002877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 05/19/2023]
Abstract
Aberrations induced by soft tissue inhomogeneities often complicate high-intensity focused ultrasound (HIFU) therapies. In this work, a bilayer phantom made from polyvinyl alcohol hydrogel and ballistic gel was built to mimic alternating layers of water-based and lipid tissues characteristic of an abdominal body wall and to reproducibly distort HIFU fields. The density, sound speed, and attenuation coefficient of each material were measured using a homogeneous gel layer. A surface with random topographical features was designed as an interface between gel layers using a 2D Fourier spectrum approach and replicating different spatial scales of tissue inhomogeneities. Distortion of the field of a 256-element 1.5 MHz HIFU array by the phantom was characterized through hydrophone measurements for linear and nonlinear beam focusing and compared to the corresponding distortion induced by an ex vivo porcine body wall of the same thickness. Both spatial shift and widening of the focal lobe were observed, as well as dramatic reduction in focal pressures caused by aberrations. The results suggest that the phantom produced levels of aberration that are similar to a real body wall and can serve as a research tool for studying HIFU effects as well as for developing algorithms for aberration correction.
Collapse
Affiliation(s)
- Alex T Peek
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Christopher Hunter
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Wayne Kreider
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195, USA
| | - Pavel B Rosnitskiy
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Petr V Yuldashev
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Oleg A Sapozhnikov
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Vera A Khokhlova
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|