1
|
Yuan Y, He Q, Zhang S, Li M, Tang Z, Zhu X, Jiao Z, Cai W, Xiang X. Application of Physiologically Based Pharmacokinetic Modeling in Preclinical Studies: A Feasible Strategy to Practice the Principles of 3Rs. Front Pharmacol 2022; 13:895556. [PMID: 35645843 PMCID: PMC9133488 DOI: 10.3389/fphar.2022.895556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Pharmacokinetic characterization plays a vital role in drug discovery and development. Although involving numerous laboratory animals with error-prone, labor-intensive, and time-consuming procedures, pharmacokinetic profiling is still irreplaceable in preclinical studies. With physiologically based pharmacokinetic (PBPK) modeling, the in vivo profiles of drug absorption, distribution, metabolism, and excretion can be predicted. To evaluate the application of such an approach in preclinical investigations, the plasma pharmacokinetic profiles of seven commonly used probe substrates of microsomal enzymes, including phenacetin, tolbutamide, omeprazole, metoprolol, chlorzoxazone, nifedipine, and baicalein, were predicted in rats using bottom-up PBPK models built with in vitro data alone. The prediction's reliability was assessed by comparison with in vivo pharmacokinetic data reported in the literature. The overall predicted accuracy of PBPK models was good with most fold errors within 2, and the coefficient of determination (R2) between the predicted concentration data and the observed ones was more than 0.8. Moreover, most of the observation dots were within the prediction span of the sensitivity analysis. We conclude that PBPK modeling with acceptable accuracy may be incorporated into preclinical studies to refine in vivo investigations, and PBPK modeling is a feasible strategy to practice the principles of 3Rs.
Collapse
Affiliation(s)
- Yawen Yuan
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Shunguo Zhang
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Li
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhijia Tang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weimin Cai
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Ogunlana OO, Adetuyi BO, Rotimi M, Esalomi L, Adeyemi A, Akinyele J, Ogunlana OE, Adetuyi OA, Adebisi OA, Opata EK, Baty RS, Batiha GES. Hypoglycemic and antioxidative activities of ethanol seed extract of Hunteria umbellate (Hallier F.) on streptozotocin-induced diabetic rats. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00285-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Abstract
Background
Diabetes, a global cause of mortality in developing countries is a chronic disorder affecting the metabolism of macromolecules and has been attributed to the defective production and action of insulin characterized by persistent hyperglycemic properties. This global disorder harms organs of the body such as the liver, kidney and spleen. Medicinal plants such as Hunteria umbellate have been shown to possess hypoglycemic, antioxidative and anti-diabetic properties owing to the high concentration of active phytochemical constituents like flavonoids and alkaloids.
The present study seeks to evaluate the hypoglycemic activities of ethanolic seed extract of Hunteria umbellate on streptozotocin-induced diabetes rats.
Methods
Thirty (30) female experimental rats were randomly divided into five groups with six rats per group and were administered streptozotocin (STZ) and Hunteria umbellate as follows. Group 1 served as control and was given only distilled water, group 2 rats were administered 60 mg/kg STZ; Group 3 was administered 60 mg/kg STZ and 100 mg/kg metformin; group 4 rats were administered 60 mg/kg STZ and 800 mg/kg Hunteria umbellate, group 5 rats 60 mg/kg STZ and 400 mg/kg Hunteria umbellate. The fasting blood glucose level of each rat was measured before sacrifice. Rats were then sacrificed 24 h after the last dose of treatment.
Results
The results showed that Hunteria umbellate significantly reversed STZ-induced increase in fasting blood glucose and increase in body and organs weight of rats. Hunteria umbellate significantly reversed STZ-induced decrease in antioxidant enzyme in liver, kidney and spleen of rats. Hunteria umbellate significantly reversed STZ-induced increase in oxidative stress markers in liver, kidney and spleen of rats.
Conclusion
Collectively, our results provide convincing information that inhibition of oxidative stress and regulation of blood glucose level are major mechanisms through which Hunteria umbellate protects against streptozotocin-induced diabketes rats.
Collapse
|
3
|
Lee U, Kwon MH, Kang HE. Pharmacokinetic alterations in poloxamer 407-induced hyperlipidemic rats. Xenobiotica 2018; 49:611-625. [PMID: 29658375 DOI: 10.1080/00498254.2018.1466212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. Plasma lipid profile abnormalities in hyperlipidemia can potentially alter the pharmacokinetics of a drug in a complex manner. To evaluate these pharmacokinetic alterations in hyperlipidemia and to determine the underlying mechanism(s), poloxamer 407-induced hyperlipidemic rats (HL rats), a well-established animal model of hyperlipidemia have been used. 2. In this review, we summarize findings on the pathophysiological and gene expression changes in drug-metabolizing enzymes and transporters in HL rats. We discuss pharmacokinetic changes in drugs metabolized primarily via hepatic cytochrome P450 (CYPs) in terms of alterations in hepatic intrinsic clearance (CL'int), free fraction in plasma (fu) and hepatic blood flow rate (QH), depending on the hepatic excretion ratio, as well as drugs eliminated primarily by mechanisms other than hepatic CYPs. 3. For lipoprotein-bound drugs, increased binding to lipoproteins resulted in lower fu values and volumes of distribution, with some exceptions. Generally, slower non-renal clearance (or total body clearance) of drugs that are substrates of hepatic CYP3A and CYP2C is well explained by the following factors: alterations in CL'int (due to down-regulation of hepatic CYPs), decreased fu and/or possible decreased QH. 4. These consistent findings across studies in HL rats suggest more studies are needed at the clinical level for optimal pharmacotherapies for hyperlipidemia.
Collapse
Affiliation(s)
- Unji Lee
- a Department of Pharmacy , Ewha Womans University Medical Center , Seoul , South Korea
| | - Mi Hye Kwon
- b College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences , The Catholic University of Korea , Bucheon , South Korea
| | - Hee Eun Kang
- b College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences , The Catholic University of Korea , Bucheon , South Korea
| |
Collapse
|
4
|
Chan LN, Anderson GD. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol). Clin Pharmacokinet 2015; 53:1115-36. [PMID: 25267448 DOI: 10.1007/s40262-014-0190-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed.
Collapse
Affiliation(s)
- Lingtak-Neander Chan
- Department of Pharmacy, University of Washington, Box 357630, Seattle, WA, 98195, USA
| | | |
Collapse
|
5
|
Lee U, Oh E. Pharmacokinetic changes of drugs in a rat model of liver cirrhosis induced by dimethylnitrosamine, alone and in combination with diabetes mellitus induced by streptozotocin. Biopharm Drug Dispos 2014; 36:1-14. [PMID: 24861008 DOI: 10.1002/bdd.1901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/11/2014] [Accepted: 05/14/2014] [Indexed: 11/08/2022]
Abstract
Rats with liver cirrhosis induced by N-dimethylnitrosamine (LC) and rats with LC with diabetes mellitus induced by streptozotocin (LCD) have been developed as animal models for human liver cirrhosis and liver cirrhosis with diabetes mellitus, respectively. Changes in the pharmacokinetics of drugs (mainly non-renal clearance, CLNR) in LC and LCD rats reported in the literature compared with respective control rats were reviewed. This review mainly explains the changes in the CLNRs of drugs (which are mainly metabolized via hepatic microsomal cytochrome P450s, CYPs) in LC and LCD rats, in terms of the changes in in vitro hepatic intrinsic clearance (CLint; mainly due to the changes in CYPs in the disease state), free (unbound) fraction of a drug in the plasma (fp) and hepatic blood flow rate (QH) depending on the hepatic excretion ratio of the drug. Generally, changes in the CLNRs of drugs in LC and LCD rats could be well explained by the above-mentioned three factors. The mechanism of urinary excretion of drugs (such as glomerular filtration or renal active secretion or reabsorption) in LC and LCD rats is also discussed. The pharmacokinetics of the drugs reported in the LC and LCD rats were scarce in humans. Thus, the present rat data should be extrapolated carefully to humans.
Collapse
Affiliation(s)
- Unji Lee
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | | |
Collapse
|
6
|
Shaik IH, Mehvar R. Effects of Normothermic Hepatic Ischemia–Reperfusion Injury on the In Vivo, Isolated Perfused Liver, and Microsomal Disposition of Chlorzoxazone, a Cytochrome P450 2E1 Probe, in Rats. J Pharm Sci 2011; 100:5281-92. [DOI: 10.1002/jps.22708] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 06/28/2011] [Accepted: 06/28/2011] [Indexed: 12/23/2022]
|
7
|
Hopf FW, Simms JA, Chang SJ, Seif T, Bartlett SE, Bonci A. Chlorzoxazone, an SK-type potassium channel activator used in humans, reduces excessive alcohol intake in rats. Biol Psychiatry 2011; 69:618-24. [PMID: 21195386 PMCID: PMC3062269 DOI: 10.1016/j.biopsych.2010.11.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/29/2010] [Accepted: 11/08/2010] [Indexed: 01/05/2023]
Abstract
BACKGROUND Alcoholism imposes a tremendous social and economic burden. There are relatively few pharmacological treatments for alcoholism, with only moderate efficacy, and there is considerable interest in identifying additional therapeutic options. Alcohol exposure alters SK-type potassium channel (SK) function in limbic brain regions. Thus, positive SK modulators such as chlorzoxazone (CZX), a US Food and Drug Administration-approved centrally acting myorelaxant, might enhance SK function and decrease neuronal activity, resulting in reduced alcohol intake. METHODS We examined whether CZX reduced alcohol consumption under two-bottle choice (20% alcohol and water) in rats with intermittent access to alcohol (IAA) or continuous access to alcohol (CAA). In addition, we used ex vivo electrophysiology to determine whether SK inhibition and activation can alter firing of nucleus accumbens (NAcb) core medium spiny neurons. RESULTS Chlorzoxazone significantly and dose-dependently decreased alcohol but not water intake in IAA rats, with no effects in CAA rats. Chlorzoxazone also reduced alcohol preference in IAA but not CAA rats and reduced the tendency for rapid initial alcohol consumption in IAA rats. Chlorzoxazone reduction of IAA drinking was not explained by locomotor effects. Finally, NAcb core neurons ex vivo showed enhanced firing, reduced SK regulation of firing, and greater CZX inhibition of firing in IAA versus CAA rats. CONCLUSIONS The potent CZX-induced reduction of excessive IAA alcohol intake, with no effect on the more moderate intake in CAA rats, might reflect the greater CZX reduction in IAA NAcb core firing observed ex vivo. Thus, CZX could represent a novel and immediately accessible pharmacotherapeutic intervention for human alcoholism.
Collapse
Affiliation(s)
- F Woodward Hopf
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, California, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Ahn CY, Bae SK, Bae SH, Kang HE, Kim SH, Lee MG, Shin WG. Pharmacokinetics of sildenafil and its metabolite, N-desmethylsildenafil, in rats with liver cirrhosis and diabetes mellitus, alone and in combination. Xenobiotica 2010; 41:164-74. [PMID: 21070144 DOI: 10.3109/00498254.2010.532885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pharmacokinetics of sildenafil and its metabolite, N-desmethylsildenafil, in humans and rats with liver cirrhosis (LC) and diabetes mellitus (DM), alone and in combination (LCD) did not seem to be reported. Sildenafil was administered intravenously (10 mg/kg) and orally (20 mg/kg) to control, LC, DM, and LCD rats. Expression of intestinal CYP isozymes in those rats was also measured. In LC, DM, and LCD rats, the areas under the curve (AUCs) of intravenous sildenafil were significantly greater (by 195%, 54.2%, and 127%, respectively) than controls. In LC and LCD rats, AUCs of oral sildenafil were significantly greater (3010% and 2030%, respectively) than controls. In LC, DM, and LCD rats, significantly greater AUCs of intravenous sildenafil were due to the slower hepatic extraction of sildenafil (because of decrease in the protein expression of hepatic CYP2C11 and 3A subfamily in LC and LCD rats, and CYP2C11 in DM rats). In LC and LCD rats, greater magnitude of increase in AUCs of oral sildenafil than those after the intravenous administration could be mainly due to the decrease in the intestinal extraction of sildenafil (because of decrease in the protein expression of intestinal CYP2C11 in LC and LCD rats).
Collapse
Affiliation(s)
- C Y Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang X, Hu L, Tong S, Zheng Y, Ye F, Lin D, Lin G, Zhang X, Wu H. Determination of Chlorzoxazone in Rat Plasma by LC-ESI-MS/MS and Its Application to a Pharmacokinetic Study. ANAL LETT 2010. [DOI: 10.1080/00032711003717430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Jung HY, Kang HE, Choi YH, Kim SH, Lee MG. Time-dependent effects of Klebsiella pneumoniae endotoxin on the pharmacokinetics of chlorzoxazone and its main metabolite, 6-hydroxychlorzoxazone, in rats: restoration of the parameters in 96 hour in KPLPS rats to control levels. Biopharm Drug Dispos 2009; 30:485-93. [PMID: 19753555 DOI: 10.1002/bdd.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It has been reported that chlorzoxazone (CZX) was primarily metabolized via hepatic Cyp2e1 to form 6-hydroxychlorzoxazone (OH-CZX) in rats, and the activity of aniline hydroxylase (a Cyp2e1 marker) in the liver was significantly decreased in rats at 24 h after pretreatment with lipopolysaccharide derived from Klebsiella pneumoniae (24 h KPLPS rats), whereas the levels were not changed at 2 h and 96 h in the KPLPS rats. Thus, the time-dependent pharmacokinetic parameters of CZX and OH-CZX were evaluated after the intravenous administration of CZX (20 mg/kg) to control rats, and the 2 h, 24 h and 96 h KPLPS rats along with the time-dependent changes in the protein expression of hepatic Cyp2e1. After the intravenous administration of CZX to 24 h KPLPS rats, the AUC(0-2 h) of OH-CZX and AUC(OH-CZX, 0-2 h)/AUC(CZX) were significantly smaller (by 40.5% and 71.2%, respectively) than those of controls due to the significant decrease (by 75.3%) in the protein expression of hepatic Cyp2e1. However, in 96 h KPLPS rats, the pharmacokinetic parameters of both CZX and OH-CZX were unchanged compared with controls due to the restoration of the protein expression of hepatic Cyp2e1 to control levels. These observations highlighted the existence of the time-dependent effects of KPLPS on the pharmacokinetics of CZX and OH-CZX in rats.
Collapse
Affiliation(s)
- Hye Y Jung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
11
|
Ahn CY, Bae SK, Bae SH, Kim T, Jung YS, Kim YC, Lee MG, Shin WG. Pharmacokinetics of oltipraz in diabetic rats with liver cirrhosis. Br J Pharmacol 2009; 156:1019-28. [PMID: 19226288 DOI: 10.1111/j.1476-5381.2008.00105.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE The incidence of diabetes mellitus is increased in patients with liver cirrhosis. Oltipraz is currently in trials to treat patients with liver fibrosis and cirrhosis induced by chronic hepatitis types B and C and is primarily metabolized via hepatic cytochrome P450 isozymes CYP1A1/2, 2B1/2, 2C11, 2D1 and 3A1/2 in rats. We have studied the influence of diabetes mellitus on pharmacokinetics of oltipraz and on expression of hepatic, CYP1A, 2B1/2, 2C11, 2D and 3A in rats with experimental liver cirrhosis. EXPERIMENTAL APPROACH Oltipraz was given intravenously (10 mg x kg(-1)) or orally (30 mg x kg(-1)) to rats with liver cirrhosis induced by N-dimethylnitrosamine (LC rats) or with diabetes, induced by streptozotocin (DM rats) or to rats with both liver cirrhosis and diabetes (LCD rats) and to control rats, and pharmacokinetic variables measured. Protein expression of hepatic CYP1A, 2B1/2, 2C11, 2D and 3A was measured using Western blot analysis. KEY RESULTS After i.v. or p.o. administration of oltipraz to LC and DM rats, the AUC was significantly greater and smaller, respectively, than that in control rats. In LCD rats, the AUC was that of LC and DM rats (partially restored towards control rats). Compared with control rats, the protein expression of hepatic CYP1A increased, that of CYP2C11 and 3A decreased, but that of CYP2B1/2 and 2D was not altered in LCD rats. CONCLUSIONS AND IMPLICATIONS In rats with diabetes and liver cirrhosis, the AUC of oltipraz was partially restored towards that of control rats.
Collapse
Affiliation(s)
- C Y Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|