1
|
Smith ME, Wahl D, Cavalier AN, McWilliams GT, Rossman MJ, Giordano GR, Bryan AD, Seals DR, LaRocca TJ. Repetitive element transcript accumulation is associated with inflammaging in humans. GeroScience 2024; 46:5663-5679. [PMID: 38641753 PMCID: PMC11493880 DOI: 10.1007/s11357-024-01126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/08/2024] [Indexed: 04/21/2024] Open
Abstract
Chronic, low-grade inflammation increases with aging, contributing to functional declines and diseases that reduce healthspan. Growing evidence suggests that transcripts from repetitive elements (RE) in the genome contribute to this "inflammaging" by stimulating innate immune activation, but evidence of RE-associated inflammation with aging in humans is limited. Here, we present transcriptomic and clinical data showing that RE transcript levels are positively related to gene expression of innate immune sensors, and to serum interleukin 6 (a marker of systemic inflammation), in a large group of middle-aged and older adults. We also: (1) use transcriptomics and whole-genome bisulfite (methylation) sequencing to show that many RE may be hypomethylated with aging, and that aerobic exercise, a healthspan-extending intervention, reduces RE transcript levels and increases RE methylation in older adults; and (2) extend our findings in a secondary dataset demonstrating age-related changes in RE chromatin accessibility. Collectively, our data support the idea that age-related RE transcript accumulation may play a role in inflammaging in humans, and that RE dysregulation with aging may be due in part to upstream epigenetic changes.
Collapse
Affiliation(s)
- Meghan E Smith
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Alyssa N Cavalier
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Gabriella T McWilliams
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Gregory R Giordano
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Sanchez-Martinez J, Solis-Urra P, Olivares-Arancibia J, Plaza-Diaz J. Physical Exercise and Mechanism Related to Alzheimer's Disease: Is Gut-Brain Axis Involved? Brain Sci 2024; 14:974. [PMID: 39451988 PMCID: PMC11506766 DOI: 10.3390/brainsci14100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease is a progressive neurodegenerative disease characterized by structural changes in the brain, including hippocampal atrophy, cortical thinning, amyloid plaques, and tau tangles. Due to the aging of the global population, the burden of Alzheimer's disease is expected to increase, making the exploration of non-pharmacological interventions, such as physical exercise, an urgent priority. RESULTS There is emerging evidence that regular physical exercise may mitigate the structural and functional declines associated with Alzheimer's disease. The underlying mechanisms, however, remain poorly understood. Gut-brain axis research is a promising area for further investigation. This system involves bidirectional communication between the gut microbiome and the brain. According to recent studies, the gut microbiome may influence brain health through modulating neuroinflammation, producing neuroactive compounds, and altering metabolic processes. Exercise has been shown to alter the composition of the gut microbiome, potentially impacting brain structure and function. In this review, we aim to synthesize current research on the relationship between physical exercise, structural brain changes in Alzheimer's disease, and the gut-brain axis. CONCLUSIONS In this study, we will investigate whether changes in the gut microbiome induced by physical exercise can mediate its neuroprotective effects, offering new insights into the prevention and treatment of Alzheimer's disease. By integrating findings from neuroimaging studies, clinical trials, and microbiome research, this review will highlight potential mechanisms. It will also identify key gaps in the literature. This will pave the way for future research directions.
Collapse
Affiliation(s)
- Javier Sanchez-Martinez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
| | - Patricio Solis-Urra
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 8370134, Chile
| | - Jorge Olivares-Arancibia
- AFySE Group, Research in Physical Activity and School Health, School of Physical Education, Faculty of Education, Universidad de Las Américas, Santiago 7500975, Chile;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
3
|
H Fosstveit S, Lohne-Seiler H, Feron J, Lucas SJE, Ivarsson A, Berntsen S. The intensity paradox: A systematic review and meta-analysis of its impact on the cardiorespiratory fitness of older adults. Scand J Med Sci Sports 2024; 34:e14573. [PMID: 38389140 DOI: 10.1111/sms.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
AIM The present systematic review and meta-analysis aimed to compare the effect of moderate- versus high-intensity aerobic exercise on cardiorespiratory fitness (CRF) in older adults, taking into account the volume of exercise completed. METHODS The databases MEDLINE (Ovid), EMBASE (Ovid), and CENTRAL (Cochrane Library) were searched to identify randomized controlled trials (RCTs). Two reviewers extracted data and assessed bias. Comprehensive Meta-Analysis software calculated overall effect size, intensity differences, and performed meta-regression analyses using pre-to-post intervention or change scores of peak oxygen uptake (V̇O2 peak). The review included 23 RCTs with 1332 older adults (intervention group: n = 932; control group: n = 400), divided into moderate-intensity (435 older adults) and high-intensity (476 older adults) groups. RESULTS Meta-regression analysis showed a moderate, but not significant, relationship between exercise intensity and improvements in V̇O2 peak after accounting for the completed exercise volume (β = 0.31, 95% CI = [-0.04; 0.67]). Additionally, studies comparing moderate- versus high-intensity revealed a small, but not significant, effect in favor of high-intensity (Hedges' g = 0.20, 95% CI = [-0.02; 0.41]). Finally, no significant differences in V̇O2 peak improvements were found across exercise groups employing various methods, modalities, and intensity monitoring strategies. CONCLUSION Findings challenge the notion that high-intensity exercise is inherently superior and indicate that regular aerobic exercise, irrespective of the specific approach and intensity, provides the primary benefits to CRF in older adults. Future RCTs should prioritize valid and reliable methodologies for monitoring and reporting exercise volume and adherence among older adults.
Collapse
Affiliation(s)
- Sindre H Fosstveit
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Hilde Lohne-Seiler
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Jack Feron
- School of Sport, Exercise and Rehabilitation Sciences and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Andreas Ivarsson
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| | - Sveinung Berntsen
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| |
Collapse
|
4
|
Eken Ö, Kafkas ME. Effects of low and high intensity interval training exercises on VO 2max and components of neuromuscular and vascular system in male volunteers. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2022; 22:352-363. [PMID: 36046991 PMCID: PMC9438513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To evaluate the effects of different intensity exercises on maximal oxygen consumption (VO2max and levels of components, namely brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor B (TrKB), vascular endothelial growth factor (VEGF), peroxisome proliferator activated receptor-gamma coactivator (PGC-1α), and irisin. METHODS Thirty-six male participants were divided into control (CNT), low-intensity (LIIT), and high-intensity interval training (HIIT) groups. LIIT and HIIT groups consisted of 8 exercises (20 s work and rest in each repetition, respectively) conducted for 4 weeks. VO2max and protein component levels were determined pre- and post-training. VO2max capacity was also determined using the Yo Yo Intermittent Recovery Test-1 (Yo Yo IR-1). Statistical analysis was conducted to determine significance of the differences observed. RESULTS According to the YoYo IR-1, VO2max, serum BDNF, VEGF, PGC1α, irisin, and TrkB data obtained in the study, a statistically significant difference between the groups was observed (p<0.05). While the interaction effect was found to be statistically significant in the study using PGC1α, VEGF, and TrkB data (p<0.05), it was not found to be statistically significant using YoYo IR-1, VO2max, serum BDNF, or irisin data (p>0.05). CONCLUSION HIIT and LIIT improved all study parameters, while HIIT showed a greater effect than LIIT.
Collapse
Affiliation(s)
- Özgür Eken
- Department of Physical Education and Sport Teaching, Faculty of Sports Sciences, Inonu University, Turkey,Corresponding author: Özgür EKEN, PhD., Department of Physical Education and Sport Teaching, Faculty of Sports Sciences, Inonu University, 44280, Malatya, Turkey E-mail:
| | - Muhammed Emin Kafkas
- Department of Movement and Training Sciences, Faculty of Sports Sciences, Inonu University, Turkey
| |
Collapse
|
5
|
Karoly HC, Skrzynski CJ, Moe E, Bryan AD, Hutchison KE. Investigating Associations Between Inflammatory Biomarkers, Gray Matter, Neurofilament Light and Cognitive Performance in Healthy Older Adults. Front Aging Neurosci 2021; 13:719553. [PMID: 34539381 PMCID: PMC8446648 DOI: 10.3389/fnagi.2021.719553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/29/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Exploring biological variables that may serve as indicators of the development and progression of cognitive decline is currently a high-priority research area. Recent studies have demonstrated that during normal aging, individuals experience increased inflammation throughout the brain and body, which may be linked to cognitive impairment and reduced gray matter volume in the brain. Neurofilament light polypeptide (NfL), which is released into the circulation following neuronal damage, has been proposed as a biomarker for neurodegenerative diseases, and may also have utility in the context of normal aging. The present study tested associations between age, peripheral levels of the pro-inflammatory cytokine IL-6, peripheral NfL, brain volume, and cognitive performance in a sample of healthy adults over 60 years old. Methods: Of the 273 individuals who participated in this study, 173 had useable neuroimaging data, a subset of whom had useable blood data (used for quantifying IL-6 and NfL) and completed a cognitive task. Gray matter (GM) thickness values were extracted from brain areas of interest using Freesurfer. Regression models were used to test relationships between IL-6, NfL, GM, and cognitive performance. To test putative functional relationships between these variables, exploratory path analytic models were estimated, in which the relationship between age, IL-6, and working memory performance were linked via four different operationalizations of brain health: (1) a latent GM variable composed of several regions linked to cognitive impairment, (2) NfL alone, (3) NfL combined with the GM latent variable, and (4) the hippocampus alone. Results: Regression models showed that IL-6 and NfL were significantly negatively associated with GM volume and that GM was positively associated with cognitive performance. The path analytic models indicated that age and cognitive performance are linked by GM in the hippocampus as well as several other regions previously associated with cognitive impairment, but not by NfL alone. Peripheral IL-6 was not associated with age in any of the path models. Conclusions: Results suggest that among healthy older adults, there are several GM regions that link age and cognitive performance. Notably, NfL alone is not a sufficient marker of brain changes associated with aging, inflammation, and cognitive performance.
Collapse
Affiliation(s)
- Hollis C Karoly
- Institute for Cognitive Science, University of Colorado Boulder, Boulder, CO, United States.,Department of Psychology, Colorado State University, Fort Collins, CO, United States
| | - Carillon J Skrzynski
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Erin Moe
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Kent E Hutchison
- Institute for Cognitive Science, University of Colorado Boulder, Boulder, CO, United States.,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States.,Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|