1
|
Kulasingham JP, Innes-Brown H, Enqvist M, Alickovic E. Level-Dependent Subcortical Electroencephalography Responses to Continuous Speech. eNeuro 2024; 11:ENEURO.0135-24.2024. [PMID: 39142822 DOI: 10.1523/eneuro.0135-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/02/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
The auditory brainstem response (ABR) is a measure of subcortical activity in response to auditory stimuli. The wave V peak of the ABR depends on the stimulus intensity level, and has been widely used for clinical hearing assessment. Conventional methods estimate the ABR average electroencephalography (EEG) responses to short unnatural stimuli such as clicks. Recent work has moved toward more ecologically relevant continuous speech stimuli using linear deconvolution models called temporal response functions (TRFs). Investigating whether the TRF waveform changes with stimulus intensity is a crucial step toward the use of natural speech stimuli for hearing assessments involving subcortical responses. Here, we develop methods to estimate level-dependent subcortical TRFs using EEG data collected from 21 participants listening to continuous speech presented at 4 different intensity levels. We find that level-dependent changes can be detected in the wave V peak of the subcortical TRF for almost all participants, and are consistent with level-dependent changes in click-ABR wave V. We also investigate the most suitable peripheral auditory model to generate predictors for level-dependent subcortical TRFs and find that simple gammatone filterbanks perform the best. Additionally, around 6 min of data may be sufficient for detecting level-dependent effects and wave V peaks above the noise floor for speech segments with higher intensity. Finally, we show a proof-of-concept that level-dependent subcortical TRFs can be detected even for the inherent intensity fluctuations in natural continuous speech.
Collapse
Affiliation(s)
- Joshua P Kulasingham
- Automatic Control, Department of Electrical Engineering, Linköping University, 581 83 Linköping, Sweden
| | - Hamish Innes-Brown
- Eriksholm Research Centre, DK-3070 Snekkersten, Denmark
- Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Martin Enqvist
- Automatic Control, Department of Electrical Engineering, Linköping University, 581 83 Linköping, Sweden
| | - Emina Alickovic
- Automatic Control, Department of Electrical Engineering, Linköping University, 581 83 Linköping, Sweden
- Eriksholm Research Centre, DK-3070 Snekkersten, Denmark
| |
Collapse
|
2
|
Laback B, Tabuchi H, Kohlrausch A. Evidence for proactive and retroactive temporal pattern analysis in simultaneous maskinga). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:3742-3759. [PMID: 38856312 DOI: 10.1121/10.0026240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
Amplitude modulation (AM) of a masker reduces its masking on a simultaneously presented unmodulated pure-tone target, which likely involves dip listening. This study tested the idea that dip-listening efficiency may depend on stimulus context, i.e., the match in AM peakedness (AMP) between the masker and a precursor or postcursor stimulus, assuming a form of temporal pattern analysis process. Masked thresholds were measured in normal-hearing listeners using Schroeder-phase harmonic complexes as maskers and precursors or postcursors. Experiment 1 showed threshold elevation (i.e., interference) when a flat cursor preceded or followed a peaked masker, suggesting proactive and retroactive temporal pattern analysis. Threshold decline (facilitation) was observed when the masker AMP was matched to the precursor, irrespective of stimulus AMP, suggesting only proactive processing. Subsequent experiments showed that both interference and facilitation (1) remained robust when a temporal gap was inserted between masker and cursor, (2) disappeared when an F0-difference was introduced between masker and precursor, and (3) decreased when the presentation level was reduced. These results suggest an important role of envelope regularity in dip listening, especially when masker and cursor are F0-matched and, therefore, form one perceptual stream. The reported effects seem to represent a time-domain variant of comodulation masking release.
Collapse
Affiliation(s)
- Bernhard Laback
- Austrian Academy of Sciences, Acoustics Research Institute, Wohllebengasse 12-14, 1040 Vienna, Austria
| | - Hisaaki Tabuchi
- Department of Psychology, University of Innsbruck, Universitätsstraße 15, 6020 Innsbruck, Austria
| | - Armin Kohlrausch
- Industrial Engineering & Innovation Sciences, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
3
|
Carney LH. Neural Fluctuation Contrast as a Code for Complex Sounds: The Role and Control of Peripheral Nonlinearities. Hear Res 2024; 443:108966. [PMID: 38310710 PMCID: PMC10923127 DOI: 10.1016/j.heares.2024.108966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
The nonlinearities of the inner ear are often considered to be obstacles that the central nervous system has to overcome to decode neural responses to sounds. This review describes how peripheral nonlinearities, such as saturation of the inner-hair-cell response and of the IHC-auditory-nerve synapse, are instead beneficial to the neural encoding of complex sounds such as speech. These nonlinearities set up contrast in the depth of neural-fluctuations in auditory-nerve responses along the tonotopic axis, referred to here as neural fluctuation contrast (NFC). Physiological support for the NFC coding hypothesis is reviewed, and predictions of several psychophysical phenomena, including masked detection and speech intelligibility, are presented. Lastly, a framework based on the NFC code for understanding how the medial olivocochlear (MOC) efferent system contributes to the coding of complex sounds is presented. By modulating cochlear gain control in response to both sound energy and fluctuations in neural responses, the MOC system is hypothesized to function not as a simple feedback gain-control device, but rather as a mechanism for enhancing NFC along the tonotopic axis, enabling robust encoding of complex sounds across a wide range of sound levels and in the presence of background noise. Effects of sensorineural hearing loss on the NFC code and on the MOC feedback system are presented and discussed.
Collapse
Affiliation(s)
- Laurel H Carney
- Depts. of Biomedical Engineering, Neuroscience, and Electrical & Computer Engineering University of Rochester, Rochester, NY, USA.
| |
Collapse
|
4
|
Kulasingham JP, Bachmann FL, Eskelund K, Enqvist M, Innes-Brown H, Alickovic E. Predictors for estimating subcortical EEG responses to continuous speech. PLoS One 2024; 19:e0297826. [PMID: 38330068 PMCID: PMC10852227 DOI: 10.1371/journal.pone.0297826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Perception of sounds and speech involves structures in the auditory brainstem that rapidly process ongoing auditory stimuli. The role of these structures in speech processing can be investigated by measuring their electrical activity using scalp-mounted electrodes. However, typical analysis methods involve averaging neural responses to many short repetitive stimuli that bear little relevance to daily listening environments. Recently, subcortical responses to more ecologically relevant continuous speech were detected using linear encoding models. These methods estimate the temporal response function (TRF), which is a regression model that minimises the error between the measured neural signal and a predictor derived from the stimulus. Using predictors that model the highly non-linear peripheral auditory system may improve linear TRF estimation accuracy and peak detection. Here, we compare predictors from both simple and complex peripheral auditory models for estimating brainstem TRFs on electroencephalography (EEG) data from 24 participants listening to continuous speech. We also investigate the data length required for estimating subcortical TRFs, and find that around 12 minutes of data is sufficient for clear wave V peaks (>3 dB SNR) to be seen in nearly all participants. Interestingly, predictors derived from simple filterbank-based models of the peripheral auditory system yield TRF wave V peak SNRs that are not significantly different from those estimated using a complex model of the auditory nerve, provided that the nonlinear effects of adaptation in the auditory system are appropriately modelled. Crucially, computing predictors from these simpler models is more than 50 times faster compared to the complex model. This work paves the way for efficient modelling and detection of subcortical processing of continuous speech, which may lead to improved diagnosis metrics for hearing impairment and assistive hearing technology.
Collapse
Affiliation(s)
- Joshua P. Kulasingham
- Automatic Control, Department of Electrical Engineering, Linköping University, Linköping, Sweden
| | | | | | - Martin Enqvist
- Automatic Control, Department of Electrical Engineering, Linköping University, Linköping, Sweden
| | - Hamish Innes-Brown
- Eriksholm Research Centre, Snekkersten, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Emina Alickovic
- Automatic Control, Department of Electrical Engineering, Linköping University, Linköping, Sweden
- Eriksholm Research Centre, Snekkersten, Denmark
| |
Collapse
|
5
|
Osses A, Varnet L. A microscopic investigation of the effect of random envelope fluctuations on phoneme-in-noise perception. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:1469-1485. [PMID: 38364046 DOI: 10.1121/10.0024469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
In this study, we investigated the effect of specific noise realizations on the discrimination of two consonants, /b/ and /d/. For this purpose, we collected data from twelve participants, who listened to /aba/ or /ada/ embedded in one of three background noises. All noises had the same long-term spectrum but differed in the amount of random envelope fluctuations. The data were analyzed on a trial-by-trial basis using the reverse-correlation method. The results revealed that it is possible to predict the categorical responses with better-than-chance accuracy purely based on the spectro-temporal distribution of the random envelope fluctuations of the corresponding noises, without taking into account the actual targets or the signal-to-noise ratios used in the trials. The effect of the noise fluctuations explained on average 8.1% of the participants' responses in white noise, a proportion that increased up to 13.3% for noises with a larger amount of fluctuations. The estimated time-frequency weights revealed that the measured effect originated from confusions between noise fluctuations and relevant acoustic cues from the target sounds. Similar conclusions were obtained from simulations using an artificial listener.
Collapse
Affiliation(s)
- Alejandro Osses
- Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, École Normale Supérieure, PSL University, Centre National de la Recherche Scientifique, 75005 Paris, France
| | - Léo Varnet
- Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, École Normale Supérieure, PSL University, Centre National de la Recherche Scientifique, 75005 Paris, France
| |
Collapse
|
6
|
Bachmann FL, Kulasingham JP, Eskelund K, Enqvist M, Alickovic E, Innes-Brown H. Extending Subcortical EEG Responses to Continuous Speech to the Sound-Field. Trends Hear 2024; 28:23312165241246596. [PMID: 38738341 PMCID: PMC11092544 DOI: 10.1177/23312165241246596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
The auditory brainstem response (ABR) is a valuable clinical tool for objective hearing assessment, which is conventionally detected by averaging neural responses to thousands of short stimuli. Progressing beyond these unnatural stimuli, brainstem responses to continuous speech presented via earphones have been recently detected using linear temporal response functions (TRFs). Here, we extend earlier studies by measuring subcortical responses to continuous speech presented in the sound-field, and assess the amount of data needed to estimate brainstem TRFs. Electroencephalography (EEG) was recorded from 24 normal hearing participants while they listened to clicks and stories presented via earphones and loudspeakers. Subcortical TRFs were computed after accounting for non-linear processing in the auditory periphery by either stimulus rectification or an auditory nerve model. Our results demonstrated that subcortical responses to continuous speech could be reliably measured in the sound-field. TRFs estimated using auditory nerve models outperformed simple rectification, and 16 minutes of data was sufficient for the TRFs of all participants to show clear wave V peaks for both earphones and sound-field stimuli. Subcortical TRFs to continuous speech were highly consistent in both earphone and sound-field conditions, and with click ABRs. However, sound-field TRFs required slightly more data (16 minutes) to achieve clear wave V peaks compared to earphone TRFs (12 minutes), possibly due to effects of room acoustics. By investigating subcortical responses to sound-field speech stimuli, this study lays the groundwork for bringing objective hearing assessment closer to real-life conditions, which may lead to improved hearing evaluations and smart hearing technologies.
Collapse
Affiliation(s)
| | - Joshua P. Kulasingham
- Automatic Control, Department of Electrical Engineering, Linköping University, Linköping, Sweden
| | | | - Martin Enqvist
- Automatic Control, Department of Electrical Engineering, Linköping University, Linköping, Sweden
| | - Emina Alickovic
- Eriksholm Research Centre, Snekkersten, Denmark
- Automatic Control, Department of Electrical Engineering, Linköping University, Linköping, Sweden
| | - Hamish Innes-Brown
- Eriksholm Research Centre, Snekkersten, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
7
|
Osses Vecchi A, Varnet L, Carney LH, Dau T, Bruce IC, Verhulst S, Majdak P. A comparative study of eight human auditory models of monaural processing. ACTA ACUSTICA. EUROPEAN ACOUSTICS ASSOCIATION 2022; 6:17. [PMID: 36325461 PMCID: PMC9625898 DOI: 10.1051/aacus/2022008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A number of auditory models have been developed using diverging approaches, either physiological or perceptual, but they share comparable stages of signal processing, as they are inspired by the same constitutive parts of the auditory system. We compare eight monaural models that are openly accessible in the Auditory Modelling Toolbox. We discuss the considerations required to make the model outputs comparable to each other, as well as the results for the following model processing stages or their equivalents: Outer and middle ear, cochlear filter bank, inner hair cell, auditory nerve synapse, cochlear nucleus, and inferior colliculus. The discussion includes a list of recommendations for future applications of auditory models.
Collapse
Affiliation(s)
- Alejandro Osses Vecchi
- Laboratoire des systèmes perceptifs, Département d’études cognitives, École Normale Supérieure, PSL University, CNRS, 75005 Paris, France
| | - Léo Varnet
- Laboratoire des systèmes perceptifs, Département d’études cognitives, École Normale Supérieure, PSL University, CNRS, 75005 Paris, France
| | - Laurel H. Carney
- Departments of Biomedical Engineering and Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Ian C. Bruce
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sarah Verhulst
- Hearing Technology group, WAVES, Department of Information Technology, Ghent University, 9000 Ghent, Belgium
| | - Piotr Majdak
- Acoustics Research Institute, Austrian Academy of Sciences, 1040 Vienna, Austria
| |
Collapse
|
8
|
Varnet L, Lorenzi C. Probing temporal modulation detection in white noise using intrinsic envelope fluctuations: A reverse-correlation study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:1353. [PMID: 35232105 DOI: 10.1121/10.0009629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Part of the detrimental effect caused by a stationary noise on sound perception results from the masking of relevant amplitude modulations (AM) in the signal by random intrinsic envelope fluctuations arising from the filtering of noise by cochlear channels. This study capitalizes on this phenomenon to probe AM detection strategies for human listeners using a reverse correlation analysis. Eight normal-hearing listeners were asked to detect the presence of a 4-Hz sinusoidal AM target applied to a 1-kHz tone carrier using a yes-no task with 3000 trials/participant. All stimuli were embedded in a white-noise masker. A reverse-correlation analysis was then carried on the data to compute "psychophysical kernels" showing which aspects of the stimulus' temporal envelope influenced the listener's responses. These results were compared to data simulated with different implementations of a modulation-filterbank model. Psychophysical kernels revealed that human listeners were able to track the position of AM peaks in the target, similar to the models. However, they also showed a marked temporal decay and a consistent phase shift compared to the ideal template. In light of the simulated data, this was interpreted as an evidence for the presence of phase uncertainty in the processing of intrinsic envelope fluctuations.
Collapse
Affiliation(s)
- Léo Varnet
- Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, École Normale Supérieure, Université Paris Sciences & Lettres, Centre National de la Recherche Scientifique, 75005 Paris, France
| | - Christian Lorenzi
- Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, École Normale Supérieure, Université Paris Sciences & Lettres, Centre National de la Recherche Scientifique, 75005 Paris, France
| |
Collapse
|