1
|
de Morais ACL, Machado ÁS, Pereira MEF, da Silva W, Priego-Quesada JI, Carpes FP. Intensity and volume of physical exercise influence DOMS and skin temperature differently in healthy adults. Sci Rep 2024; 14:30282. [PMID: 39632894 PMCID: PMC11618502 DOI: 10.1038/s41598-024-79785-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
It remains unclear whether exercises leading to different outcomes of delayed onset muscle soreness (DOMS) may also elicit different skin temperature responses. The aim of this study was to determine whether different intensities and volumes of a single-joint exercise influence the DOMS and skin temperature measurements differently in healthy adults. Thirty-nine men and women were randomly assigned to three groups performing different exercise of different intensities and volumes (Exhaustion, Fatigue, Submaximal) to induce DOMS in the biceps brachii. DOMS (numeric pain rate scale, NPRS), pressure pain threshold (PPT) and skin temperature (infrared thermography, IRT) were measured on exercise day and 48 h later. The different exercises resulted in lower PPT responses 48 h after exercise and different DOMS reported across the different groups. Skin temperature outcomes did not differ following the different protocols. We found an increased minimum skin temperature 48 h after exercise in groups performing more intense exercises, but such differences were found in both exercised and non-exercised arms. Differently of PPT outcomes, pain reported depended on exercise intensity, and skin temperature 48 h after exercise could not show acute exercise adaptations. Skin temperature responses are contingent upon the characteristics of the participants rather than exercise intensity.
Collapse
Affiliation(s)
- Ana Carolina Lamberty de Morais
- Applied Neuromechanics Research Group, Laboratory of Neuromechanics, Federal University of Pampa, Po Box 118, Uruguaiana, RS, 97500-970, Brazil
| | - Álvaro Sosa Machado
- Applied Neuromechanics Research Group, Laboratory of Neuromechanics, Federal University of Pampa, Po Box 118, Uruguaiana, RS, 97500-970, Brazil
| | - Maria Eduarda Ferreira Pereira
- Applied Neuromechanics Research Group, Laboratory of Neuromechanics, Federal University of Pampa, Po Box 118, Uruguaiana, RS, 97500-970, Brazil
| | - Willian da Silva
- Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jose Ignacio Priego-Quesada
- Research Group in Sports Biomechanics, Department of Physical Education and Sports, University of Valencia, Valencia, Spain
- Research Group in Medical Physics, Department of Physiology, University of Valencia, Valencia, Spain
| | - Felipe P Carpes
- Applied Neuromechanics Research Group, Laboratory of Neuromechanics, Federal University of Pampa, Po Box 118, Uruguaiana, RS, 97500-970, Brazil.
| |
Collapse
|
2
|
Verderber L, da Silva W, Aparicio-Aparicio I, Germano AMC, Carpes FP, Priego-Quesada JI. Assessment of alternative metrics in the application of infrared thermography to detect muscle damage in sports. Physiol Meas 2024; 45:095014. [PMID: 39270715 DOI: 10.1088/1361-6579/ad7ad3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Objective.The association between muscle damage and skin temperature is controversial. We hypothesize that including metrics that are more sensitive to individual responses by considering variability and regions representative of higher temperature could influence skin temperature outcomes. Here, the objective of the study was to determine whether using alternative metrics (TMAX, entropy, and pixelgraphy) leads to different results than mean, maximum, minimum, and standard deviation (SD) skin temperature when addressing muscle damage using infrared thermography.Approach.Thermal images from four previous investigations measuring skin temperature before and after muscle damage in the anterior thigh and the posterior lower leg were used. The TMAX, entropy, and pixelgraphy (percentage of pixels above 33 °C) metrics were applied.Main results.On 48 h after running a marathon or half-marathon, no differences were found in skin temperature when applying any metric. Mean, minimum, maximum, TMAX, and pixelgraphy were lower 48 h after than at basal condition following quadriceps muscle damage (p< 0.05). Maximum skin temperature and pixelgraphy were lower 48 h after than the basal condition following muscle damage to the triceps sural (p< 0.05). Overall, TMAX strongly correlated with mean (r= 0.85) and maximum temperatures (r= 0.99) and moderately with minimum (r= 0.66) and pixelgraphy parameter (r= 0.64). Entropy strongly correlates with SD (r= 0.94) and inversely moderately with minimum temperature (r= -0.53). The pixelgraphy moderately correlated with mean (r= 0.68), maximum (r= 0.62), minimum (r= 0.58), and TMAX (r= 0.64).Significance.Using alternative metrics does not change skin temperature outcomes following muscle damage of lower extremity muscle groups.
Collapse
Affiliation(s)
- Lukas Verderber
- Motor Control, Cognition and Neurophysiology, Institute of Human Movement Science & Health, Chemnitz University of Technology, Chemnitz, Germany
| | - Willian da Silva
- Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Inmaculada Aparicio-Aparicio
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Andresa M C Germano
- Motor Control, Cognition and Neurophysiology, Institute of Human Movement Science & Health, Chemnitz University of Technology, Chemnitz, Germany
| | - Felipe P Carpes
- Applied Neuromechanics Research Group, Federal University of Pampa, Uruguaiana, Brazil
| | - Jose Ignacio Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
- Research Group in Medical Physics (GIFIME), Department of Physiology, University of Valencia, Valencia, Spain
| |
Collapse
|
3
|
Béjar-Grimalt J, Sánchez-Illana Á, Guardia MDL, Garrigues S, Catalá-Vilaplana I, Bermejo-Ruiz JL, Priego-Quesada JI, Pérez-Guaita D. Dryfilm-ATR-FTIR analysis of urinary profiles as a point-of-care tool to evaluate aerobic exercise. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5982-5989. [PMID: 39162061 DOI: 10.1039/d4ay00913d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The understanding of metabolic alterations triggered by intense exercise can provide a biological basis for the development of new training and recovery methods. One popular way to monitor these changes is the non-invasive analysis of the composition of urine. This work evaluates the use of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and multivariate analysis as a rapid and cost-effective way to investigate changes in urine composition after intense exercise. The urine FTIR spectra of 21 volunteers (14 going through aerobic exercise and 7 controls) were measured before and immediately, 2, 5, 11, and 24 h after running 10 km. Principal component analysis (PCA) and partial least squares analysis (PLS) regression were used to investigate the changes in the spectra as a function of the recovery time. PLS models obtained for the prediction of the time points in the exercise group were deemed significant (p < 0.05, rand t-test permutation testing in cross-validation), showing changes in the urine composition after the exercise, reaching a maximum after 11 hours as opposed to the control group which did not show any significant relationship with the recovery time. In a second step, spectra of the protean extract isolated from urines at significant timepoints (before, immediately after, and 11 hours after exercise) were measured. The PCA of the protein spectra showed clear differences in the spectra obtained at the separation between the recovery time points, especially after the end of the exercise, where the protein profile was significantly different from the other times. Results indicate that the technique was able to find differences in the urine after physical exertion and holds strong potential for an easy-to-use and simple screening metabolic evaluation of recovery methods.
Collapse
Affiliation(s)
- Jaume Béjar-Grimalt
- Department of Analytical Chemistry, University of Valencia, Burjassot, Spain.
| | | | | | - Salvador Garrigues
- Department of Analytical Chemistry, University of Valencia, Burjassot, Spain.
| | - Ignacio Catalá-Vilaplana
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Universitat de València, Valencia, Spain.
| | | | - Jose Ignacio Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Universitat de València, Valencia, Spain.
- Research Group in Medical Physics (GIFIME), Department of Physiology, Universitat de València, Valencia, Spain
| | - David Pérez-Guaita
- Department of Analytical Chemistry, University of Valencia, Burjassot, Spain.
| |
Collapse
|
4
|
De León-Muñoz A, Priego-Quesada JI, Marzano-Felisatti JM, Sanchez-Jimenez JL, Sendra-Pérez C, Aparicio-Aparicio I. Preliminary Application of Infrared Thermography to Monitoring of Skin Temperature Asymmetries in Professional Padel Players. SENSORS (BASEL, SWITZERLAND) 2024; 24:4534. [PMID: 39065931 PMCID: PMC11280937 DOI: 10.3390/s24144534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The aim of the present study was to evaluate skin temperature (Tsk) asymmetries, using infrared thermography, in professional padel players before (PRE), after (POST) and 10 min after training (POST10), and their relationship with perceptual variables and training characteristics. Thermal images were taken of 10 players before, after and 10 min after a standardized technical training. After training, Tsk of the dominant side was higher than before training in the anterior forearm (30.8 ± 0.4 °C vs. 29.1 ± 1.2 °C, p < 0.01; ES = 1.9), anterior shoulder (31.6 ± 0.6 °C vs. 30.9 ± 0.6 °C, p < 0.05; ES = 1.0) posterior arm (29.5 ± 1.0 °C vs. 28.3 ± 1.2 °C, p < 0.05; ES = 1.0), and posterior forearm (30.8 ± 0.9 °C vs. 29.3 ± 1.6 °C, p < 0.05; ES = 1.1). Likewise, these differences were significant POST10 in the anterior arm, anterior forearm, anterior shoulder, posterior arm and posterior forearm. Comparing the different moments of measurement (PRE, POST and POST10), the temperature was higher POST10 in all the regions analyzed except for the shoulder, abdominals, and lower back. Also, correlations were found between fatigue variation and temperature variation between limbs (Tsk dominance), and no correlation was found except between age and posterior thigh (|r| = 0.69; p < 0.05), and between the racket mass and anterior knee (|r| = 0.81; p < 0.01). In conclusion, infrared thermography allows monitoring of skin asymmetries between limbs in professional padel players, but these asymmetries were not related to overall fatigue variation, overall pain variation, years of experience and training hours.
Collapse
Affiliation(s)
- Alberto De León-Muñoz
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain (J.I.P.-Q.); (I.A.-A.)
| | - Jose Ignacio Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain (J.I.P.-Q.); (I.A.-A.)
- Research Group in Medical Physics (GIFIME), Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Joaquín Martín Marzano-Felisatti
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain (J.I.P.-Q.); (I.A.-A.)
| | - Jose Luis Sanchez-Jimenez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain (J.I.P.-Q.); (I.A.-A.)
| | - Carlos Sendra-Pérez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain (J.I.P.-Q.); (I.A.-A.)
| | - Inmaculada Aparicio-Aparicio
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain (J.I.P.-Q.); (I.A.-A.)
| |
Collapse
|
5
|
da Silva W, Godoy-López JR, Machado ÁS, Lemos AL, Sendra-Pérez C, Gallango Brejano M, Carpes FP, Priego-Quesada JI. Effect of different Volumes of exercise on skin temperature responses over the following 24 hours. J Therm Biol 2024; 123:103923. [PMID: 39067196 DOI: 10.1016/j.jtherbio.2024.103923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Skin temperature responses have been advocated to indicate exercise-induced muscle soreness and recovery status. While the evidence is contradictory, we hypothesize that the presence of muscle damage and the time window of measurement are confounding factors in the skin temperature response. The objective was to determine whether skin temperature is influenced by different workloads and the time course of temperature measurements over the following 24 h. 24 trained male military were assigned to one of three groups: GC group (n = 8) serving as control not performing exercises, GE group (n = 8) performing a simulated military combat protocol in an exercise track with different obstacles but designed not to elicit muscle damage, and the GEMD group (n = 8) performing the simulated military combat protocol plus 5 sets of 20 drop jumps, with 10-sec between repetitions and with 2-min of rest between sets aiming to induce muscle damage. Skin temperature was measured using infrared thermography before exercise (Pre) and 4 (Post4h), 8 (Post8h) and 24h (Post24h) post-exercise. Perception of pain (DOMS) was evaluated Pre, Post24h, and Post48h, and countermovement jump height was evaluated at Pre and Post24h. DOMS did not differ between groups in the Pre and Post24h measures but GEMD presented higher DOMS than the other groups at Post48h (p < 0.001 and large effect size). Jump height did not differ for GEMD and GC, and GE presented higher jump height at Post24h than GC (p = 0.02 and large effect size). Skin temperature responses of GEMD and GG were similar in all measurement moments (p > 0.22), and GE presented higher skin temperature than the GC and the GEMD groups at Post24h (p < 0.01 and large effect sizes). In conclusion, although physical exercise elicits higher skin temperature that lasts up to 24 h following the efforts, muscle soreness depresses this response.
Collapse
Affiliation(s)
- Willian da Silva
- Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan R Godoy-López
- Escuela Central de Educación Física (ECEF), Escuela de Guerra del Ejército de Tierra, Academia de Infantería, Toledo, Spain
| | - Álvaro Sosa Machado
- Applied Neuromechanics Research Group, Laboratory of Neuromechanics, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Andressa Lemes Lemos
- Applied Neuromechanics Research Group, Laboratory of Neuromechanics, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Carlos Sendra-Pérez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Manuel Gallango Brejano
- Escuela Central de Educación Física (ECEF), Escuela de Guerra del Ejército de Tierra, Academia de Infantería, Toledo, Spain
| | - Felipe P Carpes
- Applied Neuromechanics Research Group, Laboratory of Neuromechanics, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Jose Ignacio Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain; Research Group in Medical Physics (GIFIME), Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
6
|
Cabizosu A, Marín-Pagán C, Martínez-Serrano A, Alcaraz PE, Martínez-Noguera FJ. Myotendinous Thermoregulation in National Level Sprinters after a Unilateral Fatigue Acute Bout-A Descriptive Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:9330. [PMID: 38067705 PMCID: PMC10708647 DOI: 10.3390/s23239330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
In the last decade there has been a growing interest in infrared thermography in the field of sports medicine in order to elucidate the mechanisms of thermoregulation. The aim of this study was to describe bilateral variations in skin temperature of the anterior thigh and patellar tendon in healthy athletes and to provide a model of baseline tendon and muscle thermoregulation in healthy sprinters following a unilateral isokinetic fatigue protocol. Fifteen healthy national-level sprinters (eleven men and four women), with at least 3 years of athletic training experience of 10-12 h/week and competing in national-level competitions, underwent unilateral isokinetic force testing and electrostimulation in which their body temperature was measured before, during, and after the protocol using an infrared thermographic camera. ANOVA detected a significant difference in the time × side interaction for patellar temperature changes (p ≤ 0.001) and a significant difference in the time/side interaction for quadriceps temperature changes (p ≤ 0.001). The thermal challenge produces homogeneous changes evident in quadriceps areas, but not homogeneous in tendon areas. These data show that metabolic and blood flow changes may depend on the physical and mechanical properties of each tissue. Future research could be conducted to evaluate the predictive value of neuromuscular fatigue in the patellar tendon and quadriceps after exercise in order to optimize post-exercise recovery strategies.
Collapse
Affiliation(s)
- Alessio Cabizosu
- THERMHESC Group, Chair of Molina Ribera Hospital, C. Asociación, S/N, 30500 Molina de Segura, Spain;
- Research Center for High Performance Sport, Catholic University of Murcia (UCAM), Campus de los Jerónimos, Nº 135, 30107 Murcia, Spain; (A.M.-S.); (P.E.A.); (F.J.M.-N.)
| | - Cristian Marín-Pagán
- Research Center for High Performance Sport, Catholic University of Murcia (UCAM), Campus de los Jerónimos, Nº 135, 30107 Murcia, Spain; (A.M.-S.); (P.E.A.); (F.J.M.-N.)
| | - Antonio Martínez-Serrano
- Research Center for High Performance Sport, Catholic University of Murcia (UCAM), Campus de los Jerónimos, Nº 135, 30107 Murcia, Spain; (A.M.-S.); (P.E.A.); (F.J.M.-N.)
| | - Pedro E. Alcaraz
- Research Center for High Performance Sport, Catholic University of Murcia (UCAM), Campus de los Jerónimos, Nº 135, 30107 Murcia, Spain; (A.M.-S.); (P.E.A.); (F.J.M.-N.)
| | - Francisco Javier Martínez-Noguera
- Research Center for High Performance Sport, Catholic University of Murcia (UCAM), Campus de los Jerónimos, Nº 135, 30107 Murcia, Spain; (A.M.-S.); (P.E.A.); (F.J.M.-N.)
| |
Collapse
|
7
|
Skin temperature normalizes faster than pressure pain thresholds, pain intensity, and pain distribution during recovery from eccentric exercise. J Therm Biol 2023; 111:103423. [PMID: 36585087 DOI: 10.1016/j.jtherbio.2022.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Acute musculoskeletal injuries have diverse symptomatology and a multidimensional recovery process, including changes in swelling, redness, hyperalgesia, and expanded pain distribution. In a small proportion of cases, the tissue heals, although these symptoms persist, reflecting altered peripheral and central pain mechanisms. However, the otherwise healthy multidimensional recovery process following damage and pain is less than clear. The objective was to assess mechanical muscle hyperalgesia, skin temperature, and pain intensity and distribution during the recovery process in response to eccentric exercise in the hamstring muscles. METHODS Twenty-four healthy males participated in four sessions (Day-0, Day-2, Day-4, and Day-7). Exercise-induced muscle soreness was induced on Day-0 by five sets of 20 repetitions of an eccentric exercise involving the hamstrings on the dominant leg. Each session included assessments of thermography, pressure pain thresholds (PPTs), pain intensity, and area of exercise-induced pain. RESULTS Decreased PPTs (P < 0.005), higher pain intensity (P < 0.001), and a larger area of pain (P < 0.001) were displayed on Day-2 and Day-4 than Day-0. Skin temperature decreased on Day-2 than Day-0 (P < 0.01) and returned to baseline assessments by Day-4, despite lower temperature than the contralateral tight (P < 0.01). Further, there was a positive correlation between pain intensity and area on Day-2 and Day-4 (P < 0.005), but no for changes in skin temperature. CONCLUSION Thermographic changes and pain-related variables altered following eccentric exercise demonstrate different recovery times. These results provide insights into potential mechanisms and measures that can be used to assess recovery from exercise-induced damage.
Collapse
|
8
|
New Advances in Human Thermophysiology. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081261. [PMID: 36013440 PMCID: PMC9410286 DOI: 10.3390/life12081261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
|
9
|
Effect of fatigue strength exercise on anterior thigh skin temperature rewarming after cold stress test. J Therm Biol 2021; 101:103098. [PMID: 34879916 DOI: 10.1016/j.jtherbio.2021.103098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022]
Abstract
Although dynamic thermography skin temperature assessment has been used in medical field, scientific evidence in sports is scarce. The aim of the study was to assess changes in anterior thigh skin temperature in response to a cold stress test after a strength exercise fatiguing protocol. Ten physically active adults performed a familiarization session and two strength exercise sessions, one with dominant and the other with non-dominant lower limb. Participants performed bouts of 10 concentric and eccentric contractions of leg extensions in an isokinetic device until reaching around 30% of force loss. Infrared thermographic images were taken at baseline conditions and after the fatigue level from both thighs after being cooled using a cryotherapy system. ROIs included vastus medialis, rectus femoris, adductor and vastus lateralis. Skin temperature rewarming was assessed during 180s after the cooling process obtaining the coefficients of the following equation: ΔSkin temperature = β0 + β1 * ln(T), being β0 and β1 the constant and slope coefficients, respectively, T the time elapsed following the cold stress in seconds, and ΔSkin temperature the difference between the skin temperature at T respect and the pre-cooling moment. Lower β0 and higher β1 were found for vastus lateralis and rectus femoris in the intervention lower limb compared with baseline conditions (p < 0.05 and ES > 0.6). Adductor only showed differences in β0 (p = 0.01 and ES = 0.92). The regressions models obtained showed that β0 and β1 had a direct relationship with age and muscle mass, but an inverse relationship with the number of series performed until 30% of fatigue (R2 = 0.8). In conclusion, fatigue strength exercise results in a lower skin temperature and a faster thermal increase after a cold stress test.
Collapse
|
10
|
Rojas-Valverde D, Tomás-Carús P, Timón R, Batalha N, Sánchez-Ureña B, Gutiérrez-Vargas R, Olcina G. Short-Term Skin Temperature Responses to Endurance Exercise: A Systematic Review of Methods and Future Challenges in the Use of Infrared Thermography. Life (Basel) 2021; 11:1286. [PMID: 34947817 PMCID: PMC8704093 DOI: 10.3390/life11121286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Body temperature is often assessed in the core and the skin. Infrared thermography has been used to measure skin temperature (Tsk) in sport research and clinical practice. This study aimed to explore the information reported to date on the use of infrared thermography to detect short-term Tsk responses to endurance exercise and to identify the methodological considerations and knowledge gaps, and propose future directions. METHOD A web search (PubMed, Science Direct, Google Scholar, and Web of Science) was conducted following systematic review guidelines, and 45 out of 2921 studies met the inclusion criteria (endurance sports, since 2000, English, full text available). RESULTS A total of 45 publications were extracted, in which most of the sample were runners (n = 457, 57.9%). Several differences between IRT imaging protocols and ROI selection could lead to potential heterogeneity of interpretations. These particularities in the methodology of the studies extracted are widely discussed in this systematic review. CONCLUSIONS More analyses should be made considering different sports, exercise stimuli and intensities, especially using follow-up designs. Study-derived data could clarify the underlying thermo physiological processes and assess whether Tsk could be used a reliable proxy to describe live thermal regulation in endurance athletes and reduce their risk of exertional heat illness/stroke. Also more in-depth analyses may elucidate the Tsk interactions with other tissues during exercise-related responses, such as inflammation, damage, or pain.
Collapse
Affiliation(s)
- Daniel Rojas-Valverde
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
- Clínica de Lesiones Deportivas (Rehab & Readapt), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
| | - Pablo Tomás-Carús
- Comprehensive Health Research Center (CHRC), Departamento de Desporto e Saúde, Escola de Ciências e Tecnologia-Universidade de Évora, 7000-727 Évora, Portugal
| | - Rafael Timón
- Grupo en Avances en el Entrenamiento Deportivo y Acondicionamiento Físico (GAEDAF), Facultad Ciencias del Deporte, Universidad de Extremadura, 10005 Cáceres, Spain
| | - Nuno Batalha
- Comprehensive Health Research Center (CHRC), Departamento de Desporto e Saúde, Escola de Ciências e Tecnologia-Universidade de Évora, 7000-727 Évora, Portugal
| | - Braulio Sánchez-Ureña
- Programa de Ciencias del Ejercicio y la Salud (PROCESA), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
| | - Randall Gutiérrez-Vargas
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
| | - Guillermo Olcina
- Grupo en Avances en el Entrenamiento Deportivo y Acondicionamiento Físico (GAEDAF), Facultad Ciencias del Deporte, Universidad de Extremadura, 10005 Cáceres, Spain
| |
Collapse
|
11
|
Reproducibility of Skin Temperature Response after Cold Stress Test Using the Game Ready System: Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168295. [PMID: 34444044 PMCID: PMC8392449 DOI: 10.3390/ijerph18168295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023]
Abstract
The objective of this preliminary study was to determine the reproducibility of lower limbs skin temperature after cold stress test using the Game Ready system. Skin temperature of fourteen participants was measured before and after cold stress test using the Game Ready system and it was repeated the protocol in four times: at 9:00, at 11:00, at 19:00, and at 9:00 h of the posterior day. To assess skin temperature recovery after cold stress test, a logarithmic equation for each region was calculated, and constant (β0) and slope (β1) coefficients were obtained. Intraclass correlation coefficient (ICC), standard error (SE), and within-subject coefficient of variation (CV) were determined. No differences were observed between measurement times in any of the regions for the logarithmic coefficients (p > 0.38). Anterior thigh (β0 ICC 0.33–0.47; β1 ICC 0.31–0.43) and posterior knee (β0 ICC 0.42–0.58; β1 ICC 0.28–0.57) were the regions with the lower ICCs, and the other regions presented values with a fair and good reproducibility (ICC > 0.41). Posterior leg was the region with the better reproducibility (β0 ICC 0.68–0.78; β1 ICC 0.59–0.74; SE 3–4%; within-subject CV 7–12%). In conclusion, cold stress test using Game Ready system showed a fair and good reproducibility, especially when the posterior leg was the region assessed.
Collapse
|
12
|
Rojas-Valverde D, Gutiérrez-Vargas R, Sánchez-Ureña B, Gutiérrez-Vargas JC, Priego-Quesada JI. Relationship between Skin Temperature Variation and Muscle Damage Markers after a Marathon Performed in a Hot Environmental Condition. Life (Basel) 2021; 11:life11080725. [PMID: 34440468 PMCID: PMC8398954 DOI: 10.3390/life11080725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
This study aimed to assess the effect of a marathon running at a hot environmental temperature on the baseline skin temperature (Tsk) of the posterior day and to analyze the relationship between Tsk response and muscle damage markers variation. The Tsk, creatine kinase, and lactate dehydrogenase of 16 marathon runners were assessed four times before (15 days and 45 min) and after (24 h and 6 days) a marathon in a hot environment (thermal stress index = 28.3 ± 3.3 °C and humidity ~81%). The Tsk of thirteen different body regions of both right and left lower limbs were analyzed. Higher values after the marathon were observed than 45 min before in creatine kinase (174.3 ± 136.4 UI/L < 1159.7 ± 699.7 UI/L, p < 0.01 and large effect size) and lactate dehydrogenase (362.6 ± 99.9 UI/L < 438 ± 115.5 UI/L, p = 0.02 and moderate effect size). Generally, Tsk was higher the day after the marathon than at the other three moments (e.g., rectus femoris region, 6 days before vs. the day after, 95% confidence interval of the difference (0.3, 1.6 °C), p = 0.04 and large effect size). No relationship or correlation was observed between the variation of Tsk and muscle damage markers (p > 0.05). In conclusion, performing a marathon in a hot environmental condition results in a higher Tsk the day after the marathon. This increase in Tsk could be because of the heat generated by the marathon and its subsequent physiological processes (e.g., increase in endothelial nitric oxide, glycogen resynthesis, or increase of systemic hormones), which would be reflected in the Tsk due to the peripheral vasodilation promoted by the hot environment. However, among these processes, muscle damage does not seem to be of great importance due to the lack of an observed relationship between Tsk and muscle damage markers.
Collapse
Affiliation(s)
- Daniel Rojas-Valverde
- Clínica de Lesiones Deportivas (Rehab&Readapt), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica;
- Núcleo de Estudios en Alto Rendimiento Deportivo y Salud (NARS), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica; (B.S.-U.); (J.C.G.-V.)
- Correspondence: (D.R.-V.); (J.I.P.-Q.); Tel.: +506-88250219 (D.R.-V.)
| | - Randall Gutiérrez-Vargas
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica;
- Núcleo de Estudios en Alto Rendimiento Deportivo y Salud (NARS), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica; (B.S.-U.); (J.C.G.-V.)
| | - Braulio Sánchez-Ureña
- Núcleo de Estudios en Alto Rendimiento Deportivo y Salud (NARS), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica; (B.S.-U.); (J.C.G.-V.)
- Programa de Ciencias del Ejercicio y la Salud (PROCESA), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
| | - Juan Carlos Gutiérrez-Vargas
- Núcleo de Estudios en Alto Rendimiento Deportivo y Salud (NARS), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica; (B.S.-U.); (J.C.G.-V.)
- Centro de Estudios para el Desarrollo y Rehabilitación en Salud (CEDERSA), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
| | - Jose I. Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain
- Biophysics and Medical Physics Group, Department of Physiology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (D.R.-V.); (J.I.P.-Q.); Tel.: +506-88250219 (D.R.-V.)
| |
Collapse
|
13
|
Muscular Strength Imbalances Are not Associated with Skin Temperature Asymmetries in Soccer Players. Life (Basel) 2020; 10:life10070102. [PMID: 32630633 PMCID: PMC7400411 DOI: 10.3390/life10070102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022] Open
Abstract
Although strength imbalances using isokinetic dynamometer have been examined for injury risk screening in soccer players, it is very expensive and time-consuming, making the evaluation of new methods appealing. The aim of the study was to analyze the agreement between muscular strength imbalances and skin temperature bilateral asymmetries as well as skin temperature differences in the hamstrings and quadriceps. The skin temperature of the anterior and posterior thigh of 59 healthy male soccer athletes was assessed at baseline using infrared thermography for the identification of hamstrings-quadriceps skin temperature differences and thermal asymmetries (>0.5 °C). Subsequently, concentric and eccentric peak torque of the quadriceps and hamstrings were considered in the determination of the ratios, as well as muscular asymmetries (>15%). When considering the torque parameters, 37.3% (n = 22) of the players would be classified as high risk for injuries. The percentage of those presenting skin temperature imbalances superior to 0.5 °C was 52.5% (n = 31). The skin temperature assessment showed sensitivity (22%) and specificity (32.2%) to identify torque asymmetries, demonstrating the inability to identify false negatives (15.3%) and false positives (30.5%) from all soccer athletes. In conclusion, skin temperature differences between hamstrings and quadriceps could be more related to thermoregulatory factors than strength imbalances.
Collapse
|