1
|
Wei C, Houser D, Erbe C, Mátrai E, Ketten DR, Finneran JJ. Does rotation increase the acoustic field of view? Comparative models based on CT data of a live dolphin versus a dead dolphin. BIOINSPIRATION & BIOMIMETICS 2023; 18:035006. [PMID: 36917857 DOI: 10.1088/1748-3190/acc43d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Rotational behaviour has been observed when dolphins track or detect targets, however, its role in echolocation is unknown. We used computed tomography data of one live and one recently deceased bottlenose dolphin, together with measurements of the acoustic properties of head tissues, to perform acoustic property reconstruction. The anatomical configuration and acoustic properties of the main forehead structures between the live and deceased dolphins were compared. Finite element analysis (FEA) was applied to simulate the generation and propagation of echolocation clicks, to compute their waveforms and spectra in both near- and far-fields, and to derive echolocation beam patterns. Modelling results from both the live and deceased dolphins were in good agreement with click recordings from other, live, echolocating individuals. FEA was also used to estimate the acoustic scene experienced by a dolphin rotating 180° about its longitudinal axis to detect fish in the far-field at elevation angles of -20° to 20°. The results suggest that the rotational behaviour provides a wider insonification area and a wider receiving area. Thus, it may provide compensation for the dolphin's relatively narrow biosonar beam, asymmetries in sound reception, and constraints on the pointing direction that are limited by head movement. The results also have implications for examining the accuracy of FEA in acoustic simulations using recently deceased specimens.
Collapse
Affiliation(s)
- Chong Wei
- Centre for Marine Science and Technology, Curtin University, Perth, WA 6102, Australia
| | - Dorian Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, CA 92106, United States of America
| | - Christine Erbe
- Centre for Marine Science and Technology, Curtin University, Perth, WA 6102, Australia
| | - Eszter Mátrai
- Research Department, Ocean Park, Hong Kong, People's Republic of China
| | - Darlene R Ketten
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States of America
| | - James J Finneran
- United States Navy Marine Mammal Program, Naval Information Warfare Center Pacific Code 56710, 53560 Hull Street, San Diego, CA 92152, United States of America
| |
Collapse
|
2
|
The Distinctive Forehead Cleft of the Risso's Dolphin ( Grampus griseus) Hardly Affects Biosonar Beam Formation. Animals (Basel) 2022; 12:ani12243472. [PMID: 36552392 PMCID: PMC9774579 DOI: 10.3390/ani12243472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The Risso's dolphin (Grampus griseus) has a distinctive vertical crease (or cleft) along the anterior surface of the forehead. Previous studies have speculated that the cleft may contribute to biosonar beam formation. To explore this, we constructed 2D finite element models based on computer tomography data of the head of a naturally deceased Risso's dolphin. The simulated acoustic near-field signals, far-field signals, and transmission beam patterns were compared to corresponding measurements from a live, echolocating Risso's dolphin. To investigate the effect of the cleft, we filled the cleft with neighboring soft tissues in our model, creating a hypothetical "cleftless" forehead, as found in other odontocetes. We compared the acoustic pressure field and the beam pattern between the clefted and cleftless cases. Our results suggest that the cleft plays an insignificant role in forehead biosonar sound propagation and far-field beam formation. Furthermore, the cleft was not responsible for the bimodal click spectrum recorded and reported from this species.
Collapse
|
3
|
Wei C, Hoffmann-Kuhnt M, Au WWL, Ho AZH, Matrai E, Feng W, Ketten DR, Zhang Y. Possible limitations of dolphin echolocation: a simulation study based on a cross-modal matching experiment. Sci Rep 2021; 11:6689. [PMID: 33758216 PMCID: PMC7988039 DOI: 10.1038/s41598-021-85063-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/22/2021] [Indexed: 12/02/2022] Open
Abstract
Dolphins use their biosonar to discriminate objects with different features through the returning echoes. Cross-modal matching experiments were conducted with a resident bottlenose dolphin (Tursiops aduncus). Four types of objects composed of different materials (water-filled PVC pipes, air-filled PVC pipes, foam ball arrays, and PVC pipes wrapped in closed-cell foam) were used in the experiments, respectively. The size and position of the objects remained the same in each case. The data collected in the experiment showed that the dolphin’s matching accuracy was significantly different across the cases. To gain insight into the underlying mechanism in the experiments, we used finite element methods to construct two-dimensional target detection models of an echolocating dolphin in the vertical plane, based on computed tomography scan data. The acoustic processes of the click’s interaction with the objects and the surrounding media in the four cases were simulated and compared. The simulation results provide some possible explanations for why the dolphin performed differently when discriminating the objects that only differed in material composition in the previous matching experiments.
Collapse
Affiliation(s)
- Chong Wei
- Centre for Marine Science and Technology, Curtin University, Kent Street, Bentley, WA, 6102, Australia.
| | - Matthias Hoffmann-Kuhnt
- Acoustic Research Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore.
| | - Whitlow W L Au
- Hawaii Institute of Marine Biology, University of Hawaii, 46-007 Lilipuna Road, Kaneohe, HI, 96744, USA
| | - Abel Zhong Hao Ho
- Acoustic Research Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore
| | - Eszter Matrai
- Research Department, Ocean Park Hong Kong, Hong Kong (SAR), China
| | - Wen Feng
- School of Information Engineering, Jimei University, Xiamen, 361021, People's Republic of China
| | - Darlene R Ketten
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.,Department of Otology and Laryngology, Harvard Medical School, Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Yu Zhang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiangan South Road, Xiamen, 361100, People's Republic of China.,College of Oceanography and Environmental Science, Xiamen University, Xiangan South Road, Xiamen, 361100, People's Republic of China
| |
Collapse
|
4
|
Thomsen F, Erbe C, Hawkins A, Lepper P, Popper AN, Scholik-Schlomer A, Sisneros J. Introduction to the special issue on the effects of sound on aquatic life. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:934. [PMID: 32873007 DOI: 10.1121/10.0001725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The effects of anthropogenic (man-made) underwater sound on aquatic life have become an important environmental issue. One of the focal ways to present and to share knowledge on the topic has been the international conference on The Effects of Noise on Aquatic Life ("Aquatic Noise"). The conferences have brought together people from diverse interests and backgrounds to share information and ideas directed at understanding and solving the challenges of the potential effects of sound on aquatic life. The papers published here and in a related special issue of Proceedings of Meetings on Acoustics present a good overview of the many topics and ideas covered at the meeting. Indeed, the growth in studies on anthropogenic sound since the first meeting in 2007 reflects the increasing use of oceans, lakes, rivers, and other waterways by humans. However, there are still very substantial knowledge gaps about the effects of sound on all aquatic animals, and these gaps lead to there being a substantial need for a better understanding of the sounds produced by various sources and how these sounds may affect animals.
Collapse
Affiliation(s)
| | - Christine Erbe
- Centre for Marine Science and Technology, Curtin University, Perth, Western Australia 6102, Australia
| | - Anthony Hawkins
- The Aquatic Noise Trust, Kincraig, Blairs, Aberdeen, AB12 5YT, United Kingdom
| | - Paul Lepper
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| | - Arthur N Popper
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Amy Scholik-Schlomer
- National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 1315 East-West Highway, Silver Spring, Maryland 20910, USA
| | - Joseph Sisneros
- Departments of Psychology and Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|