1
|
Rodrigo-Carranza V, Muñoz de la Cruz V, Hoogkamer W. Influence of Advanced-Footwear-Technology Spikes on Middle- and Long-Distance Running Performance Measures in Trained Runners. Int J Sports Physiol Perform 2025; 20:689-699. [PMID: 40088898 DOI: 10.1123/ijspp.2024-0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/17/2025]
Abstract
PURPOSE Two new designs of track spikes have recently emerged: spikes with a compliant and resilient midsole foam (eg, polyether block amide [PEBA]) and spikes that combine such modern foam with a carbon fiber plate. We evaluated the effect of these different spikes on running performance measures for middle- and long-distance track events in trained runners. METHODS Fourteen females on a single visit performed six 200-m trials at a self-perceived 800-m race pace in 3 different spike conditions (Control, PEBA, and PEBA + Plate), twice in a mirrored order. Sixteen males completed 4 visits. During each of the first 3 visits, they performed six 200-m trials at a self-perceived 800-m race pace, twice in each condition, followed by a 3000-m time trial in 1 of the 3 spike conditions. During visit 4, participants completed six 4-minute running-economy trials at 5 m/s, twice in each condition. RESULTS At the 800-m race pace, females ran faster in PEBA (2.1%) and PEBA + Plate (2.0%) compared with Control. Males ran faster in PEBA (1.4%) and PEBA + Plate (2.4%) compared with Control and in PEBA + Plate compared with PEBA (1.1%). Similarly, males ran the 3000-m time trial faster in PEBA (1.0%) and PEBA + Plate (2.4%) than in Control. Running economy was better in PEBA (5.1%) and PEBA + Plate (4.0%) than in Control. CONCLUSIONS Compared with traditional spiked shoes, shoes with PEBA foam (both with and without a plate) enhanced distance-running performance measures by 1% to 2% in females and males, with greater benefits in the PEBA + Plate condition in males.
Collapse
Affiliation(s)
- Víctor Rodrigo-Carranza
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
- Footwear Innovation Production, TempeInditex, Alicante, Spain
| | | | - Wouter Hoogkamer
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
2
|
Hudgins JH, Pastina JT, Gillis IL, Abel MG, Bergstrom HC, Black WS, Best SA. The Ability of Stryd Footpod Metrics to Reflect Changes in Metabolic Power Between Running Shoe Types. J Sports Sci 2024; 42:2229-2241. [PMID: 39565291 DOI: 10.1080/02640414.2024.2426903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024]
Abstract
It is unclear if running power (RP) estimated by the Stryd footpod device maintains its linear relationship to metabolic power (WMET) when switching between training and racing shoe types. This study determined if RP estimated by the Stryd footpod and its other spatiotemporal metrics reflect the improvement (decrease) in WMET when wearing high-performance racing shoes (HPRS; Nike AlphaFly Next%) compared to control training shoes (CTS; Nike Revolution 5). Fourteen well-trained runners completed two treadmill tests: Absolute Velocity Running Test (AVRT; 11.3-14.5 km·hr-1) and Relative Velocity Running Test (RVRT; 55-75% VO2MAX). WMET was determined with indirect calorimetry. RP was not significantly different between shoe types (p > 0.432) during the AVRT, but WMET was ~5% lower in HPRS (p < 0.001). During the RVRT, participants ran ~6% faster and at ~6% higher RP (both, p < 0.001) in HPRS for the same WMET (p = 0.869). Linear mixed models confirmed WMET was ~5% lower in HPRS for a given RP (p < 0.001). Still, RP and WMET were strongly related within shoe types (p < 0.001, conditional-R2 = 0.982, SEE = 2.57%). Form power ratio and ground contact time correlated with energetic cost (p < 0.011) but did not fully reflect the influence of shoe type. Therefore, runners should account for their shoe type when using RP to indicate WMET between training and racing.
Collapse
Affiliation(s)
- Jake H Hudgins
- Department of Human Physiology, Oregon Performance Research Laboratory, University of Oregon, Eugene, Oregon, USA
- Department of Kinesiology, University of Kentucky, Lexington, Kentucky, USA
| | - Joseph T Pastina
- Department of Kinesiology, University of Kentucky, Lexington, Kentucky, USA
| | - Isabelle L Gillis
- Department of Kinesiology, University of Kentucky, Lexington, Kentucky, USA
| | - Mark G Abel
- Department of Kinesiology, University of Kentucky, Lexington, Kentucky, USA
| | - Haley C Bergstrom
- Department of Kinesiology, University of Kentucky, Lexington, Kentucky, USA
| | - W Scott Black
- Department of Kinesiology, University of Kentucky, Lexington, Kentucky, USA
| | - Stuart A Best
- Department of Kinesiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Burns GT, Joubert DP. Running Shoes of the Postmodern Footwear Era: A Narrative Overview of Advanced Footwear Technology. Int J Sports Physiol Perform 2024; 19:975-986. [PMID: 39117307 DOI: 10.1123/ijspp.2023-0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 08/10/2024]
Abstract
The modern era of running shoes began in the 1960s with the introduction of simple polymer midsole foams, and it ended in the late 2010s with the introduction of advanced footwear technology (AFT). AFT is characterized by highly compliant, resilient, and lightweight foams with embedded, rigid, longitudinal architecture. This footwear complex improves a runner's efficiency, and it introduced a step change in running performance. Purpose: This review serves to examine the current state of knowledge around AFT-what it is and what we know about its ingredients, what benefits it confers to runners, and what may or may not mediate that benefit. We also discuss the emerging science around AFT being introduced to track-racing spikes and how it is currently regulated in sporting contexts. Conclusions: AFT has changed running as a sport. The construction of AFT is grossly understood, but the nature of the interacting elements is not. The magnitude of the enhancement of a runner's economy and performance has been characterized and modeled, but the nuanced factors that mediate those responses have not. With these knowns and unknowns, we conclude the review by providing a collection of best practices for footwear researchers, advice for runners interested in AFT, and a list of pertinent items for further investigation.
Collapse
Affiliation(s)
- Geoffrey T Burns
- United States Olympic and Paralympic Committee, Colorado Springs, CO, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Dustin P Joubert
- Department of Kinesiology, St. Edward's University, Austin, TX, USA
| |
Collapse
|
4
|
Martinez E, Hoogkamer W, Powell DW, Paquette MR. The Influence of "Super-Shoes" and Foot Strike Pattern on Metabolic Cost and Joint Mechanics in Competitive Female Runners. Med Sci Sports Exerc 2024; 56:1337-1344. [PMID: 38376997 DOI: 10.1249/mss.0000000000003411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
PURPOSE The objective of this study is to assess the influence of "super-shoes" on metabolic cost and joint mechanics in competitive female runners and to understand how foot strike pattern may influence the footwear effects. METHODS Eighteen competitive female runners ran four 5-min bouts on a force instrumented treadmill at 12.9 km·h -1 in 1) Nike Vaporfly Next% 2™ (SUPER) and 2) Nike Pegasus 38™ (CON) in a randomized and mirrored order. RESULTS Metabolic power was improved by 4.2% ( P < 0.001; d = 0.43) and metatarsophalangeal (MTP) negative work ( P < 0.001; d = 1.22), ankle negative work ( P = 0.001; d = 0.67), and ankle positive work ( P < 0.001; d = 0.97) were all smaller when running in SUPER compared with CON. There was no correlation between foot strike pattern and the between-shoe (CON to SUPER) percentage change for metabolic power ( r = 0.093, P = 0.715). CONCLUSIONS Metabolic power improved by 4.2% in "super-shoes" (but only by ~3.2% if controlling for shoe mass differences) in this cohort of competitive female runners, which is a smaller improvement than previously observed in men. The reduced mechanical demand at the MTP and ankle in "super-shoes" are consistent with previous literature and may explain or contribute to the metabolic improvements observed in "super-shoes"; however, foot strike pattern was not a moderating factor for the metabolic improvements of "super-shoes." Future studies should directly compare the metabolic response among different types of "super-shoes" between men and women.
Collapse
Affiliation(s)
| | - Wouter Hoogkamer
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA
| | | | - Max R Paquette
- College of Health Sciences, University of Memphis, Memphis, TN
| |
Collapse
|
5
|
Joubert DP, Oehlert GM, Jones EJ, Burns GT. Comparative Effects of Advanced Footwear Technology in Track Spikes and Road-Racing Shoes on Running Economy. Int J Sports Physiol Perform 2024; 19:705-711. [PMID: 38815961 DOI: 10.1123/ijspp.2023-0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE Determine the effects of advanced footwear technology (AFT) in track spikes and road-racing shoes on running economy (RE). METHODS Four racing shoes (3 AFT and 1 control) and 3 track spikes (2 AFT and 1 control) were tested in 9 male distance runners on 2 visits. Shoes were tested in a random sequence over 5-minute trials on visit 1 (7 trials at 16 km·h-1; 5-min rest between trials) and in the reverse/mirrored order on visit 2. Metabolic data were collected and averaged across visits. RESULTS There were significant differences across footwear conditions for oxygen consumption (F = 13.046; P < .001) and energy expenditure (F = 14.710; P < .001). Oxygen consumption (in milliliters per kilogram per minute) in both the first AFT spike (49.1 [1.7]; P < .001; dz = 2.1) and the other AFT spike (49.3 [1.7]; P < .001; dz = 1.7) was significantly lower than the control spike (50.2 [1.6]), which represented a 2.1% (1.0%) and 1.8% (1.0%) improvement in RE, respectively, for the AFT spikes. When comparing the subjects' most economic shoe by oxygen consumption (49.0 [1.5]) against their most economic spike (49.0 [1.8]), there were no statistical differences (P = .82). Similar statistical conclusions were made when comparing energy expenditure (in watts per kilogram). CONCLUSIONS AFT track spikes improved RE ∼2% relative to a traditional spike. Despite their heavier mass, AFT shoes resulted in similar RE as AFT spikes. This could make the AFT shoe an attractive option for longer track races, particularly in National Collegiate Athletic Association and high school athletics, where there are no stack-height rules.
Collapse
Affiliation(s)
- Dustin P Joubert
- Department of Kinesiology, St. Edward's University, Austin, TX, USA
| | - Garrett M Oehlert
- Department of Kinesiology and Health Science, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Eric J Jones
- Department of Kinesiology and Health Science, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Geoffrey T Burns
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
- United States Olympic and Paralympic Committee, Colorado Springs, CO, USA
| |
Collapse
|
6
|
Werkhausen A, Lund-Hansen M, Wiedenbruch L, Peikenkamp K, Rice H. Technologically advanced running shoes reduce oxygen cost and cumulative tibial loading per kilometer in recreational female and male runners. Sci Rep 2024; 14:11903. [PMID: 38789519 PMCID: PMC11126714 DOI: 10.1038/s41598-024-62263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Technologically advanced running shoes (TARS) improve performance compared to classical running shoes (CRS). Improved race performance has been attributed to metabolic savings in male runners, but it remains unclear if these same benefits are experienced among females and in recreational runners. The mechanisms behind these benefits are still not fully understood despite the need for optimisation, and their influence on injury mechanisms has not been explored. Here we combined biomechanical, physiological, and modelling approaches to analyse joint mechanics, oxygen uptake, and tibial load in nineteen male and female recreational runners running with CRS and TARS at their individual lactate threshold speed (12.4 ± 1.9 km/h). Oxygen uptake was 3.0 ± 1.5% lower in TARS than in CRS. Ankle dorsiflexion, joint moment and joint power were reduced in TARS compared to CRS at various phases of stance including midstance, while knee joint mechanics were mostly similar throughout. There were no significant differences for tibial bending moment during the stance phase but cumulative tibial damage per kilometre was 12 ± 9% lower in TARS compared to CRS. Our results suggest that running with TARS reduces oxygen cost in recreational female and male runners, which may partly be explained by differences in lower limb joint mechanics. The lower cumulative tibial bone load with TARS may allow runners to run longer distances in this type of shoe compared to CRS.
Collapse
Affiliation(s)
- Amelie Werkhausen
- Department of Physical Performance, Norwegian School of Sport Sciences, Sognsveien, 220, 0863, Oslo, Norway.
- Section for Pharmacy, Intelligent Health Initiative, Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway.
| | - Magne Lund-Hansen
- Department of Physical Performance, Norwegian School of Sport Sciences, Sognsveien, 220, 0863, Oslo, Norway
| | - Lucas Wiedenbruch
- Department of Physical Performance, Norwegian School of Sport Sciences, Sognsveien, 220, 0863, Oslo, Norway
- Department of Engineering Physics, FH Münster University of Applied Sciences, Münster, Germany
| | - Klaus Peikenkamp
- Department of Engineering Physics, FH Münster University of Applied Sciences, Münster, Germany
| | - Hannah Rice
- Department of Physical Performance, Norwegian School of Sport Sciences, Sognsveien, 220, 0863, Oslo, Norway
| |
Collapse
|
7
|
Willwacher S, Mai P, Helwig J, Hipper M, Utku B, Robbin J. Does Advanced Footwear Technology Improve Track and Road Racing Performance? An Explorative Analysis Based on the 100 Best Yearly Performances in the World Between 2010 and 2022. SPORTS MEDICINE - OPEN 2024; 10:14. [PMID: 38332220 PMCID: PMC10853158 DOI: 10.1186/s40798-024-00683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Advanced footwear technology (AFT) is currently being debated in sports. There is a direct evidence that distance running in AFT improves running economy. In addition, there is indirect evidence from competition performance for improved running performance from using AFTs in middle- and long-distance running and sprinting events. However, the extent to which world-class performance is affected across the full range of track and road racing events between genders has not been systematically analyzed. This study examined publicly available performance datasets of annual best track and road performances for evidence of potential systematic performance effects following the introduction of AFT. The analysis was based on the 100 best performances per year for men and women in outdoor events from 2010 to 2022, provided by the world governing body of athletics (World Athletics). We found evidence of progressing improvements in track and road running performances after the introduction of AFT for road races in 2016 and AFT for track racing in 2019. This evidence is more pronounced for distances longer than 1500 m in women and longer than 5000 m in men. Women seem to benefit more from AFT in distance running events than men. For the sprint events (100 m to 400 m hurdles), the peak performance gains in 2021 and 2022 compared to the pre-AFT period ranged from 0.6 to 1.1% and from 0.4 to 0.7% for women and men, respectively. For middle-distance events (400 m to 3000 m steeplechase), peak performance gains ranged from 0.6 to 1.9% and from 0.6 to 0.7% for women and men, respectively. For distances from 5000 m to the marathon, performance gains ranged from 2.2% to 3.5% and 0.7% to 1.4% for women and men, respectively. While the observational study design limits causal inference, this study provides a database on potential systematic performance effects after introducing advanced shoes/spikes in track and road running events in world-class athletes. Further research is needed to examine the underlying mechanisms and, in particular, potential gender differences in the performance effects of AFT.
Collapse
Affiliation(s)
- Steffen Willwacher
- Institute of Advanced Biomechanics and Motion Studies, Offenburg University of Applied Sciences, Campus West, Max-Planck-Str. 1, 77656, Offenburg, Germany.
| | - Patrick Mai
- Institute of Advanced Biomechanics and Motion Studies, Offenburg University of Applied Sciences, Campus West, Max-Planck-Str. 1, 77656, Offenburg, Germany
| | - Janina Helwig
- Institute of Advanced Biomechanics and Motion Studies, Offenburg University of Applied Sciences, Campus West, Max-Planck-Str. 1, 77656, Offenburg, Germany
| | - Markus Hipper
- Institute of Advanced Biomechanics and Motion Studies, Offenburg University of Applied Sciences, Campus West, Max-Planck-Str. 1, 77656, Offenburg, Germany
| | - Burkay Utku
- Institute of Advanced Biomechanics and Motion Studies, Offenburg University of Applied Sciences, Campus West, Max-Planck-Str. 1, 77656, Offenburg, Germany
| | - Johanna Robbin
- Institute of Advanced Biomechanics and Motion Studies, Offenburg University of Applied Sciences, Campus West, Max-Planck-Str. 1, 77656, Offenburg, Germany
| |
Collapse
|
8
|
Rodrigo-Carranza V, Hoogkamer W, Salinero JJ, Rodríguez-Barbero S, González-Ravé JM, González-Mohíno F. Influence of Running Shoe Longitudinal Bending Stiffness on Running Economy and Performance in Trained and National Level Runners. Med Sci Sports Exerc 2023; 55:2290-2298. [PMID: 37443458 DOI: 10.1249/mss.0000000000003254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
INTRODUCTION/PURPOSE Previous results about shoe longitudinal bending stiffness (LBS) and running economy (RE) show high variability. This study aimed to assess the effects of shoes with increased LBS on RE and performance in trained and national runners. METHODS Twenty-eight male runners were divided into two groups according to their 10-km performance times (trained, 38-45 min and national runners, <34 min). Subjects ran 2 × 3 min (at 9 and 13 km·h -1 for trained, and 13 and 17 km·h -1 for national runners) with an experimental shoe with carbon fiber plate to increase the LBS (Increased LBS) and a control shoe (without carbon fiber plate). We measured energy cost of running (W·kg -1 ) and spatiotemporal parameters in visit one and participants performed a 3000 m time trial (TT) in two successive visits. RESULTS Increased LBS improved RE in the trained group at slow (11.41 ± 0.93 W·kg -1 vs 11.86 ± 0.93 W·kg -1 ) and fast velocity (15.89 ± 1.24 W·kg -1 vs 16.39 ± 1.24 W·kg -1 ) and only at the fast velocity in the national group (20.35 ± 1.45 W·kg -1 vs 20.78 ± 1.18 W·kg -1 ). The improvements in RE were accompanied by different changes in biomechanical variables between groups. There were a similar improvement in the 3000 m TT test in Increased LBS for trained (639 ± 59 vs 644 ± 61 s in control shoes) and national runners (569 ± 21 vs 574 ± 21 s in control shoes) with more constant pace in increased LBS compared with control shoes in both groups. CONCLUSIONS Increasing shoe LBS improved RE at slow and fast velocities in trained runners and only at fast velocity in national runners. However, the 3000 m TT test improved similarly in both levels of runners with increased LBS. The improvements in RE are accompanied by small modifications in running kinematics that could explain the difference between the different levels of runners.
Collapse
Affiliation(s)
| | - Wouter Hoogkamer
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA
| | | | | | | | | |
Collapse
|
9
|
Paradisis GP, Zacharogiannis E, Bissas A, Hanley B. Recreational Runners Gain Physiological and Biomechanical Benefits From Super Shoes at Marathon Paces. Int J Sports Physiol Perform 2023; 18:1420-1426. [PMID: 37734742 DOI: 10.1123/ijspp.2023-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/27/2023] [Accepted: 08/13/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE Advanced footwear technology is prevalent in distance running, with research focusing on these "super shoes" in competitive athletes, with less understanding of their value for slower runners. The aim of this study was to compare physiological and biomechanical variables between a model of super shoes (Saucony Endorphin Speed 2) and regular running shoes (Saucony Cohesion 13) in recreational athletes. METHODS We measured peak oxygen uptake (VO2peak) in 10 runners before testing each subject 4 times in a randomly ordered crossover design (ie, Endorphin shoe or Cohesion shoe, running at 65% or 80% of velocity at VO2peak [vVO2peak]). We recorded video data using a high-speed camera (300 Hz) to calculate vertical and leg stiffnesses. RESULTS 65% vVO2peak was equivalent to a speed of 9.4 km·h-1 (0.4), whereas 80% vVO2peak was equivalent to 11.5 km·h-1 (0.5). Two-way mixed-design analysis of variance showed that oxygen consumption in the Endorphin shoe was 3.9% lower than in the Cohesion shoe at 65% vVO2peak, with an interaction between shoes and speed (P = .020) meaning an increased difference of 5.0% at 80% vVO2peak. There were small increases in vertical and leg stiffnesses in the Endorphin shoes (P < .001); the Endorphin shoe condition also showed trivial to moderate differences in step length, step rate, contact time, and flight time (P < .001). CONCLUSIONS There was a physiological benefit to running in the super shoes even at the slower speed. There were also spatiotemporal and global stiffness improvements indicating that recreational runners benefit from wearing super shoes.
Collapse
Affiliation(s)
- Giorgos P Paradisis
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Zacharogiannis
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanassios Bissas
- School of Natural, Social and Sport Sciences, University of Gloucestershire, Gloucester, United Kingdom
| | - Brian Hanley
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
| |
Collapse
|