1
|
Massini DA, Almeida TAF, Macedo AG, Espada MC, Reis JF, Alves FJB, Fernandes RJP, Pessôa Filho DM. Sex-Specific Accumulated Oxygen Deficit During Short- and Middle-Distance Swimming Performance in Competitive Youth Athletes. SPORTS MEDICINE - OPEN 2023; 9:49. [PMID: 37357246 DOI: 10.1186/s40798-023-00594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
INTRODUCTION Since sex-specific accumulated oxygen deficit (AOD) during high-intensity swimming remains unstudied, this study aimed to assess AOD during 50, 100, and 200 m front-crawl performances to compare the responses between sexes and analyse the effect of lean body mass (LBM). METHODS Twenty swimmers (16.2 ± 2.8 years, 61.6 ± 7.8 kg, and 48.8 ± 11.2 kg LBM-50% males) performed 50, 100, and 200 m to determine accumulated oxygen uptake (V̇O2Ac). The swimmers also performed an incremental test from which five submaximal steps were selected to estimate the oxygen demand (V̇O2demand) from the V̇O2 versus velocity adjustment. V̇O2 was sampled using a gas analyser coupled with a respiratory snorkel. AOD was the difference between V̇O2demand and V̇O2Ac, and LBM (i.e. lean mass not including bone mineral content) was assessed by dual-energy X-ray absorptiometry (DXA). RESULTS A two-way ANOVA evidenced an AOD increase with distance for both sexes: 19.7 ± 2.5 versus 24.9 ± 5.5, 29.8 ± 8.0 versus 36.5 ± 5.8, and 41.5 ± 9.4 versus 5.2 ± 11.9 ml × kg-1, respectively, for 50, 100, and 200 m (with highest values for females, P < 0.01). Inverse correlations were observed between LBM and AOD for 50, 100, and 200 m (r = - 0.60, - 0.38 and - 0.49, P < 0.05). AOD values at 10 and 30 s elapsed times in each trial decreased with distance for both sexes, with values differing when female swimmers were compared to males in the 200 m trial (at 10 s: 2.6 ± 0.6 vs. 3.4 ± 0.6; and at 30 s: 7.9 ± 1.7 vs. 10.0 ± 1.8 ml × kg-1, P < 0.05). CONCLUSION LBM differences between sexes influenced AOD values during each trial, suggesting that reduced muscle mass in female swimmers plays a role on the higher AOD (i.e. anaerobic energy) demand than males while performing supramaximal trials.
Collapse
Affiliation(s)
- Danilo Alexandre Massini
- Postgraduate Programme in Human Development and Technologies, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Tiago André Freire Almeida
- Department of Physical Education, School of Science (FC), São Paulo State University (UNESP), Bauru, SP, Brazil
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
| | - Anderson Geremias Macedo
- Postgraduate Programme in Human Development and Technologies, São Paulo State University (UNESP), Rio Claro, SP, Brazil
- Department of Physical Education, School of Science (FC), São Paulo State University (UNESP), Bauru, SP, Brazil
| | - Mário Cunha Espada
- Escola Superior de Educação, Instituto Politécnico de Setúbal, Setúbal, Portugal
- Life Quality Research Centre, (LQRC-CIEQV, Leiria), Rio Maior, Portugal
| | - Joana Francisca Reis
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
- Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco José Bessone Alves
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
- Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo Jorge Pinto Fernandes
- Centre of Research, Education, Innovation and Intervention in Sport and Porto Biomechanics Laboratory, Faculty of Sport, University of Porto, Porto, Portugal
| | - Dalton Müller Pessôa Filho
- Postgraduate Programme in Human Development and Technologies, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
- Department of Physical Education, School of Science (FC), São Paulo State University (UNESP), Bauru, SP, Brazil.
| |
Collapse
|
2
|
Kaufmann S, Ziegler M, Werner J, Noe C, Latzel R, Witzany S, Beneke R, Hoos O. Energetics of Floor Gymnastics: Aerobic and Anaerobic Share in Male and Female Sub-elite Gymnasts. SPORTS MEDICINE - OPEN 2022; 8:3. [PMID: 35006417 PMCID: PMC8748591 DOI: 10.1186/s40798-021-00396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/09/2021] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Artistic gymnastics is a popular Olympic discipline where female athletes compete in four and male athletes in six events with floor exercise having the longest competition duration in Women’s and Men’s artistic gymnastics (WAG, MAG). To date no valid information on the energetics of floor gymnastics is available although this may be important for specific conditioning programming. This study evaluated the metabolic profile of a simulated floor competition in sub-elite gymnasts.
Methods
17 (9 male, 8 female) sub-elite gymnasts aged 22.5 ± 2.6y took part in a floor-training-competition where oxygen uptake was measured during and until 15 min post-exercise. Additionally, resting and peak blood lactate concentration after exercise were obtained. The PCr-LA-O2 method was used to calculate the metabolic energy and the relative aerobic (WAER), anaerobic alactic (WPCr) and anaerobic lactic (WBLC) energy contribution. Further, the athletes completed a 30 s Bosco-jumping test, a countermovement jump and a drop jump.
Results
The competition scores were 9.2 (CI:8.9–9.3) in WAG and 10.6 (CI:10.4–10.9) in MAG. The metabolic profile of the floor routine was mainly aerobic (58.9%, CI: 56.0–61.8%) followed by the anaerobic alactic (24.2%, CI: 21.3–27.1%) and anaerobic lactic shares (16.9%, CI:14.9–18.8%). While sex had a significant (p = .010, d = 1.207) large effect on energy contribution, this was not the case for competition duration (p = .728, d = 0.061). Relative energy contribution of WAG and MAG differed in WAER (64.0 ± 4.7% vs. 54.4 ± 6.8%, p = .004, d = 1.739) but not in WPCr (21.3 ± 6.1% vs. 26.7 ± 8.0%, p = .144, d = 0.801) and WBLC (14.7 ± 5.4% vs. 18.9 ± 4.2%, p = .085, d = 0.954). Further no correlation between any energy share and performance was found but between WPCr and training experience (r = .680, p = .044) and WBLC and competition level (r = .668, p = .049).
Conclusion
The results show a predominant aerobic energy contribution and a considerable anaerobic contribution with no significant difference between anaerobic shares. Consequently, gymnastic specific aerobic training should not be neglected, while a different aerobic share in WAG and MAG strengthens sex-specific conditioning. All in all, the specific metabolic share must secure adequate energy provision, while relative proportions of the two anaerobic pathways seem to depend on training and competition history.
Collapse
|
3
|
Reliability of the 3-Component Model of Aerobic, Anaerobic Lactic, and Anaerobic Alactic Energy Distribution (PCr-LA-O2) for Energetic Profiling of Continuous and Intermittent Exercise. Int J Sports Physiol Perform 2022; 17:1642-1648. [DOI: 10.1123/ijspp.2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
Purpose: To assess the test–retest reliability of the continuous (PCr-LA-O2) and intermittent (PCr-LA-O2int) version of the 3-component model of energy distribution in an applied setting. Methods: Sixteen male handball players (age 23 [3] y, height 185 [7] cm, weight 85 [14] kg) completed the 30–15 Intermittent Fitness Test (30–15IFT) twice. Performance was assessed by peak speed (speed of the last successfully completed stage of the 30–15IFT [VIFT], in kilometers per hour) and time to exhaustion (in seconds). Oxygen uptake (in milliliters per kilogram per minute) and blood lactate concentrations (in millimoles per liter) were obtained before, during, and until 15 minutes after exercise. Total metabolic energy (in joules per kilogram), total metabolic power (in watts per kilogram), and energy shares (in joules per kilogram and percentage) of the aerobic (energy contribution of the aerobic system [WAERint]), anaerobic lactic, and anaerobic alactic (anaerobic alactic energy [WPCrint]) systems were calculated using both model versions, respectively. Results: Test–retest reliability was very good for VIFT (limits of agreement [LoA]: −1.13 to 0.63 km·h−1, coefficient of variation [CV%] 1.68), time to exhaustion (LoA: −101 to 38 s, CV% 2.92), peak oxygen uptake (LoA: −2.68 to 4.04 mL·min−1·kg−1, CV% 1.48), and peak heart rate (−6.9 to 7.7 beats·min−1, CV% 1.1), but moderate for change in blood lactate concentration (LoA: −3.84 to 4.07 mmol·L−1, CV% 11.43). Reliability of the modeled total energy and its fractions were high for total metabolic energy (LoA: −1489 to 1177 J·kg−1, CV% 2.88), total metabolic power (LoA: −2.0 to 1.9 W·kg−1, CV% 3.58), contribution of aerobic (LoA: −1673 to 1283 J·kg−1, CV% 3.62), WAERint (LoA: −1760 to 2160 J·kg−1, CV% 6.04), and moderate for anaerobic alactic (LoA: −368 to 439 J·kg−1, CV% 14.85), WPCrint (LoA: −1707 to 988 J·kg−1, CV% 9.98), and energy share of anaerobic lactic concentration (LoA: −229 to 235 J·kg−1, CV% 11.43). Conclusion: Considering the inherent fluctuations of the underlying energetics, the reliabilities of both versions of the 3-component model of energy distribution are acceptable for applied settings.
Collapse
|
4
|
Gao C, Wang X, Zhang G, Huang L, Han M, Li B, Nassis GP, Li Y. Comparison of Physiological and Perceptional Responses to 5-m Forward, Forward-Backward, and Lateral Shuttle Running. Front Physiol 2022; 12:780699. [PMID: 35250602 PMCID: PMC8892136 DOI: 10.3389/fphys.2021.780699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this study was to investigate the physiological and perceptional responses to forward, forward-backward, and lateral shuttle running. Methods Twenty-four eligible male subjects performed a maximal oxygen uptake (VO2max) test and three directional modes (i.e., forward, forward-backward, and lateral) of 5-m shuttle running at the speed of 6 km⋅h–1 for 5 min on separate days. Heart rate (HR) and oxygen uptake (VO2) were continuously measured during the whole tests. Rating of perceived exertion (RPE) was inquired and recorded immediately after the test. Capillary blood samples were collected from the earlobe during the recovery to determine the peak value of blood lactate concentration ([La–]peak). Results Running directional mode had significant effects on HR (F = 72.761, P < 0.001, η2p = 0.760), %HRmax (F = 75.896, P < 0.001, η2p = 0.767), VO2 (F = 110.320, P < 0.001, η2p = 0.827), %VO2max (F = 108.883, P < 0.001, η2p = 0.826), [La–]peak (F = 55.529, P < 0.001, η2p = 0.707), and RPE (F = 26.268, P < 0.001, η2p = 0.533). All variables were significantly different between conditions (P ≤ 0.026), with the variables highest in lateral shuttle running and lowest in forward shuttle running. The effect sizes indicated large magnitude in the differences of all variables between conditions (ES = 0.86–2.83, large) except the difference of RPE between forward and forward-backward shuttle running (ES = 0.62, moderate). Conclusion These findings suggest that the physiological and perceptional responses in shuttle running at the same speed depend on the directional mode, with the responses highest in lateral shuttle running, and lowest in forward shuttle running.
Collapse
Affiliation(s)
- Chong Gao
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Xiaolu Wang
- College of Physical Education and Health Sciences, Longyan University, Longyan, China
| | - Guochao Zhang
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Li Huang
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Mengyuan Han
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Bo Li
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, China
| | - George P. Nassis
- Physical Education Department, College of Education, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Yongming Li
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
- China Institute of Sport Science, Beijing, China
- *Correspondence: Yongming Li,
| |
Collapse
|
5
|
Fu Y, Liu Y, Chen X, Li Y, Li B, Wang X, Shu Y, Shang L. Comparison of Energy Contributions and Workloads in Male and Female Badminton Players During Games Versus Repetitive Practices. Front Physiol 2021; 12:640199. [PMID: 34248654 PMCID: PMC8268943 DOI: 10.3389/fphys.2021.640199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose The aim of this study was to compare the energy contributions and workloads in men and women during badminton matches versus frequently used multi-ball smash practices. Methods Fourteen badminton players performed one badminton singles game and one session of smashing practice on separate days. The energy contributions were examined in terms of each individual’s three energy systems and substrate oxidation, while workloads included heart rate (HR), Player Load (PL), accelerations, decelerations, changes of direction, and jumps. Results (1) During games, male players exhibited higher adenosine triphosphate–phosphocreatine system contribution (EPCr, kJ) (p = 0.008) and average rate of carbohydrate oxidation (RCHO, g/min) (p = 0.044) than female players, while female players showed greater absolute PL (p = 0.029) and more accelerations (p = 0.005) than male players. Furthermore, players who lost performed higher relative PL (p = 0.017) than those who won. (2) Higher energy system contributions, including EPCr (kJ) (p = 0.028), EHLa (kJ) (p = 0.024), EAer (kJ) (p = 0.012), ETot (kJ) (p = 0.007), and RCHO (g/min) (p = 0.0002), were seen in male players during repetitive spike practices. Male players also made greater number of jumps (p = 0.0002). (3) Players exhibited higher aerobic energy contribution (p < 0.001), mean HR (p = 0.002), and HRmax (p = 0.029) during games, while exhibiting greater anaerobic energy contribution (p < 0.001) and relative PL (p = 0.001) during repetitive practices. Conclusion The similarities between male and female badminton players in proportional use of the three energy systems during games and repetitive spike training indicate similar relative energy demands for both genders. However, considering the need for higher aerobic capacity in competition, it might be advisable to design appropriate work:rest ratios for repetitive practices in daily training.
Collapse
Affiliation(s)
- Yue Fu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xiaoping Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,China Institute of Sport Science, Beijing, China
| | - Yongming Li
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Bo Li
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Xinxin Wang
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Yang Shu
- China Institute of Sport Science, Beijing, China
| | - Lei Shang
- School of Competitive Sport, Beijing Sport University, Beijing, China
| |
Collapse
|