1
|
Drees A, Nassiri V, Tabernilla A, Serroyen J, Gustin E, Dos Santos Rodrigues B, Moss DM, De Smedt A, Vinken M, Van Goethem F, Sanz-Serrano J. Optimization of the drug-induced cholestasis index based on advanced modeling for predicting liver toxicity. Toxicology 2025; 514:154119. [PMID: 40107378 DOI: 10.1016/j.tox.2025.154119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Cholestatic drug-induced liver injury (cDILI) is a frequent reason for drug failure and withdrawal during premarketing and postmarketing stages of drug development. Strategies for reliable detection of cDILI in early drug development are therefore urgently needed. The drug-induced cholestasis index (DICI) concept was previously introduced as a tool for assessing the cholestatic potential of drug candidates. DICI is calculated as the ratio between the viability values obtained in drug-treated liver cells in the presence and absence of bile acids. The present in vitro study was set up to investigate the applicability of DICI in a novel high-throughput and large sample setting. Furthermore, the improvement of the predictivity of the DICI by introduction of advanced modeling was explored. Fifty-eight well-documented drugs were selected and categorized as drugs inducing cDILI, non-cholestatic DILI (ncDILI), and not inducing DILI (non-DILI). Cultures of human hepatoma HepaRG cells in 3D spheroid configuration were exposed to 9 half-log concentrations of each drug for 1, 3 and 7 days in the absence or presence of a concentrated mixture of human bile acids. The highest concentration of each drug was based on solubility and the maximum concentrations in human plasma (total Cmax). DICI values were computed for all drugs and time points. In addition, the area under the curve ratio and the occurrence of a trend in the cytotoxicity profiles were included as modeling descriptors. As such, 3 time-related scenarios were considered upon modeling, while categories were modeled on a nominal or an ordinal scale. Applying DICI with a cut-off value of 0.8 resulted in a high sensitivity for the cDILI class, but in turn, a low sensitivity for the non- DILI class. From the 28 predictive models generated, the best performing models integrated all descriptors and the ordinal scale for either the 7-day time point from a 3-time-point model or the 3-day time point. While these models were unable to accurately identify ncDILI drugs, the 7-day time point identified 84 % of the cDILI drugs and the 3-day time point correctly identified 94 % of non-DILI drugs. Based on the obtained results, it can be concluded that the reported DICI modeling provides an optimized approach that could be applied in an integrated DILI testing strategy.
Collapse
Affiliation(s)
- Annika Drees
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Belgium
| | | | - Andrés Tabernilla
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Belgium
| | - Jan Serroyen
- Janssen R&D, Statistics & Decision Sciences, Belgium
| | | | | | | | - Ann De Smedt
- Janssen R&D, Preclinical Sciences and Translational Safety, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Belgium
| | - Freddy Van Goethem
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Belgium; Janssen R&D, Preclinical Sciences and Translational Safety, Belgium
| | - Julen Sanz-Serrano
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Belgium.
| |
Collapse
|
2
|
Abza GB, De Vos K, Annaert P. Inhibition of ABC transporters by sorafenib and lenvatinib: implications for drug-induced cholestasis. Xenobiotica 2025:1-17. [PMID: 40096842 DOI: 10.1080/00498254.2025.2475501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 03/19/2025]
Affiliation(s)
- Getahun Befirdu Abza
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Pharmacology, School of Pharmacy, Jimma University, Jimma, Ethiopia
| | - Kristof De Vos
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- BioNotus, Niel, Belgium
| |
Collapse
|
3
|
de Bruijn VMP, Rietjens IMCM. From hazard to risk prioritization: a case study to predict drug-induced cholestasis using physiologically based kinetic modeling. Arch Toxicol 2024; 98:3077-3095. [PMID: 38755481 PMCID: PMC11324677 DOI: 10.1007/s00204-024-03775-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Cholestasis is characterized by hepatic accumulation of bile acids. Clinical manifestation of cholestasis only occurs in a small proportion of exposed individuals. The present study aims to develop a new approach methodology (NAM) to predict drug-induced cholestasis as a result of drug-induced hepatic bile acid efflux inhibition and the resulting bile acid accumulation. To this end, hepatic concentrations of a panel of drugs were predicted by a generic physiologically based kinetic (PBK) drug model. Their effects on hepatic bile acid efflux were incorporated in a PBK model for bile acids. The predicted bile acid accumulation was used as a measure for a drug's cholestatic potency. The selected drugs were known to inhibit hepatic bile acid efflux in an assay with primary suspension-cultured hepatocytes and classified as common, rare, or no for cholestasis incidence. Common cholestasis drugs included were atorvastatin, chlorpromazine, cyclosporine, glimepiride, ketoconazole, and ritonavir. The cholestasis incidence of the drugs appeared not to be adequately predicted by their Ki for inhibition of hepatic bile acid efflux, but rather by the AUC of the PBK model predicted internal hepatic drug concentration at therapeutic dose level above this Ki. People with slower drug clearance, a larger bile acid pool, reduced bile salt export pump (BSEP) abundance, or given higher than therapeutic dose levels were predicted to be at higher risk to develop drug-induced cholestasis. The results provide a proof-of-principle of using a PBK-based NAM for cholestasis risk prioritization as a result of transporter inhibition and identification of individual risk factors.
Collapse
Affiliation(s)
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Sakai Y, Matsumura M, Iwao T, Matsunaga T. Culture methods focusing on bile canalicular formation using primary human hepatocytes in a short time. In Vitro Cell Dev Biol Anim 2023; 59:606-614. [PMID: 37682508 DOI: 10.1007/s11626-023-00805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
The development of models for predicting hepatotoxicity is warranted, as the hepatotoxicity risk of 38-51% of compounds is undetectable in nonclinical studies. Cholestatic drug-induced liver injury (DILI) is a condition in which bile acids are abnormally excreted into the capillary bile canaliculi and are accumulated in hepatocytes, caused by the inhibition of bile salt export pump (BSEP), a transporter that is mainly associated with excretion of bile acids. Although laboratory animals are used as models, the use of human-derived cells is required owing to species differences. Unfortunately, primary human hepatocytes (PHHs) show rapid loss of function in culture and difficulties in forming bile canaliculi. Therefore, we aimed to develop an in vitro culture method for the efficient formation of bile canaliculi and for assessing the function of BSEP in PHHs. Here, PHHs were cultured from 1 h after thawing to day 2 with Z-VAD-FMK, a total caspase inhibitor, and RevitaCell™ supplement, an irreversible Rho-associated coiled-coil forming kinase (ROCK) inhibitor, in combination with RM-101. The PHHs formed bile canaliculi and showed BSEP function on day 6 of culture. Our findings suggest that cultured PHHs may improve the prediction accuracy of the risks of cholestatic DILI-contained toxicity on bile canaliculi.
Collapse
Affiliation(s)
- Yoko Sakai
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, 467-8603, Japan
- Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Masanari Matsumura
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, 467-8603, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, 467-8603, Japan.
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, 467-8603, Japan
| |
Collapse
|
5
|
Hsin CH, Kuehne A, Gu Y, Jedlitschky G, Hagos Y, Gründemann D, Fuhr U. In vitro validation of an in vivo phenotyping drug cocktail for major drug transporters in humans. Eur J Pharm Sci 2023; 186:106459. [PMID: 37142000 DOI: 10.1016/j.ejps.2023.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/19/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Cocktails of transporter probe drugs are used in vivo to assess transporter activity and respective drug-drug interactions. An inhibitory effect of components on transporter activities should be ruled out. Here, for a clinically tested cocktail consisting of adefovir, digoxin, metformin, sitagliptin, and pitavastatin, inhibition of major transporters by individual probe substrates was investigated in vitro. METHODS Transporter transfected HEK293 cells were used in all evaluations. Cell-based assays were applied for uptake by human organic cation transporters 1/2 (hOCT1/2), organic anion transporters 1/3 (hOAT1/3), multidrug and toxin extrusion proteins 1/2K (hMATE1/2K), and organic anion transporter polypeptide 1B1 (hOATP1B1). For P-glycoprotein (hMDR1) a cell-based efflux assay was used whereas an inside-out vesicle-based assay was used for the bile salt export pump (hBSEP). All assays used standard substrates and established inhibitors (as positive controls). Inhibition experiments using clinically achievable concentrations of potential perpetrators at the relevant transporter expression site were carried out initially. If there was a significant effect, the inhibition potency (Ki) was studied in detail. RESULTS In the inhibition tests, only sitagliptin had an effect and reduced hOCT1- and hOCT2- mediated metformin uptake and hMATE2K mediated MPP+ uptake by more than 70%, 80%, and 30%, respectively. The ratios of unbound Cmax (observed clinically) to Ki of sitagliptin were low with 0.009, 0.03, and 0.001 for hOCT1, hOCT2, and hMATE2K, respectively. CONCLUSION The inhibition of hOCT2 in vitro by sitagliptin is in agreement with the borderline inhibition of renal metformin elimination observed clinically, supporting a dose reduction of sitagliptin in the cocktail.
Collapse
Affiliation(s)
- Chih-Hsuan Hsin
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | | | - Yi Gu
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Gabriele Jedlitschky
- Department of General Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | | | - Dirk Gründemann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Uwe Fuhr
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany.
| |
Collapse
|
6
|
Role of Hepatocyte Transporters in Drug-Induced Liver Injury (DILI)-In Vitro Testing. Pharmaceutics 2022; 15:pharmaceutics15010029. [PMID: 36678658 PMCID: PMC9866820 DOI: 10.3390/pharmaceutics15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Bile acids and bile salts (BA/BS) are substrates of both influx and efflux transporters on hepatocytes. Canalicular efflux transporters, such as BSEP and MRP2, are crucial for the removal of BA/BS to the bile. Basolateral influx transporters, such as NTCP, OATP1B1/1B3, and OSTα/β, cooperate with canalicular transporters in the transcellular vectorial flux of BA/BS from the sinusoids to the bile. The blockage of canalicular transporters not only impairs the bile flow but also causes the intracellular accumulation of BA/BS in hepatocytes that contributes to, or even triggers, liver injury. In the case of BA/BS overload, the efflux of these toxic substances back to the blood via MRP3, MRP4, and OST α/β is considered a relief function. FXR, a key regulator of defense against BA/BS toxicity suppresses de novo bile acid synthesis and bile acid uptake, and promotes bile acid removal via increased efflux. In drug development, the early testing of the inhibition of these transporters, BSEP in particular, is important to flag compounds that could potentially inflict drug-induced liver injury (DILI). In vitro test systems for efflux transporters employ membrane vesicles, whereas those for influx transporters employ whole cells. Additional in vitro pharmaceutical testing panels usually include cellular toxicity tests using hepatocytes, as well as assessments of the mitochondrial toxicity and accumulation of reactive oxygen species (ROS). Primary hepatocytes are the cells of choice for toxicity testing, with HepaRG cells emerging as an alternative. Inhibition of the FXR function is also included in some testing panels. The molecular weight and hydrophobicity of the drug, as well as the steady-state total plasma levels, may positively correlate with the DILI potential. Depending on the phase of drug development, the physicochemical properties, dosing, and cut-off values of BSEP IC50 ≤ 25-50 µM or total Css,plasma/BSEP IC50 ≥ 0.1 may be an indication for further testing to minimize the risk of DILI liability.
Collapse
|
7
|
Chen C, Qian J, Zhao X, Han X, Tang X, Gao J, Liu Y, Jiang J, Wen B. Metabolic profiling of emodin drug-induced liver injury and silybin treatment in rats using UPLC-Q-TOF-MS: A metabolomic and mechanistic approach. Biomed Chromatogr 2022; 36:e5469. [PMID: 35904380 DOI: 10.1002/bmc.5469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022]
Abstract
Silybin, an active component in the plant Silybum marianum (L.) Gaertn. is commonly used to protect against liver disease. We investigated silybin's protective potential in rat liver against emodin-induced liver injury 4wk. Aspartate aminotransferase and direct bilirubin serum biomarkers for liver toxicity were significantly increased and liver histopathology revealed cholestasis and necrosis in rats given emodin only, whereas AST and total bile acid in rats given emodin and silybin simultaneously were changed compared to rats given emodin. Liver gene and protein levels of Cyp7a1 and Bsep for cholesterol metabolism, bile acid synthesis and transport were significantly altered with emodin, where cotreatment with silybin attenuated emodin's adverse effect. Metabolomic analysis with UPLC-Q-TOF-MS determined eight potential metabolite biomarkers in serum, urine, and liver tissue. Network analysis was conducted to conceptualize interplay of genes, metabolites, and metabolic pathways for cholesterol metabolism and bile acid synthesis for liver injury. Overall, rats given only emodin was shown to be a sound model to investigate fat-associated DILI and that cotreatment with silybin prevents fatty liver injury. This metabolomic study reveal that emodin-induced fatty liver injury has disrupted bile acid synthesis, vitamin B6 and glycerophospholipid metabolism pathways, and that silybin ameliorates liver injury on these compromised pathways.
Collapse
Affiliation(s)
- Chang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Jiahui Qian
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xinyu Zhao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xuyang Han
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, P. R. China
| | - Xu Tang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Junfeng Gao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Jinzhu Jiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Binyu Wen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
8
|
de Bruijn VMP, Rietjens IMCM, Bouwmeester H. Population pharmacokinetic model to generate mechanistic insights in bile acid homeostasis and drug-induced cholestasis. Arch Toxicol 2022; 96:2717-2730. [PMID: 35876888 PMCID: PMC9352636 DOI: 10.1007/s00204-022-03345-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 12/05/2022]
Abstract
Bile acids (BA) fulfill a wide range of physiological functions, but are also involved in pathologies, such as cholestasis. Cholestasis is characterized by an intrahepatic accumulation of BAs and subsequent spillage to the systemic circulation. The aim of the present study was to develop physiologically based kinetic (PBK) models that would provide a tool to predict dose-dependent BA accumulation in humans upon treatment with a Bile Salt Export Pump (BSEP) inhibitor. We developed a PBK model describing the BA homeostasis using glycochenodeoxycholic acid as an exemplary BA. Population wide distributions of BSEP abundances were incorporated in the PBK model using Markov Chain Monte Carlo simulations, and alternatively the total amount of BAs was scaled empirically to describe interindividual differences in plasma BA levels. Next, the effects of the BSEP inhibitor bosentan on the BA levels were simulated. The PBK model developed adequately predicted the in vivo BA dynamics. Both the Markov Chain Monte Carlo simulations based on a distribution of BSEP abundances and empirical scaling of the total BA pool readily described the variations within and between data in human volunteers. Bosentan treatment disproportionally increased the maximum BA concentration in individuals with a large total BA pool or low BSEP abundance. Especially individuals having a large total BA pool size and a low BSEP abundance were predicted to be at risk for rapid saturation of BSEP and subsequent intrahepatic BA accumulation. This model provides a first estimate of personalized safe therapeutic external dose levels of compounds with BSEP-inhibitory properties.
Collapse
Affiliation(s)
- Véronique M P de Bruijn
- Division of Toxicology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands.
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
9
|
Karsten REH, Krijnen NJW, Maho W, Permentier H, Verpoorte E, Olinga P. Mouse precision-cut liver slices as an ex vivo model to study drug-induced cholestasis. Arch Toxicol 2022; 96:2523-2543. [PMID: 35708773 PMCID: PMC9325861 DOI: 10.1007/s00204-022-03321-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
Abstract
Drugs are often withdrawn from the market due to the manifestation of drug-induced liver injury (DILI) in patients. Drug-induced cholestasis (DIC), defined as obstruction of hepatic bile flow due to medication, is one form of DILI. Because DILI is idiosyncratic, and the resulting cholestasis complex, there is no suitable in vitro model for early DIC detection during drug development. Our goal was to develop a mouse precision-cut liver slice (mPCLS) model to study DIC and to assess cholestasis development using conventional molecular biology and analytical chemistry methods. Cholestasis was induced in mPCLS through a 48-h-incubation with three drugs known to induce cholestasis in humans, namely chlorpromazine (15, 20, and 30 µM), cyclosporin A (1, 3, and 6 µM) or glibenclamide (25, 50, and 65 µM). A bile-acid mixture (16 µM) that is physiologically representative of the human bile-acid pool was added to the incubation medium with drug, and results were compared to incubations with no added bile acids. Treatment of PCLS with cholestatic drugs increased the intracellular bile-acid concentration of deoxycholic acid and modulated bile-transporter genes. Chlorpromazine led to the most pronounced cholestasis in 48 h, observed as increased toxicity; decreased protein and gene expression of the bile salt export pump; increased gene expression of multidrug resistance-associated protein 4; and accumulation of intracellular bile acids. Moreover, chlorpromazine-induced cholestasis exhibited some transition into fibrosis, evidenced by increased gene expression of collagen 1A1 and heatshock protein 47. In conclusion, we demonstrate that mPCLS can be used to study human DIC onset and progression in a 48 h period. We thus propose this model is suited for other similar studies of human DIC.
Collapse
Affiliation(s)
- R E H Karsten
- Pharmaceutical Analysis Research Group, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - N J W Krijnen
- Pharmaceutical Analysis Research Group, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - W Maho
- Analytical Biochemistry Research Group, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 16, 9713 AV, Groningen, The Netherlands
| | - H Permentier
- Analytical Biochemistry Research Group, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 16, 9713 AV, Groningen, The Netherlands
| | - E Verpoorte
- Pharmaceutical Analysis Research Group, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - P Olinga
- Pharmaceutical Technology and Biopharmacy Research Group, Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
10
|
Ren T, Pang L, Dai W, Wu S, Kong J. Regulatory mechanisms of the bile salt export pump (BSEP/ABCB11) and its role in related diseases. Clin Res Hepatol Gastroenterol 2021; 45:101641. [PMID: 33581308 DOI: 10.1016/j.clinre.2021.101641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 02/04/2023]
Abstract
The bile salt export pump (BSEP/ABCB11) is located on the apical membrane and mediates the secretion of bile salts from hepatocytes into the bile. BSEP-mediated bile salt efflux is the rate-limiting step of bile salt secretion and the main driving force of bile flow. BSEP drives and maintains the enterohepatic circulation of bile salts. In recent years, research efforts have been focused on understanding the physiological and pathological functions and regulatory mechanisms of BSEP. These studies elucidated the roles of farnesoid X receptor (FXR), AMP-activated protein kinase (AMPK), liver receptor homolog-1(LRH-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) in BSEP expression and discovered some regulatory factors which participate in its post-transcriptional regulation. A series of liver diseases have also been shown to be related to BSEP expression and dysfunction, such as cholestasis, drug-induced liver injury, and gallstones. Here, we systematically review and summarize recent literature on BSEP structure, physiological functions, regulatory mechanisms, and related diseases.
Collapse
Affiliation(s)
- Tengqi Ren
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liwei Pang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang, Liaoning, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jing Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
11
|
Jazaeri F, Sheibani M, Nezamoleslami S, Moezi L, Dehpour AR. Current Models for Predicting Drug-induced Cholestasis: The Role of Hepatobiliary Transport System. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:1-21. [PMID: 34567142 PMCID: PMC8457732 DOI: 10.22037/ijpr.2020.113362.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Drug-induced cholestasis is the main type of liver disorder accompanied by high morbidity and mortality. Evidence for the role of hepatobiliary pumps in the cholestasis patho-mechanism is constantly increasing. Recognition of the interactions of chemical agents with these transporters at the initial phases of drug discovery can help develop new drug candidates with low cholestasis potential. This review delivers an outline of the role of these transport proteins in bile creation. It addresses the pathophysiological mechanism for drug-induced cholestasis. In-vitro models, including cell-based and membrane-based approaches and In-vivo models such as genetic knockout animals, are considered. The benefits and restrictions of each model are discussed in this review. Current understandings into the cellular and molecular process that control the activity of hepatobiliary pumps have directed to a better understanding of the pathophysiology of drug-induced cholestasis. A combination of in-vitro monitoring for transport interaction, in-silico predicting systems, and consideration of and metabolic and physicochemical properties must cause more effective monitoring of possible liver problems.
Collapse
Affiliation(s)
- Farahnaz Jazaeri
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,F. J. and M. Sh. contributed equally to this work
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,F. J. and M. Sh. contributed equally to this work
| | - Sadaf Nezamoleslami
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Moezi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad-Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Gertzen CGW, Gohlke H, Häussinger D, Herebian D, Keitel V, Kubitz R, Mayatepek E, Schmitt L. The many facets of bile acids in the physiology and pathophysiology of the human liver. Biol Chem 2021; 402:1047-1062. [PMID: 34049433 DOI: 10.1515/hsz-2021-0156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
Bile acids perform vital functions in the human liver and are the essential component of bile. It is therefore not surprising that the biology of bile acids is extremely complex, regulated on different levels, and involves soluble and membrane receptors as well as transporters. Hereditary disorders of these proteins manifest in different pathophysiological processes that result in liver diseases of varying severity. In this review, we summarize our current knowledge of the physiology and pathophysiology of bile acids with an emphasis on recently established analytical approaches as well as the molecular mechanisms that underlie signaling and transport of bile acids. In this review, we will focus on ABC transporters of the canalicular membrane and their associated diseases. As the G protein-coupled receptor, TGR5, receives increasing attention, we have included aspects of this receptor and its interaction with bile acids.
Collapse
Affiliation(s)
- Christoph G W Gertzen
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
13
|
Hu T, Wang H. Hepatic Bile Acid Transporters in Drug‐Induced Cholestasis. TRANSPORTERS AND DRUG‐METABOLIZING ENZYMES IN DRUG TOXICITY 2021:307-337. [DOI: 10.1002/9781119171003.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Kroll T, Smits SHJ, Schmitt L. Monomeric bile acids modulate the ATPase activity of detergent-solubilized ABCB4/MDR3. J Lipid Res 2021; 62:100087. [PMID: 34022183 PMCID: PMC8233136 DOI: 10.1016/j.jlr.2021.100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
ABCB4, also called multidrug-resistant protein 3 (MDR3), is an ATP binding cassette transporter located in the canalicular membrane of hepatocytes that specifically translocates phosphatidylcholine (PC) lipids from the cytoplasmic to the extracellular leaflet. Due to the harsh detergent effect of bile acids, PC lipids provided by ABCB4 are extracted into the bile. While it is well known that bile acids are the major extractor of PC lipids from the membrane into bile, it is unknown whether only PC lipid extraction is improved or whether bile acids also have a direct effect on ABCB4. Using in vitro experiments, we investigated the modulation of ATP hydrolysis of ABC by different bile acids commonly present in humans. We demonstrated that all tested bile acids stimulated ATPase activity except for taurolithocholic acid, which inhibited ATPase activity due to its hydrophobic nature. Additionally, we observed a nearly linear correlation between the critical micelle concentration and maximal stimulation by each bile acid, and that this modulation was maintained in the presence of PC lipids. This study revealed a large effect of 24-nor-ursodeoxycholic acid, suggesting a distinct mode of regulation of ATPase activity compared with other bile acids. In addition, it sheds light on the molecular cross talk of canalicular ABC transporters of the human liver.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
15
|
Chothe PP, Pemberton R, Hariparsad N. Function and Expression of Bile Salt Export Pump in Suspension Human Hepatocytes. Drug Metab Dispos 2021; 49:314-321. [PMID: 33472814 DOI: 10.1124/dmd.120.000057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022] Open
Abstract
The mechanistic understanding of bile salt disposition is not well established in suspension human hepatocytes (SHH) because of the limited information on the expression and function of bile salt export protein (BSEP) in this system. We investigated the transport function of BSEP in SHH using a method involving in situ biosynthesis of bile salts from their precursor bile acids, cholic acid (CA) and chenodeoxycholic acid (CDCA). Our data indicated that glycine- and taurine-conjugated CA and CDCA were generated efficiently and transported out of hepatocytes in a concentration- and time-dependent manner. We also observed that the membrane protein abundance of BSEP was similar between SHH and sandwich-cultured human hepatocytes. Furthermore, known cholestatic agents significantly inhibited G-CA and G-CDCA efflux in SHH. Interestingly, cyclosporine A, troglitazone, itraconazole, loratadine, and lovastatin inhibited G-CA efflux more potently than G-CDCA efflux (3- to 5-fold). Because of these significant differential effects on G-CA and G-CDCA efflux inhibition, we determined the IC50 values of troglitazone for G-CA (9.9 µM) and for G-CDCA (43.1 µM) efflux. The observed discrepancy in the IC50 was attributed to the fact that troglitazone also inhibits organic anion transporting polypeptides and Na+/taurocholate cotransporting polypeptide in addition to BSEP. The hepatocyte uptake study suggested that both active uptake and passive diffusion contribute to the liver uptake of CA, whereas CDCA primarily undergoes passive diffusion into the liver. In summary, these data demonstrated the expression and function of BSEP and its major role in transport of bile salts in cryopreserved SHH. SIGNIFICANCE STATEMENT: BSEP transport function and protein abundance was evident in SHH in the present study. The membrane abundance of BSEP protein was similar between SHH and sandwich-cultured human hepatocytes. The study also illustrated the major role of BSEP relative to basolateral MRP3 and MRP4 in transport of bile salts in SHH. Understanding of BSEP function in SHH may bolster the utility of this platform in mechanistic understanding of bile salt disposition and potentially in the assessment of drugs for BSEP inhibition.
Collapse
Affiliation(s)
- Paresh P Chothe
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Rachel Pemberton
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Niresh Hariparsad
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| |
Collapse
|
16
|
Marrone J, Danielli M, Gaspari CI, Capiglioni AM, Marinelli RA. Aquaporin gene transfer for hepatocellular cholestasis. Biochimie 2021; 188:12-15. [PMID: 33811938 DOI: 10.1016/j.biochi.2021.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
Bile secretion by hepatocytes is an osmotic process. The output of bile salts and other organic anions (e.g. glutathione), through the bile salt transporter BSEP/ABCB11 and the organic anion transporter MRP2/ABCC2, respectively, are considered to be the major osmotic driving forces for water secretion into bile canaliculi mainly via aquaporin-8 (AQP8) channels. The down-regulated canalicular expression of these key solute transporters and AQP8 would be a primary event in the establishment of hepatocellular cholestasis. Recent studies in animal models of hepatocellular cholestasis show that the hepatic delivery of AdhAQP1, an adenovector encoding for the archetypical water channel human aquaporin-1 (hAQP1), improves bile secretion and restores to normal the elevated serum bile salt levels. AdhAQP1-transduced hepatocytes show that the canalicularly-expressed hAQP1 not only enhances osmotic membrane water permeability but also induces the transport activities of BSEP/ABCB11 and MRP2/ABCC2 by redistribution in canalicular cholesterol-rich microdomains likely through interactions with the cholesterol-binding protein caveolin-1. Thus, the hepatic gene transfer of hAQP1 improves the bile secretory failure in hepatocellular cholestasis by increasing both biliary output and choleretic efficiency of key osmotic solutes, such as, bile salts and glutathione. The study of hepatocyte aquaporins has provided new insights into the mechanisms of bile formation and cholestasis, and may lead to innovative treatments for cholestatic liver diseases.
Collapse
Affiliation(s)
- Julieta Marrone
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Santa Fe, Argentina
| | - Mauro Danielli
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Santa Fe, Argentina
| | - César I Gaspari
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Santa Fe, Argentina
| | - Alejo M Capiglioni
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Santa Fe, Argentina
| | - Raúl A Marinelli
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Santa Fe, Argentina.
| |
Collapse
|
17
|
Molecular Regulation of Canalicular ABC Transporters. Int J Mol Sci 2021; 22:ijms22042113. [PMID: 33672718 PMCID: PMC7924332 DOI: 10.3390/ijms22042113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
The ATP-binding cassette (ABC) transporters expressed at the canalicular membrane of hepatocytes mediate the secretion of several compounds into the bile canaliculi and therefore play a key role in bile secretion. Among these transporters, ABCB11 secretes bile acids, ABCB4 translocates phosphatidylcholine and ABCG5/G8 is responsible for cholesterol secretion, while ABCB1 and ABCC2 transport a variety of drugs and other compounds. The dysfunction of these transporters leads to severe, rare, evolutionary biliary diseases. The development of new therapies for patients with these diseases requires a deep understanding of the biology of these transporters. In this review, we report the current knowledge regarding the regulation of canalicular ABC transporters' folding, trafficking, membrane stability and function, and we highlight the role of molecular partners in these regulating mechanisms.
Collapse
|
18
|
Stieger B, Steiger J, Locher KP. Membrane lipids and transporter function. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166079. [PMID: 33476785 DOI: 10.1016/j.bbadis.2021.166079] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/12/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Transport proteins are essential for cells in allowing the exchange of substances between cells and their environment across the lipid bilayer forming a tight barrier. Membrane lipids modulate the function of transmembrane proteins such as transporters in two ways: Lipids are tightly and specifically bound to transport proteins and in addition they modulate from the bulk of the lipid bilayer the function of transport proteins. This overview summarizes currently available information at the ultrastructural level on lipids tightly bound to transport proteins and the impact of altered bulk membrane lipid composition. Human diseases leading to altered lipid homeostasis will lead to altered membrane lipid composition, which in turn affect the function of transporter proteins.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Julia Steiger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kaspar P Locher
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
19
|
Kohara H, Bajaj P, Yamanaka K, Miyawaki A, Harada K, Miyamoto K, Matsui T, Okai Y, Wagoner M, Shinozawa T. High-Throughput Screening to Evaluate Inhibition of Bile Acid Transporters Using Human Hepatocytes Isolated From Chimeric Mice. Toxicol Sci 2020; 173:347-361. [PMID: 31722436 DOI: 10.1093/toxsci/kfz229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cholestasis resulting from hepatic bile acid efflux transporter inhibition may contribute to drug-induced liver injury (DILI). This condition is a common safety-related reason for drug attrition and withdrawal. To screen for safety risks associated with efflux transport inhibition, we developed a high-throughput cellular assay for different drug discovery phases. Hepatocytes isolated from chimeric mice with humanized livers presented gene expression resembling that of the human liver and demonstrated apical membrane polarity when sandwiched between Matrigel and collagen. The fluorescent bile acid-derivative cholyl-l-lysyl-fluorescein (CLF) was used to quantify drug-induced efflux transport inhibition in hepatocytes. Cyclosporine inhibited CLF accumulation in the apical bile canalicular lumen in a concentration-dependent manner. The assay had equivalent predictive power to a primary human hepatocyte-based assay and greater predictive power than an assay performed with rat hepatocytes. Predictive power was tested using 45 pharmaceutical compounds, and 91.3% of the compounds with cholestatic potential (21/23) had margins (IC50/Cmax) < 20. In contrast, 90.9% (20/22) of compounds without cholestatic potential had IC50/Cmax>20. Assay sensitivity and specificity were 91.3% and 90.9%, respectively. We suggest that this improved assay performance could result from higher expression of efflux transporters, metabolic pathways, and/or species differences. Given the long-term supply of cells from the same donor, the humanized mouse-derived hepatocyte-based CLF efflux assay could be a valuable tool for predicting cholestatic DILI.
Collapse
Affiliation(s)
- Hiroshi Kohara
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Piyush Bajaj
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts 02139, USA
| | - Kazunori Yamanaka
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Akimitsu Miyawaki
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Kosuke Harada
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Kazumasa Miyamoto
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Toshikatsu Matsui
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Yoshiko Okai
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Matthew Wagoner
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts 02139, USA
| | - Tadahiro Shinozawa
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| |
Collapse
|
20
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Beaudoin JJ, Brouwer KLR, Malinen MM. Novel insights into the organic solute transporter alpha/beta, OSTα/β: From the bench to the bedside. Pharmacol Ther 2020; 211:107542. [PMID: 32247663 PMCID: PMC7480074 DOI: 10.1016/j.pharmthera.2020.107542] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Organic solute transporter alpha/beta (OSTα/β) is a heteromeric solute carrier protein that transports bile acids, steroid metabolites and drugs into and out of cells. OSTα/β protein is expressed in various tissues, but its expression is highest in the gastrointestinal tract where it facilitates the recirculation of bile acids from the gut to the liver. Previous studies established that OSTα/β is upregulated in liver tissue of patients with extrahepatic cholestasis, obstructive cholestasis, and primary biliary cholangitis (PBC), conditions that are characterized by elevated bile acid concentrations in the liver and/or systemic circulation. The discovery that OSTα/β is highly upregulated in the liver of patients with nonalcoholic steatohepatitis (NASH) further highlights the clinical relevance of this transporter because the incidence of NASH is increasing at an alarming rate with the obesity epidemic. Since OSTα/β is closely linked to the homeostasis of bile acids, and tightly regulated by the nuclear receptor farnesoid X receptor, OSTα/β is a potential drug target for treatment of cholestatic liver disease, and other bile acid-related metabolic disorders such as obesity and diabetes. Obeticholic acid, a semi-synthetic bile acid used to treat PBC, under review for the treatment of NASH, and in development for the treatment of other metabolic disorders, induces OSTα/β. Some drugs associated with hepatotoxicity inhibit OSTα/β, suggesting a possible role for OSTα/β in drug-induced liver injury (DILI). Furthermore, clinical cases of homozygous genetic defects in both OSTα/β subunits resulting in diarrhea and features of cholestasis have been reported. This review article has been compiled to comprehensively summarize the recent data emerging on OSTα/β, recapitulating the available literature on the structure-function and expression-function relationships of OSTα/β, the regulation of this important transporter, the interaction of drugs and other compounds with OSTα/β, and the comparison of OSTα/β with other solute carrier transporters as well as adenosine triphosphate-binding cassette transporters. Findings from basic to more clinically focused research efforts are described and discussed.
Collapse
Affiliation(s)
- James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Melina M Malinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
22
|
Garzel B, Hu T, Li L, Lu Y, Heyward S, Polli J, Zhang L, Huang SM, Raufman JP, Wang H. Metformin Disrupts Bile Acid Efflux by Repressing Bile Salt Export Pump Expression. Pharm Res 2020; 37:26. [PMID: 31907698 DOI: 10.1007/s11095-019-2753-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The bile salt export pump (BSEP), a key player in hepatic bile acid clearance, has been the center of research on drug-induced cholestasis. However, such studies focus primarily on the direct inhibition of BSEP, often overlooking the potential impact of transcriptional repression. This work aims to explore the disruption of bile acid efflux caused by drug-induced BSEP repression. METHODS BSEP activity was analyzed in human primary hepatocytes (HPH) using a traditional biliary-clearance experiment and a modified efflux assay, which includes a 72-h pretreatment prior to efflux measurement. Relative mRNA and protein expressions were examined by RT-PCR and Western blotting, respectively. RESULTS Metformin concentration-dependently repressed BSEP expression in HPH. Although metformin did not directly inhibit BSEP activity, longer metformin exposure reduced BSEP transport function in HPH by down-regulating BSEP expression. BSEP repression by metformin was found to be AMP-activated protein kinase-independent. Additional screening of 10 reported cholestatic non-BSEP inhibitors revealed that the anti-cancer drug tamoxifen also markedly repressed BSEP expression and reduced BSEP activity in HPH. CONCLUSIONS Repression of BSEP alone is sufficient to disrupt hepatic bile acid efflux. Metformin and tamoxifen appear to be prototypes of a class of BSEP repressors that may cause drug-induced cholestasis through gene repression instead of direct BSEP inhibition.
Collapse
Affiliation(s)
- Brandy Garzel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Tao Hu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Yuanfu Lu
- Key Laboratory of Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Scott Heyward
- BioIVT, 1450 S Rolling Road, Baltimore, Maryland, 21227, USA
| | - James Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, Maryland, 21201, USA.,VA Maryland Health Care System, 10 N. Greene Street, Baltimore, Maryland, 21201, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
23
|
Lu X, Liu L, Shan W, Kong L, Chen N, Lou Y, Zeng S. The Role of the Sodium-taurocholate Co-transporting Polypeptide (NTCP) and Bile Salt Export Pump (BSEP) in Related Liver Disease. Curr Drug Metab 2019; 20:377-389. [PMID: 31258056 DOI: 10.2174/1389200220666190426152830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/10/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Sodium Taurocholate Co-transporting Polypeptide (NTCP) and Bile Salt Export Pump (BSEP) play significant roles as membrane transporters because of their presence in the enterohepatic circulation of bile salts. They have emerged as promising drug targets in related liver disease. METHODS We reviewed the literature published over the last 20 years with a focus on NTCP and BSEP. RESULTS This review summarizes the current perception about structure, function, genetic variation, and regulation of NTCP and BSEP, highlights the effects of their defects in some hepatic disorders, and discusses the application prospect of new transcriptional activators in liver diseases. CONCLUSION NTCP and BSEP are important proteins for transportation and homeostasis maintenance of bile acids. Further research is needed to develop new models for determining the structure-function relationship of bile acid transporters and screening for substrates and inhibitors, as well as to gain more information about the regulatory genetic mechanisms involved in the processes of liver injury.
Collapse
Affiliation(s)
- Xiaoyang Lu
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Lin Liu
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Wenya Shan
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Limin Kong
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Na Chen
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Yan Lou
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China
| |
Collapse
|
24
|
Kenna JG, Taskar KS, Battista C, Bourdet DL, Brouwer KLR, Brouwer KR, Dai D, Funk C, Hafey MJ, Lai Y, Maher J, Pak YA, Pedersen JM, Polli JW, Rodrigues AD, Watkins PB, Yang K, Yucha RW. Can Bile Salt Export Pump Inhibition Testing in Drug Discovery and Development Reduce Liver Injury Risk? An International Transporter Consortium Perspective. Clin Pharmacol Ther 2019; 104:916-932. [PMID: 30137645 PMCID: PMC6220754 DOI: 10.1002/cpt.1222] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Bile salt export pump (BSEP) inhibition has emerged as an important mechanism that may contribute to the initiation of human drug‐induced liver injury (DILI). Proactive evaluation and understanding of BSEP inhibition is recommended in drug discovery and development to aid internal decision making on DILI risk. BSEP inhibition can be quantified using in vitro assays. When interpreting assay data, it is important to consider in vivo drug exposure. Currently, this can be undertaken most effectively by consideration of total plasma steady state drug concentrations (Css,plasma). However, because total drug concentrations are not predictive of pharmacological effect, the relationship between total exposure and BSEP inhibition is not causal. Various follow‐up studies can aid interpretation of in vitro BSEP inhibition data and may be undertaken on a case‐by‐case basis. BSEP inhibition is one of several mechanisms by which drugs may cause DILI, therefore, it should be considered alongside other mechanisms when evaluating possible DILI risk.
Collapse
Affiliation(s)
| | - Kunal S Taskar
- Mechanistic Safety and Disposition, IVIVT, GlaxoSmithKline, Ware, Hertfordshire, UK
| | - Christina Battista
- DILIsym Services Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| | - David L Bourdet
- Drug Metabolism and Pharmacokinetics, Theravance Biopharma, South San Francisco, California, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - David Dai
- Clinical Pharmacology, Research and Development Sciences, Agios Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Christoph Funk
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Michael J Hafey
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc, Kenilworth, New Jersey, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California, USA
| | - Jonathan Maher
- Safety Assessment, Genentech, South San Francisco, California, USA
| | - Y Anne Pak
- Lilly Research Laboratory, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jenny M Pedersen
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Novum, Huddinge, Sweden
| | - Joseph W Polli
- Mechanistic Safety and Drug Disposition, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | | | - Paul B Watkins
- Institute for Drug Safety Sciences, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kyunghee Yang
- DILIsym Services Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| | - Robert W Yucha
- Takeda Pharmaceuticals, Global Drug Metabolism and Pharmacokinetics, Cambridge, Massachusetts, USA
| | | |
Collapse
|
25
|
Roma MG, Barosso IR, Miszczuk GS, Crocenzi FA, Pozzi EJS. Dynamic Localization of Hepatocellular Transporters: Role in Biliary Excretion and Impairment in Cholestasis. Curr Med Chem 2019; 26:1113-1154. [DOI: 10.2174/0929867325666171205153204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/25/2022]
Abstract
Bile flow generation is driven by the vectorial transfer of osmotically active compounds from sinusoidal blood into a confined space, the bile canaliculus. Hence, localization of hepatocellular transporters relevant to bile formation is crucial for bile secretion. Hepatocellular transporters are localized either in the plasma membrane or in recycling endosomes, from where they can be relocated to the plasma membrane on demand, or endocytosed when the demand decreases. The balance between endocytic internalization/ exocytic targeting to/from this recycling compartment is therefore the main determinant of the hepatic capability to generate bile, and to dispose endo- and xenobiotics. Furthermore, the exacerbated endocytic internalization is a common pathomechanisms in both experimental and human cholestasis; this results in bile secretory failure and, eventually, posttranslational transporter downregulation by increased degradation. This review summarizes the proposed structural mechanisms accounting for this pathological condition (e.g., alteration of function, localization or expression of F-actin or F-actin/transporter cross-linking proteins, and switch to membrane microdomains where they can be readily endocytosed), and the mediators implicated (e.g., triggering of “cholestatic” signaling transduction pathways). Lastly, we discussed the efficacy to counteract the cholestatic failure induced by transporter internalization of a number of therapeutic experimental approaches based upon the use of compounds that trigger exocytic targetting of canalicular transporters (e.g., cAMP, tauroursodeoxycholate). This therapeutics may complement treatments aimed to transcriptionally improve transporter expression, by affording proper localization and membrane stability to the de novo synthesized transporters.
Collapse
Affiliation(s)
- Marcelo G. Roma
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Ismael R. Barosso
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Gisel S. Miszczuk
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Fernando A. Crocenzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Enrique J. Sánchez Pozzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| |
Collapse
|
26
|
Sakai Y, Iwao T, Susukida T, Nukaga T, Takemura A, Sekine S, Ito K, Matsunaga T. In vitro bile acid-dependent hepatocyte toxicity assay system using human induced pluripotent stem cell-derived hepatocytes: Current status and disadvantages to overcome. Drug Metab Pharmacokinet 2019; 34:264-271. [PMID: 31285099 DOI: 10.1016/j.dmpk.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/12/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022]
Abstract
Cholestatic drug-induced liver injury (DILI) is a type of hepatotoxicity. Its underlying mechanisms are dysfunction of bile salt export pump (BSEP) and multidrug resistance-associated protein 2/3/4 (MRP2/3/4), which play major roles in bile acid (BA) excretion into the bile canaliculi and blood, resulting in accumulation of BAs in hepatocytes. The sandwich-cultured hepatocyte (SCH) model can simultaneously analyze hepatic uptake and biliary excretion. Therefore, we investigated whether sandwich-cultured human induced pluripotent stem cell (iPS cell)-derived hepatocytes (SCHiHs) are suitable for evaluating cholestatic DILI. Fluorescent N-(24-[7-(4-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole)]amino-3α,7α,12α-trihydroxy-27-nor-5β-cholestan-26-oyl)-2'-aminoethanesulfonate (tauro-nor-THCA-24-DBD, a BSEP substrate) was accumulated in bile canaliculi, which supports the presence of a functional bile canaliculi lumen. MRP2 was highly expressed in the Western blot analysis, whereas the mRNA expression of BSEP was hardly detectable. MRP3/4 mRNA levels were maintained. Of the 22 compounds known to cause DILI with BAs, 7 showed significant cytotoxicity. Most high-risk drugs were detected using the developed SCHiH system. However, a shortcoming was the considerably low expression level of BSEP, which prevented the detection of some relevant drugs whose risks should be detected in primary human hepatocytes.
Collapse
Affiliation(s)
- Yoko Sakai
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| | - Takeshi Susukida
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Takumi Nukaga
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Akinori Takemura
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Shuichi Sekine
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Kousei Ito
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
27
|
Ali I, Khalid S, Stieger B, Brouwer KLR. Effect of a Common Genetic Variant (p.V444A) in the Bile Salt Export Pump on the Inhibition of Bile Acid Transport by Cholestatic Medications. Mol Pharm 2019; 16:1406-1411. [PMID: 30608704 DOI: 10.1021/acs.molpharmaceut.8b01124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bile salt export pump (BSEP) is the primary canalicular transporter responsible for the secretion of bile acids from hepatocytes into bile canaliculi, and inhibition of this transporter has been associated with drug-induced liver injury (DILI). A common variant (rs2287622; p.V444A) in the gene encoding BSEP has been associated with an increased risk of cholestatic DILI. Although p.444V BSEP (reference) and p.444A BSEP (variant) do not differ in their transport kinetics of taurocholic acid (TCA), transport of the more abundant glycocholic acid (GCA) has not been investigated. Importantly, differences in the susceptibility of p.444V and p.444A BSEP to inhibition by drugs causing cholestatic DILI have not been investigated. To address these issues, the transport kinetics of GCA were evaluated by incubating membrane vesicles expressing either p.444V or p.444A BSEP with GCA over a range of concentrations (1, 10, 25, 50, and 100 μM). The abilities of commonly used cholestatic medications to inhibit the transport of TCA and GCA by the reference and variant proteins were compared. Resulting data indicated that GCA transport kinetics for reference and variant BSEP followed Michaelis-Menten kinetics and were not statistically different [ Vmax values of 1132 ± 246 and 959 ± 256 pmol min-1 (mg of protein)-1, respectively, and Km values of 32.7 ± 18.2 and 45.7 ± 25.5 μM, respectively]. There were no statistically significant differences between the reference and variant BSEP in the inhibition of TCA or GCA transport by the cholestatic drugs tested. In conclusion, differential inhibition of TCA or GCA transport cannot account for an association between the variant BSEP and the risk for cholestatic DILI due to the drugs tested.
Collapse
Affiliation(s)
- Izna Ali
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Seher Khalid
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology , University Hospital Zurich, University of Zurich , 8091 Zurich , Switzerland
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
28
|
Kenna JG, Uetrecht J. Do In Vitro Assays Predict Drug Candidate Idiosyncratic Drug-Induced Liver Injury Risk? Drug Metab Dispos 2018; 46:1658-1669. [PMID: 30021844 DOI: 10.1124/dmd.118.082719] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022] Open
Abstract
In vitro assays are commonly used during drug discovery to try to decrease the risk of idiosyncratic drug-induced liver injury (iDILI). But how effective are they at predicting risk? One of the most widely used methods evaluates cell cytotoxicity. Cytotoxicity assays that used cell lines that are very different from normal hepatocytes, and high concentrations of drug, were not very accurate at predicting idiosyncratic drug reaction risk. Even cytotoxicity assays that use more biologically normal cells resulted in many false-positive and false-negative results. Assays that quantify reactive metabolite formation, mitochondrial injury, and bile salt export pump (BSEP) inhibition have also been described. Although evidence suggests that reactive metabolite formation and BSEP inhibition can play a role in the mechanism of iDILI, these assays are not very accurate at predicting risk. In contrast, inhibition of the mitochondrial electron transport chain appears not to play an important role in the mechanism of iDILI, although other types of mitochondrial injury may do so. It is likely that there are many additional mechanisms by which drugs can cause iDILI. However, simply measuring more parameters is unlikely to provide better predictive assays unless those parameters are actually involved in the mechanism of iDILI. Hence, a better mechanistic understanding of iDILI is required; however, mechanistic studies of iDILI are very difficult. There is substantive evidence that most iDILI is immune mediated; therefore, the most accurate assays may involve those that determine immune responses to drugs. New methods to manipulate immune tolerance may greatly facilitate development of more suitable methods.
Collapse
Affiliation(s)
- J Gerry Kenna
- Safer Medicines Trust, Kingsbridge, United Kingdom (J.G.K.); and Faculties of Pharmacy and Medicine, University of Toronto, Toronto, Ontario, Canada (J.U.)
| | - Jack Uetrecht
- Safer Medicines Trust, Kingsbridge, United Kingdom (J.G.K.); and Faculties of Pharmacy and Medicine, University of Toronto, Toronto, Ontario, Canada (J.U.)
| |
Collapse
|
29
|
Fernández-Murga ML, Petrov PD, Conde I, Castell JV, Goméz-Lechón MJ, Jover R. Advances in drug-induced cholestasis: Clinical perspectives, potential mechanisms and in vitro systems. Food Chem Toxicol 2018; 120:196-212. [PMID: 29990576 DOI: 10.1016/j.fct.2018.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022]
Abstract
Despite growing research, drug-induced liver injury (DILI) remains a serious issue of increasing importance to the medical community that challenges health systems, pharmaceutical industries and drug regulatory agencies. Drug-induced cholestasis (DIC) represents a frequent manifestation of DILI in humans, which is characterised by an impaired canalicular bile flow resulting in a detrimental accumulation of bile constituents in blood and tissues. From a clinical point of view, cholestatic DILI generates a wide spectrum of presentations and can be a diagnostic challenge. The drug classes mostly associated with DIC are anti-infectious, anti-diabetic, anti-inflammatory, psychotropic and cardiovascular agents, steroids, and other miscellaneous drugs. The molecular mechanisms of DIC have been investigated since the 1980s but they remain debatable. It is recognised that altered expression and/or function of hepatobiliary membrane transporters underlies some forms of cholestasis, and this and other concomitant mechanisms are very likely in DIC. Deciphering these processes may pave the ways for diagnosis, prognosis and prevention, for which currently major gaps and caveats exist. In this review, we summarise recent advances in the field of DIC, including clinical aspects, the potential mechanisms postulated so far and the in vitro systems that can be useful to investigate and identify new cholestatic drugs.
Collapse
Affiliation(s)
- M Leonor Fernández-Murga
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Petar D Petrov
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Isabel Conde
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Jose V Castell
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain
| | - M José Goméz-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| | - Ramiro Jover
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain.
| |
Collapse
|
30
|
Petrov PD, Fernández-Murga ML, López-Riera M, Goméz-Lechón MJ, Castell JV, Jover R. Predicting drug-induced cholestasis: preclinical models. Expert Opin Drug Metab Toxicol 2018; 14:721-738. [PMID: 29888962 DOI: 10.1080/17425255.2018.1487399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION In almost 50% of patients with drug-induced liver injury (DILI), the bile flow from the liver to the duodenum is impaired, a condition known as cholestasis. However, this toxic response only appears in a small percentage of the treated patients (idiosyncrasy). Prediction of drug-induced cholestasis (DIC) is challenging and emerges as a safety issue that requires attention by professionals in clinical practice, regulatory authorities, pharmaceutical companies, and research institutions. Area covered: The current synopsis focuses on the state-of-the-art in preclinical models for cholestatic DILI prediction. These models differ in their goal, complexity, availability, and applicability, and can widely be classified in experimental animals and in vitro models. Expert opinion: Drugs are a growing cause of cholestasis, but the progress made in explaining mechanisms and differences in susceptibility is not growing at the same rate. We need reliable models able to recapitulate the features of DIC, particularly its idiosyncrasy. The homogeneity and the species-specific differences move animal models away from a fair predictability. However, in vitro human models are improving and getting closer to the real hepatocyte phenotype, and they will likely be the choice in the near future. Progress in this area will not only need reliable predictive models but also mechanistic insights.
Collapse
Affiliation(s)
- Petar D Petrov
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - M Leonor Fernández-Murga
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain
| | - Mireia López-Riera
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain
| | - M José Goméz-Lechón
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - Jose V Castell
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain.,c Departamento de Bioquímica y Biología Molecular, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| | - Ramiro Jover
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain.,c Departamento de Bioquímica y Biología Molecular, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| |
Collapse
|
31
|
Thakare R, Alamoudi JA, Gautam N, Rodrigues AD, Alnouti Y. Species differences in bile acids II. Bile acid metabolism. J Appl Toxicol 2018; 38:1336-1352. [PMID: 29845631 DOI: 10.1002/jat.3645] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022]
Abstract
One of the mechanisms of drug-induced liver injury (DILI) involves alterations in bile acid (BA) homeostasis and elimination, which encompass several metabolic pathways including hydroxylation, amidation, sulfation, glucuronidation and glutathione conjugation. Species differences in BA metabolism may play a major role in the failure of currently used in vitro and in vivo models to predict reliably the DILI during the early stages of drug discovery and development. We developed an in vitro cofactor-fortified liver S9 fraction model to compare the metabolic profiles of the four major BAs (cholic acid, chenodeoxycholic acid, lithocholic acid and ursodeoxycholic acid) between humans and several animal species. High- and low-resolution liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance imaging were used for the qualitative and quantitative analysis of BAs and their metabolites. Major species differences were found in the metabolism of BAs. Sulfation into 3-O-sulfates was a major pathway in human and chimpanzee (4.8%-52%) and it was a minor pathway in all other species (0.02%-14%). Amidation was primarily with glycine (62%-95%) in minipig and rabbit and it was primarily with taurine (43%-81%) in human, chimpanzee, dog, hamster, rat and mice. Hydroxylation was highest (13%-80%) in rat and mice followed by hamster, while it was lowest (1.6%-22%) in human, chimpanzee and minipig. C6-β hydroxylation was predominant (65%-95%) in rat and mice, while it was at C6-α position in minipig (36%-97%). Glucuronidation was highest in dog (10%-56%), while it was a minor pathway in all other species (<12%). The relative contribution of the various pathways involved in BA metabolism in vitro were in agreement with the observed plasma and urinary BA profiles in vivo and were able to predict and quantify the species differences in BA metabolism. In general, overall, BA metabolism in chimpanzee is most similar to human, while BA metabolism in rats and mice is most dissimilar from human.
Collapse
Affiliation(s)
- Rhishikesh Thakare
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - A David Rodrigues
- Pharmacokinetics, Pharmacodynamics & Metabolism, Medicine Design, Pfizer Inc., Groton, CT, 06340, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
32
|
Marrone J, Danielli M, Gaspari CI, Marinelli RA. Adenovirus-mediated human aquaporin-1 expression in hepatocytes improves lipopolysaccharide-induced cholestasis. IUBMB Life 2017; 69:978-984. [DOI: 10.1002/iub.1689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/01/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Julieta Marrone
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario; Santa Fe Argentina
| | - Mauro Danielli
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario; Santa Fe Argentina
| | - César I. Gaspari
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario; Santa Fe Argentina
| | - Raúl A. Marinelli
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario; Santa Fe Argentina
| |
Collapse
|
33
|
Model Systems for Studying the Role of Canalicular Efflux Transporters in Drug-Induced Cholestatic Liver Disease. J Pharm Sci 2017; 106:2295-2301. [PMID: 28385542 DOI: 10.1016/j.xphs.2017.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/11/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
Bile formation is a key function of the liver. Disturbance of bile flow may lead to liver disease and is called cholestasis. Cholestasis may be inherited, for example, in progressive familial intrahepatic cholestasis or acquired, for example, by drug-mediated inhibition of bile salt export from hepatocytes into the canaliculi. The key transport system for exporting bile salts into the canaliculi is the bile salt export pump. Inhibition of the bile salt export pump by drugs is a well-established cause of drug-induced cholestasis. Investigation of the role of the multidrug resistance protein 3, essential for biliary phospholipid secretion, is emerging now. This overview summarizes current concepts and methods with an emphasis on in vitro model systems for the investigation of drug-induced cholestasis in the general context of drug-induced liver injury.
Collapse
|
34
|
Evaluation of transcriptomic signature as a valuable tool to study drug-induced cholestasis in primary human hepatocytes. Arch Toxicol 2017; 91:2879-2893. [DOI: 10.1007/s00204-017-1930-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/11/2017] [Indexed: 12/22/2022]
|
35
|
Cheng Y, Freeden C, Zhang Y, Abraham P, Shen H, Wescott D, Humphreys WG, Gan J, Lai Y. Biliary excretion of pravastatin and taurocholate in rats with bile salt export pump (Bsep) impairment. Biopharm Drug Dispos 2017; 37:276-86. [PMID: 27059119 DOI: 10.1002/bdd.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/15/2016] [Accepted: 03/28/2016] [Indexed: 01/07/2023]
Abstract
The bile salt export pump (BSEP) is expressed on the canalicular membrane of hepatocytes regulating liver bile salt excretion, and impairment of BSEP function may lead to cholestasis in humans. This study explored drug biliary excretion, as well as serum chemistry, individual bile acid concentrations and liver transporter expressions, in the SAGE Bsep knockout (KO) rat model. It was observed that the Bsep protein in KO rats was decreased to 15% of that in the wild type (WT), as quantified using LC-MS/MS. While the levels of Ntcp and Mrp2 were not significantly altered, Mrp3 expression increased and Oatp1a1 decreased in KO animals. Compared with the WT rats, the KO rats had similar serum chemistry and showed normal liver transaminases. Although the total plasma bile salts and bile flow were not significantly changed in Bsep KO rats, individual bile acids in plasma and liver demonstrated variable changes, indicating the impact of Bsep KO. Following an intravenous dose of deuterium labeled taurocholic acid (D4-TCA, 2 mg/kg), the D4-TCA plasma exposure was higher and bile excretion was delayed by approximately 0.5 h in the KO rats. No differences were observed for the pravastatin plasma concentration-time profile or the biliary excretion after intravenous administration (1 mg/kg). Collectively, the results revealed that these rats have significantly lower Bsep expression, therefore affecting the biliary excretion of endogenous bile acids and Bsep substrates. However, these rats are able to maintain a relatively normal liver function through the remaining Bsep protein and via the regulation of other transporters. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yaofeng Cheng
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Chris Freeden
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yueping Zhang
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Pamela Abraham
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Hong Shen
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Debra Wescott
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - W Griffith Humphreys
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Jinping Gan
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| |
Collapse
|
36
|
Functional human induced hepatocytes (hiHeps) with bile acid synthesis and transport capacities: A novel in vitro cholestatic model. Sci Rep 2016; 6:38694. [PMID: 27934920 PMCID: PMC5146671 DOI: 10.1038/srep38694] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/11/2016] [Indexed: 12/25/2022] Open
Abstract
Drug-induced cholestasis is a leading cause of drug withdrawal. However, the use of primary human hepatocytes (PHHs), the gold standard for predicting cholestasis in vitro, is limited by their high cost and batch-to-batch variability. Mature hepatocyte characteristics have been observed in human induced hepatocytes (hiHeps) derived from human fibroblast transdifferentiation. Here, we evaluated whether hiHeps could biosynthesize and excrete bile acids (BAs) and their potential as PHH alternatives for cholestasis investigations. Quantitative real-time PCR (qRT-PCR) and western blotting indicated that hiHeps highly expressed BA synthases and functional transporters. Liquid chromatography tandem mass spectrometry (LC-MS/MS) showed that hiHeps produced normal intercellular unconjugated BAs but fewer conjugated BAs than human hepatocytes. When incubated with representative cholestatic agents, hiHeps exhibited sensitive drug-induced bile salt export pump (BSEP) dysfunction, and their response to cholestatic agent-mediated cytotoxicity correlated well with that of PHHs (r2 = 0.8032). Deoxycholic acid (DCA)-induced hepatotoxicity in hiHeps was verified by elevated aspartate aminotransferase (AST) and γ-glutamyl-transferase (γ-GT) levels. Mitochondrial damage and cell death suggested DCA-induced toxicity in hiHeps, which were attenuated by hepatoprotective drugs, as in PHHs. For the first time, hiHeps were reported to biosynthesize and excrete BAs, which could facilitate predicting cholestatic hepatotoxicity and screening potential therapeutic drugs against cholestasis.
Collapse
|
37
|
Marrone J, Soria LR, Danielli M, Lehmann GL, Larocca MC, Marinelli RA. Hepatic gene transfer of human aquaporin-1 improves bile salt secretory failure in rats with estrogen-induced cholestasis. Hepatology 2016; 64:535-48. [PMID: 26999313 DOI: 10.1002/hep.28564] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/24/2016] [Accepted: 03/10/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED The adenoviral gene transfer of human aquaporin-1 (hAQP1) water channels to the liver of 17α-ethinylestradiol-induced cholestatic rats improves bile flow, in part by enhancing canalicular hAQP1-mediated osmotic water secretion. To gain insight into the mechanisms of 17α-ethinylestradiol cholestasis improvement, we studied the biliary output of bile salts (BS) and the functional expression of the canalicular BS export pump (BSEP; ABCB11). Adenovector encoding hAQP1 (AdhAQP1) or control vector was administered by retrograde intrabiliary infusion. AdhAQP1-transduced cholestatic rats increased the biliary output of major endogenous BS (50%-80%, P < 0.05) as well as that of taurocholate administered in choleretic or trace radiolabel amounts (around 60%, P < 0.05). Moreover, liver transduction with AdhAQP1 normalized serum BS levels, otherwise markedly elevated in cholestatic animals. AdhAQP1 treatment was unable to improve BSEP protein expression in cholestasis; however, its transport activity, assessed by adenosine triphosphate-dependent taurocholate transport in canalicular membrane vesicles, was induced by 90% (P < 0.05). AdhAQP1 administration in noncholestatic rats induced no significant changes in either biliary BS output or BSEP activity. Canalicular BSEP, mostly present in raft (high cholesterol) microdomains in control rats, was largely found in nonraft (low cholesterol) microdomains in cholestasis. Considering that BSEP activity directly depends on canalicular membrane cholesterol content, decreased BSEP presence in rafts may contribute to BSEP activity decline in 17α-ethinylestradiol cholestasis. In AdhAQP1-transduced cholestatic rats, BSEP showed a canalicular microdomain distribution similar to that of control rats, which provides an explanation for the improved BSEP activity. CONCLUSION Hepatocyte canalicular expression of hAQP1 through adenoviral gene transfer promotes biliary BS output by modulating BSEP activity in estrogen-induced cholestasis, a novel finding that might help us to better understand and treat cholestatic disorders. (Hepatology 2016;64:535-548).
Collapse
Affiliation(s)
- Julieta Marrone
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Leandro R Soria
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mauro Danielli
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo L Lehmann
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Maria Cecilia Larocca
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Raúl A Marinelli
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
38
|
Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse. Chem Biol Interact 2016; 255:45-54. [PMID: 27000539 DOI: 10.1016/j.cbi.2016.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/03/2016] [Accepted: 03/16/2016] [Indexed: 01/02/2023]
Abstract
Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune-mediated mechanism, are highly associated with potent inhibition of bile salt transport.
Collapse
|
39
|
Montanari F, Pinto M, Khunweeraphong N, Wlcek K, Sohail MI, Noeske T, Boyer S, Chiba P, Stieger B, Kuchler K, Ecker GF. Flagging Drugs That Inhibit the Bile Salt Export Pump. Mol Pharm 2015; 13:163-71. [PMID: 26642869 DOI: 10.1021/acs.molpharmaceut.5b00594] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The bile salt export pump (BSEP) is an ABC-transporter expressed at the canalicular membrane of hepatocytes. Its physiological role is to expel bile salts into the canaliculi from where they drain into the bile duct. Inhibition of this transporter may lead to intrahepatic cholestasis. Predictive computational models of BSEP inhibition may allow for fast identification of potentially harmful compounds in large databases. This article presents a predictive in silico model based on physicochemical descriptors that is able to flag compounds as potential BSEP inhibitors. This model was built using a training set of 670 compounds with available BSEP inhibition potencies. It successfully predicted BSEP inhibition for two independent test sets and was in a further step used for a virtual screening experiment. After in vitro testing of selected candidates, a marketed drug, bromocriptin, was identified for the first time as BSEP inhibitor. This demonstrates the usefulness of the model to identify new BSEP inhibitors and therefore potential cholestasis perpetrators.
Collapse
Affiliation(s)
- Floriane Montanari
- Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Marta Pinto
- Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Narakorn Khunweeraphong
- Max F. Perutz Laboratories, Medical University of Vienna , Vienna Biocenter, 1030 Vienna, Austria
| | - Katrin Wlcek
- Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - M Imran Sohail
- Institute of Medical Chemistry, Medical University of Vienna , Waehringerstrasse 10, 1090 Vienna, Austria
| | - Tobias Noeske
- Drug Safety and Metabolism, AstraZeneca R&D Mölndal , Pepparedsleden 1, Mölndal 43183, Sweden
| | - Scott Boyer
- Drug Safety and Metabolism, AstraZeneca R&D Mölndal , Pepparedsleden 1, Mölndal 43183, Sweden
| | - Peter Chiba
- Institute of Medical Chemistry, Medical University of Vienna , Waehringerstrasse 10, 1090 Vienna, Austria
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital , 8091 Zurich, Switzerland
| | - Karl Kuchler
- Max F. Perutz Laboratories, Medical University of Vienna , Vienna Biocenter, 1030 Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
40
|
Cheng Y, Woolf TF, Gan J, He K. In vitro model systems to investigate bile salt export pump (BSEP) activity and drug interactions: A review. Chem Biol Interact 2015; 255:23-30. [PMID: 26683212 DOI: 10.1016/j.cbi.2015.11.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/10/2015] [Accepted: 11/26/2015] [Indexed: 01/04/2023]
Abstract
The bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various in vitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity. BSEP transporter assays use one of the following platforms: Xenopus laevis oocytes; canalicular membrane vesicles (CMV); BSEP-expressed membrane vesicles; cell lines expressing BSEP; sandwich cultured hepatocytes (SCH); and hepatocytes in suspension. Two of these, BSEP-expressed insect membrane vesicles and sandwich cultured hepatocytes, are the most commonly used assays. BSEP membrane vesicles prepared from transfected insect cells are useful for assessing BSEP inhibition or substrate specificity and exploring mechanisms of BSEP-associated genetic diseases. This model can be applied in a high-throughput format for discovery-drug screening. However, experimental results from use of membrane vesicles may lack physiological relevance and the model does not allow for investigation of in situ metabolism in modulation of BSEP activity. Hepatocyte-based assays that use the SCH format provide results that are generally more physiologically relevant than membrane assays. The SCH model is useful in detailed studies of the biliary excretion of drugs and BSEP inhibition, but due to the complexity of SCH preparation, this model is used primarily for determining biliary clearance and BSEP inhibition in a limited number of compounds. The newly developed hepatocyte in suspension assay avoids many of the complexities of the SCH method. The use of pooled cryopreserved hepatocytes in suspension minimizes genetic variance and individual differences in BSEP activity and also provides the opportunity for higher throughput screening and cross-species comparisons.
Collapse
Affiliation(s)
- Yaofeng Cheng
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, NJ 08543, USA
| | | | - Jinping Gan
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, NJ 08543, USA
| | - Kan He
- Biotranex LLC, Monmouth Junction, NJ 08852, USA.
| |
Collapse
|
41
|
Telbisz Á, Homolya L. Recent advances in the exploration of the bile salt export pump (BSEP/ABCB11) function. Expert Opin Ther Targets 2015; 20:501-14. [PMID: 26573700 DOI: 10.1517/14728222.2016.1102889] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The bile salt export pump (BSEP/ABCB11), residing in the apical membrane of hepatocyte, mediates the secretion of bile salts into the bile. A range of human diseases is associated with the malfunction of BSEP, including fatal hereditary liver disorders and mild cholestatic conditions. Manifestation of these diseases primarily depends on the mutation type; however, other factors such as hormonal changes and drug interactions can also trigger or influence the related diseases. AREAS COVERED Here, we summarize the recent knowledge on BSEP by covering its transport properties, cellular localization, regulation and major mutations/polymorphisms, as well as the hereditary and acquired diseases associated with BSEP dysfunction. We discuss the different model expression systems employed to understand the function of the BSEP variants, their drug interactions and the contemporary therapeutic interventions. EXPERT OPINION The limitations of the available model expression systems for BSEP result in controversial conclusions, and obstruct our deeper insight into BSEP deficiencies and BSEP-related drug interactions. The knowledge originating from different methodologies, such as clinical studies, molecular genetics, as well as in vitro and in silico modeling, should be integrated and harmonized. Increasing availability of robust molecular biological tools and our better understanding of the mechanism of BSEP deficiencies should make the personalized, mutation-based therapeutic interventions more attainable.
Collapse
Affiliation(s)
- Ágnes Telbisz
- a Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok körútja 2, Budapest 1117 , Hungary
| | - László Homolya
- a Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok körútja 2, Budapest 1117 , Hungary
| |
Collapse
|
42
|
Volpe DA. Transporter assays as useful in vitro tools in drug discovery and development. Expert Opin Drug Discov 2015; 11:91-103. [DOI: 10.1517/17460441.2016.1101064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Donna A. Volpe
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| |
Collapse
|
43
|
Jani M, Krajcsi P. In vitro methods in drug transporter interaction assessment. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 12:e105-12. [PMID: 25027368 DOI: 10.1016/j.ddtec.2014.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Drug transporter proteins recruit to pharmacological barrier tissues and profoundly affect the ADME properties of a large number of drugs. In vitro assays optimized for drug transporters have grown into routine tools in the determination of molecular level interactions as well as prediction of barrier penetration and system level pharmacokinetics. Regulatory position mandates increasing interest in the application of these assays during drug development.
Collapse
|
44
|
Abstract
Transporters comprise the largest family of membrane proteins in human organism, including members of solute carrier transporter and ATP-binding cassette transporter families. They play pivotal roles in the absorption, distribution and excretion of xenobiotic and endogenous molecules. Transporters are widely expressed in various human tissues and are routinely evaluated during the process of drug development and approval. Over the past decade, increasing evidence shows that drug transporters are important in both normal physiology and disease. Currently, transporters are utilized as therapeutic targets to treat numerous diseases such as diabetes, major depression, hypertension and constipation. Despite the steady growth of the field of transporter biology, more than half of the members in transporter superfamily have little information available about their endogenous substrate(s) or physiological functions. This review outlines current research methods in transporter studies, and summarizes the drug-transporter interactions including drug-drug and drug-endogenous substrate interactions. In the end, we also discuss the therapeutic perspective of transporters based on their physiological and pathophysiological roles.
Collapse
|
45
|
Van den Hof WFPM, Ruiz-Aracama A, Van Summeren A, Jennen DGJ, Gaj S, Coonen MLJ, Brauers K, Wodzig WKWH, van Delft JHM, Kleinjans JCS. Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro 2015; 29:489-501. [PMID: 25562108 DOI: 10.1016/j.tiv.2014.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 12/08/2014] [Accepted: 12/24/2014] [Indexed: 02/01/2023]
Abstract
In order to improve attrition rates of candidate-drugs there is a need for a better understanding of the mechanisms underlying drug-induced hepatotoxicity. We aim to further unravel the toxicological response of hepatocytes to a prototypical cholestatic compound by integrating transcriptomic and metabonomic profiling of HepG2 cells exposed to Cyclosporin A. Cyclosporin A exposure induced intracellular cholesterol accumulation and diminished intracellular bile acid levels. Performing pathway analyses of significant mRNAs and metabolites separately and integrated, resulted in more relevant pathways for the latter. Integrated analyses showed pathways involved in cell cycle and cellular metabolism to be significantly changed. Moreover, pathways involved in protein processing of the endoplasmic reticulum, bile acid biosynthesis and cholesterol metabolism were significantly affected. Our findings indicate that an integrated approach combining metabonomics and transcriptomics data derived from representative in vitro models, with bioinformatics can improve our understanding of the mechanisms of action underlying drug-induced hepatotoxicity. Furthermore, we showed that integrating multiple omics and thereby analyzing genes, microRNAs and metabolites of the opposed model for drug-induced cholestasis can give valuable information about mechanisms of drug-induced cholestasis in vitro and therefore could be used in toxicity screening of new drug candidates at an early stage of drug discovery.
Collapse
Affiliation(s)
- Wim F P M Van den Hof
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Ainhoa Ruiz-Aracama
- RIKILT, Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Anke Van Summeren
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Danyel G J Jennen
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Stan Gaj
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Maarten L J Coonen
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Karen Brauers
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands.
| | - Will K W H Wodzig
- Department of Clinical Chemistry, Maastricht University Medical Center, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Joost H M van Delft
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| |
Collapse
|
46
|
Woodhead JL, Yang K, Siler SQ, Watkins PB, Brouwer KLR, Barton HA, Howell BA. Exploring BSEP inhibition-mediated toxicity with a mechanistic model of drug-induced liver injury. Front Pharmacol 2014; 5:240. [PMID: 25426072 PMCID: PMC4224072 DOI: 10.3389/fphar.2014.00240] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/22/2014] [Indexed: 01/15/2023] Open
Abstract
Inhibition of the bile salt export pump (BSEP) has been linked to incidence of drug-induced liver injury (DILI), presumably by the accumulation of toxic bile acids in the liver. We have previously constructed and validated a model of bile acid disposition within DILIsym®, a mechanistic model of DILI. In this paper, we use DILIsym® to simulate the DILI response of the hepatotoxic BSEP inhibitors bosentan and CP-724,714 and the non-hepatotoxic BSEP inhibitor telmisartan in humans in order to explore whether we can predict that hepatotoxic BSEP inhibitors can cause bile acid accumulation to reach toxic levels. We also simulate bosentan in rats in order to illuminate potential reasons behind the lack of toxicity in rats compared to the toxicity observed in humans. DILIsym® predicts that bosentan, but not telmisartan, will cause mild hepatocellular ATP decline and serum ALT elevation in a simulated population of humans. The difference in hepatotoxic potential between bosentan and telmisartan is consistent with clinical observations. However, DILIsym® underpredicts the incidence of bosentan toxicity. DILIsym® also predicts that bosentan will not cause toxicity in a simulated population of rats, and that the difference between the response to bosentan in rats and in humans is primarily due to the less toxic bile acid pool in rats. Our simulations also suggest a potential synergistic role for bile acid accumulation and mitochondrial electron transport chain (ETC) inhibition in producing the observed toxicity in CP-724,714, and suggest that CP-724,714 metabolites may also play a role in the observed toxicity. Our work also compares the impact of competitive and noncompetitive BSEP inhibition for CP-724,714 and demonstrates that noncompetitive inhibition leads to much greater bile acid accumulation and potential toxicity. Our research demonstrates the potential for mechanistic modeling to contribute to the understanding of how bile acid transport inhibitors cause DILI.
Collapse
Affiliation(s)
- Jeffrey L Woodhead
- The Hamner-UNC Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences Research Triangle Park, NC, USA
| | - Kyunghee Yang
- The Hamner-UNC Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences Research Triangle Park, NC, USA
| | - Scott Q Siler
- The Hamner-UNC Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences Research Triangle Park, NC, USA
| | - Paul B Watkins
- The Hamner-UNC Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences Research Triangle Park, NC, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC-Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Hugh A Barton
- Pharmacokinetics, Dynamics, and Metabolism, Worldwide Research and Development, Pfizer, Inc. Groton CT, USA
| | - Brett A Howell
- The Hamner-UNC Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences Research Triangle Park, NC, USA
| |
Collapse
|
47
|
Dietrich CG, Geier A. Effect of drug transporter pharmacogenetics on cholestasis. Expert Opin Drug Metab Toxicol 2014; 10:1533-51. [PMID: 25260651 DOI: 10.1517/17425255.2014.963553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The liver is the central place for the metabolism of drugs and other xenobiotics. In the liver cell, oxidation and conjugation of compounds take place, and at the same time, bile formation helps in extrusion of these compounds via the biliary route. A large number of transporters are responsible for drug uptake into the liver cell and excretion into bile or efflux to the sinusoidal blood. AREAS COVERED Genetic variants of these transporters and their transactivators contribute to changes in drug handling and are also responsible for cholestatic syndromes of different severity. This review summarizes the current knowledge regarding the influence of these genetic changes. The review covers progressive hereditary cholestatic syndromes as well as recurrent or transient cholestatic syndromes such as drug-induced liver injury, intrahepatic cholestasis of pregnancy, and benign recurrent intrahepatic cholestasis. EXPERT OPINION Polymorphisms in transporter genes are frequent. For clinically relevant cholestatic syndromes, it often requires a combination of genetic variants or acquired triggers such as pregnancy or drug treatment. In combination with other pathogenetic aspects, genetic variants in drug transporters may contribute to our understanding of not only cholestatic diseases such as primary sclerosing cholangitis or primary biliary cirrhosis, but also the natural course of chronic liver disease in general.
Collapse
|
48
|
Abstract
Numerous drugs have been shown to inhibit the activity of the Bile Salt Export Pump (BSEP in humans, Bsep in animals), and this is now considered to be one of several mechanisms by which idiosyncratic drug-induced liver injury (DILI) may be initiated in susceptible patients. The potential importance of BSEP inhibition by drugs has been recognized by the European Medicines Agency and the International Transporter Consortium, who have recommended that it should be evaluated during drug development when evidence of cholestatic liver injury has been observed in nonclinical safety studies or in human clinical trials. In addition, some pharmaceutical companies have proposed evaluation and minimization of BSEP inhibition during drug discovery, when there is a chemical choice, to help reduce DILI risk. The methods that can be used to assess and quantify BSEP inhibition, and key gaps in our current understanding of the relationship between this process and DILI, are discussed.
Collapse
Affiliation(s)
- J Gerry Kenna
- Safety Science Consultant, Macclesfield, Cheshire, United Kingdom
| |
Collapse
|
49
|
Yang K, Brouwer KLR. Hepatocellular exposure of troglitazone metabolites in rat sandwich-cultured hepatocytes lacking Bcrp and Mrp2: interplay between formation and excretion. Drug Metab Dispos 2014; 42:1219-26. [PMID: 24799397 PMCID: PMC4053994 DOI: 10.1124/dmd.114.057190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 05/05/2014] [Indexed: 11/22/2022] Open
Abstract
Inhibition of bile acid transport by troglitazone (TGZ) and its major metabolite, TGZ sulfate (TS), may lead to hepatocellular accumulation of toxic bile acids; TS accumulation and hepatotoxicity may be associated with impaired TS biliary excretion. This study evaluated the impact of impaired transport of breast cancer resistance protein (Bcrp) and multidrug resistance-associated protein 2 (Mrp2) on the hepatobiliary disposition of generated metabolites, TS and TGZ glucuronide (TG). Sandwich-cultured hepatocytes (SCH) from Mrp2-deficient (TR(-)) rats in combination with Bcrp knockdown using RNA interference were employed. The biliary excretion index (BEI) of generated TS was not significantly altered by impaired Bcrp (20.9 to 21.1%) and/or Mrp2 function (24.4% and 17.5% in WT and TR(-) rat SCH, respectively). Thus, loss-of-function of Mrp2 and/or Bcrp do not appear to be risk factors for increased hepatocellular TS accumulation in rats, potentially because of a compensatory transporter(s) that excretes TS into bile. Further investigations revealed that the compensatory TS biliary transporter was not the bile salt export pump (Bsep) or P-glycoprotein (P-gp). Interestingly, TGZ sulfation was significantly decreased in TR(-) compared with WT rat SCH (total recovery: 2.8 versus 5.0% of TGZ dose), resulting in decreased hepatocellular TS accumulation, even though sulfotransferase activity in TR(-) rat hepatocyte S9 fraction was similar. Hepatocellular TG accumulation was significantly increased in TR(-) compared with WT rat SCH due to increased glucuronidation and negligible TG biliary excretion. These data emphasize that the interplay between metabolite formation and excretion determines hepatocellular exposure to generated metabolites such as TS and TG.
Collapse
Affiliation(s)
- Kyunghee Yang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
50
|
Treiber A, Äänismaa P, de Kanter R, Delahaye S, Treher M, Hess P, Sidharta P. Macitentan does not interfere with hepatic bile salt transport. J Pharmacol Exp Ther 2014; 350:130-43. [PMID: 24769543 DOI: 10.1124/jpet.114.214106] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment of pulmonary arterial hypertension with the endothelin receptor antagonist bosentan has been associated with transient increases in liver transaminases. Mechanistically, bosentan inhibits the bile salt export pump (BSEP) leading to an intrahepatic accumulation of cytotoxic bile salts, which eventually results in hepatocellular damage. BSEP inhibition by bosentan is amplified by its accumulation in the liver as bosentan is a substrate of organic anion-transporting polypeptide (OATP) transport proteins. The novel endothelin receptor antagonist macitentan shows a superior liver safety profile. Introduction of the less acidic sulfamide moiety and increased lipophilicity yield a hepatic disposition profile different from other endothelin receptor antagonists. Passive diffusion rather than OATP-mediated uptake is the driving force for macitentan uptake into the liver. Interaction with the sodium taurocholate cotransporting polypeptide and BSEP transport proteins involved in hepatic bile salt homeostasis is therefore limited due to the low intrahepatic drug concentrations. Evidence for this conclusion is provided by in vitro experiments in drug transporter-expressing cell lines, acute and long-term studies in rats and dogs, absence of plasma bile salt changes in healthy human volunteers after multiple dosing, and finally the liver safety profile of macitentan in the completed phase III morbidity/mortality SERAPHIN (Study with an Endothelin Receptor Antagonist in Pulmonary Arterial Hypertension to Improve Clinical Outcome) trial.
Collapse
Affiliation(s)
- Alexander Treiber
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., P.A., R.d.K., S.D.), Toxicology (M.T.), Pharmacology (P.H.), and Clinical Pharmacology (P.S.), Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Päivi Äänismaa
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., P.A., R.d.K., S.D.), Toxicology (M.T.), Pharmacology (P.H.), and Clinical Pharmacology (P.S.), Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Ruben de Kanter
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., P.A., R.d.K., S.D.), Toxicology (M.T.), Pharmacology (P.H.), and Clinical Pharmacology (P.S.), Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Stephane Delahaye
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., P.A., R.d.K., S.D.), Toxicology (M.T.), Pharmacology (P.H.), and Clinical Pharmacology (P.S.), Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Marianne Treher
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., P.A., R.d.K., S.D.), Toxicology (M.T.), Pharmacology (P.H.), and Clinical Pharmacology (P.S.), Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Patrick Hess
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., P.A., R.d.K., S.D.), Toxicology (M.T.), Pharmacology (P.H.), and Clinical Pharmacology (P.S.), Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Patricia Sidharta
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., P.A., R.d.K., S.D.), Toxicology (M.T.), Pharmacology (P.H.), and Clinical Pharmacology (P.S.), Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|