1
|
Tan BH, Ahemad N, Pan Y, Ong CE. Mechanism-based inactivation of cytochromes P450: implications in drug interactions and pharmacotherapy. Xenobiotica 2024; 54:575-598. [PMID: 39175333 DOI: 10.1080/00498254.2024.2395557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Cytochrome P40 (CYP) enzymes dominate the metabolism of numerous endogenous and xenobiotic substances. While it is commonly believed that CYP-catalysed reactions result in the detoxication of foreign substances, these reactions can also yield reactive intermediates that can bind to cellular macromolecules to cause cytotoxicity or irreversibly inactivate CYPs that create them.Mechanism-based inactivation (MBI) produces either irreversible or quasi-irreversible inactivation and is commonly caused by CYP metabolic bioactivation to an electrophilic reactive intermediate. Many drugs that have been known to cause MBI in CYPs have been discovered as perpetrators in drug-drug interactions throughout the last 20-30 years.This review will highlight the key findings from the recent literature about the mechanisms of CYP enzyme inhibition, with a focus on the broad mechanistic elements of MBI for widely used drugs linked to the phenomenon. There will also be a brief discussion of the clinical or pharmacokinetic consequences of CYP inactivation with regard to drug interaction and toxicity risk.Gaining knowledge about the selective inactivation of CYPs by common therapeutic drugs helps with the assessment of factors that affect the systemic clearance of co-administered drugs and improves comprehension of anticipated interactions with other drugs or xenobiotics.
Collapse
Affiliation(s)
- Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Kuala Lumpur, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Mirzaei MS, Ivanov MV, Taherpour AA, Mirzaei S. Mechanism-Based Inactivation of Cytochrome P450 Enzymes: Computational Insights. Chem Res Toxicol 2021; 34:959-987. [PMID: 33769041 DOI: 10.1021/acs.chemrestox.0c00483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanism-based inactivation (MBI) refers to the metabolic bioactivation of a xenobiotic by cytochrome P450s to a highly reactive intermediate which subsequently binds to the enzyme and leads to the quasi-irreversible or irreversible inhibition. Xenobiotics, mainly drugs with specific functional units, are the major sources of MBI. Two possible consequences of MBI by medicinal compounds are drug-drug interaction and severe toxicity that are observed and highlighted by clinical experiments. Today almost all of these latent functional groups (e.g., thiophene, furan, alkylamines, etc.) are known, and their features and mechanisms of action, owing to the vast experimental and theoretical studies, are determined. In the past decade, molecular modeling techniques, mostly density functional theory, have revealed the most feasible mechanism that a drug undergoes by P450 enzymes to generate a highly reactive intermediate. In this review, we provide a comprehensive and detailed picture of computational advances toward the elucidation of the activation mechanisms of various known groups with MBI activity. To this aim, we briefly describe the computational concepts to carry out and analyze the mechanistic investigations, and then, we summarize the studies on compounds with known inhibition activity including thiophene, furan, alkylamines, terminal acetylene, etc. This study can be reference literature for both theoretical and experimental (bio)chemists in several different fields including rational drug design, the process of toxicity prevention, and the discovery of novel inhibitors and catalysts.
Collapse
Affiliation(s)
- M Saeed Mirzaei
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346
| | - Maxim V Ivanov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Avat Arman Taherpour
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346.,Medical Biology Research Centre, University of Medical Sciences, Kermanshah, Iran 67149-67346
| | - Saber Mirzaei
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Yadav J, Paragas E, Korzekwa K, Nagar S. Time-dependent enzyme inactivation: Numerical analyses of in vitro data and prediction of drug-drug interactions. Pharmacol Ther 2020; 206:107449. [PMID: 31836452 PMCID: PMC6995442 DOI: 10.1016/j.pharmthera.2019.107449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochrome P450 (CYP) enzyme kinetics often do not conform to Michaelis-Menten assumptions, and time-dependent inactivation (TDI) of CYPs displays complexities such as multiple substrate binding, partial inactivation, quasi-irreversible inactivation, and sequential metabolism. Additionally, in vitro experimental issues such as lipid partitioning, enzyme concentrations, and inactivator depletion can further complicate the parameterization of in vitro TDI. The traditional replot method used to analyze in vitro TDI datasets is unable to handle complexities in CYP kinetics, and numerical approaches using ordinary differential equations of the kinetic schemes offer several advantages. Improvement in the parameterization of CYP in vitro kinetics has the potential to improve prediction of clinical drug-drug interactions (DDIs). This manuscript discusses various complexities in TDI kinetics of CYPs, and numerical approaches to model these complexities. The extrapolation of CYP in vitro TDI parameters to predict in vivo DDIs with static and dynamic modeling is discussed, along with a discussion on current gaps in knowledge and future directions to improve the prediction of DDI with in vitro data for CYP catalyzed drug metabolism.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Amgen Inc., 360 Binney Street, Cambridge, MA 02142, United States; Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Erickson Paragas
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
4
|
Kulkarni P, Korzekwa K, Nagar S. A hybrid model to evaluate the impact of active uptake transport on hepatic distribution of atorvastatin in rats. Xenobiotica 2019; 50:536-544. [PMID: 31530243 DOI: 10.1080/00498254.2019.1668982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. Mathematical modeling remains a useful tool to study the impact of transporters on overall and intracellular drug disposition. The impact of organic anion transporter protein mediated uptake on atorvastatin systemic and intracellular pharmacokinetics, specifically distribution volume, was studied in rats with mathematical modeling and conducting in vivo pharmacokinetic studies for atorvastatin in presence and absence of rifampicin. A previously developed 5-compartment explicit membrane model for the liver was combined with a compartmental model to develop a semi-physiological hybrid model for atorvastatin disposition. 2. Rifampicin treatment resulted in a decrease in systemic clearance and steady-state distribution volume, and an increase in half-life of atorvastatin. The hybrid model predicted higher unbound intracellular liver atorvastatin concentrations than unbound plasma concentrations in both rifampicin treated and untreated groups, indicating involvement of uptake transporters. The intracellular unbound concentrations during the distributive phase were unaffected by rifampicin. The dependence of clearance on blood flow as well as hepatic uptake for atorvastatin (a moderate-to-high extraction ratio drug) can explain this lack of change in intracellular concentrations if there is incomplete inhibition of transport at the tested rifampicin dose. 3. The hybrid model successfully allowed the evaluation of effect of active uptake on intracellular and plasma atorvastatin disposition.
Collapse
Affiliation(s)
- Priyanka Kulkarni
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| |
Collapse
|
5
|
Salerno SN, Edginton A, Cohen‐Wolkowiez M, Hornik CP, Watt KM, Jamieson BD, Gonzalez D. Development of an Adult Physiologically Based Pharmacokinetic Model of Solithromycin in Plasma and Epithelial Lining Fluid. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:814-822. [PMID: 29068158 PMCID: PMC5744174 DOI: 10.1002/psp4.12252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/16/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022]
Abstract
Solithromycin is a fluoroketolide antibiotic under investigation for community-acquired bacterial pneumonia (CABP). We developed a whole-body physiologically based pharmacokinetic (PBPK) model for solithromycin in adults using PK-Sim and MoBi version 6.2, which incorporated time-dependent CYP3A4 auto-inhibition. The model was developed and evaluated using plasma and epithelial lining fluid (ELF) concentration data from 100 healthy subjects and 22 patients with CABP (1,966 plasma, 30 ELF samples). We performed population simulations and calculated the number of observations falling outside the 90% prediction interval. For the oral regimen (800 mg on day 1 and 400 mg daily on days 2-5) that was evaluated in phase III studies, 11% and 23% of observations from healthy adults fell outside the 90% prediction interval for plasma and ELF, respectively. This regimen should be effective because ≥97% of simulated adults achieved area under the concentration vs. time curve (AUC) to minimum inhibitory concentration ratios associated with a log10 colony forming unit reduction in ELF.
Collapse
Affiliation(s)
- Sara N. Salerno
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Andrea Edginton
- School of PharmacyUniversity of WaterlooKitchenerOntarioCanada
| | - Michael Cohen‐Wolkowiez
- Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
- Duke Clinical Research Institute, Duke University Medical CenterDurhamNorth CarolinaUSA
| | - Christoph P. Hornik
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
- Duke Clinical Research Institute, Duke University Medical CenterDurhamNorth CarolinaUSA
| | - Kevin M. Watt
- Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
- Duke Clinical Research Institute, Duke University Medical CenterDurhamNorth CarolinaUSA
| | | | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
6
|
Strelow JM. A Perspective on the Kinetics of Covalent and Irreversible Inhibition. SLAS DISCOVERY 2016; 22:3-20. [PMID: 27703080 DOI: 10.1177/1087057116671509] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The clinical and commercial success of covalent drugs has prompted a renewed and more deliberate pursuit of covalent and irreversible mechanisms within drug discovery. A covalent mechanism can produce potent inhibition in a biochemical, cellular, or in vivo setting. In many cases, teams choose to focus on the consequences of the covalent event, defined by an IC50 value. In a biochemical assay, the IC50 may simply reflect the target protein concentration in the assay. What has received less attention is the importance of the rate of covalent modification, defined by kinact/KI. The kinact/KI is a rate constant describing the efficiency of covalent bond formation resulting from the potency (KI) of the first reversible binding event and the maximum potential rate (kinact) of inactivation. In this perspective, it is proposed that the kinact/KI should be employed as a critical parameter to identify covalent inhibitors, interpret structure-activity relationships (SARs), translate activity from biochemical assays to the cell, and more accurately define selectivity. It is also proposed that a physiologically relevant kinact/KI and an (unbound) AUC generated from a pharmacokinetic profile reflecting direct exposure of the inhibitor to the target protein are two critical determinants of in vivo covalent occupancy. A simple equation is presented to define this relationship and improve the interpretation of covalent and irreversible kinetics.
Collapse
Affiliation(s)
- John M Strelow
- 1 Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| |
Collapse
|
7
|
Nagai K, Yoshida N, Kiyama M, Kasahara K, Yamamura A, Konishi H. Decreased elimination clearance of midazolam by doxorubicin through reductions in the metabolic activity of hepatic CYP3A in rats. Xenobiotica 2015; 45:874-80. [PMID: 26053556 DOI: 10.3109/00498254.2015.1027971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. We examined the effects of doxorubicin (DOX) on the expression level and metabolic activity of CYP3A in the liver as well as on the pharmacokinetics of midazolam (MDZ), a probe for CYP3A, in rats. Changes in the hepatic status of DOX-treated rats were confirmed. 2. Serum levels of the biomarkers of hepatic impairment were elevated by the DOX treatment, which was consistent with the results obtained from a histopathological evaluation of the liver. 3. No significant difference was observed in the expression of proteins for hepatic CYP3A1 and CYP3A2 between the DOX and control groups. The metabolic production of 1'-hydroxylated and 4'-hydroxylated MDZ by hepatic microsomes was significantly lower in DOX-treated rats than in control rats. 4. The area under the curve (AUC) and the half-life (t1/2) of intravenously administered MDZ were significantly increased, and the total clearance (CLtot) and the elimination rate constant at the terminal phase (ke) were significantly decreased without significant changes in the volume of distribution at a steady state (Vdss). 5. These results indicated that a DOX-induced depression in the metabolic activity, but not expression level of CYP3A contributed to a decrease in the elimination clearance of MDZ, and also that reduced CYP3A function may be associated with the hepatotoxicity of DOX.
Collapse
Affiliation(s)
- Katsuhito Nagai
- a Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy , Osaka Ohtani University , Tondabayashi , Japan
| | | | | | | | | | | |
Collapse
|
8
|
Nagai K, Suzuki S, Yamamura A, Konishi H. Change in pharmacokinetic behavior of intravenously administered midazolam due to increased CYP3A2 expression in rats treated with menthol. Biopharm Drug Dispos 2015; 36:174-82. [PMID: 25430017 DOI: 10.1002/bdd.1930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/02/2014] [Accepted: 11/15/2014] [Indexed: 01/11/2023]
Abstract
Menthol is used widely as a constituent of functional foods and chemical drugs. The present study investigated changes in the pharmacokinetic behavior of intravenously administered midazolam (MDZ), a probe for CYP3A, when rats were treated with menthol. The study also examined which isoforms of CYP3A1 and 3A2 were menthol-inducible and contributed to the altered disposition of midazolam. Menthol was administered intraperitoneally to rats once daily for 3 days at a dose of 10 mg/kg, while the control rats received vehicle alone. The pharmacokinetic examination of i.v. administered midazolam revealed that serum midazolam concentrations at each sampling point were lower in the menthol-treated rats than in the control rats. Regarding the pharmacokinetic parameters of the menthol-treated group, the area under the curve (AUC) was decreased significantly and, correspondingly, the elimination rate constant at terminal phase (ke) was increased significantly without significant changes in the volume of distribution at steady state (Vdss). The metabolic production of the 1'-hydroxylated and 4'-hydroxylated forms of MDZ by hepatic microsomes was significantly greater in the menthol-treated rats than in the control rats. The expression levels of mRNA and protein for hepatic CYP3A2 were more than 2.5-fold higher than the control levels when the rats were treated with menthol, whereas no changes were observed in the expression levels of CYP3A1. These results indicate that menthol enhanced the elimination clearance of midazolam by inducing hepatic CYP3A2 and that careful attention should be paid when menthol is ingested in combination with drugs that act as substrates for CYP3A.
Collapse
Affiliation(s)
- Katsuhito Nagai
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, 584-8540, Japan
| | | | | | | |
Collapse
|
9
|
Yoo DH, Kim IS, Van Le TK, Jung IH, Yoo HH, Kim DH. Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab Dispos 2014; 42:1508-13. [PMID: 24947972 DOI: 10.1124/dmd.114.058354] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Orally administered drugs may be metabolized by intestinal microbial enzymes before absorption into the blood. Accordingly, coadministration of drugs affecting the metabolic activities of gut microbes (e.g., antibiotics) may lead to drug-drug interactions (DDI). In this study, gut microbiota-mediated DDI were investigated by studying the pharmacokinetics of lovastatin in antibiotic-treated rats. Incubation of lovastatin with human and rat fecalase preparations produced four metabolites, M1 (demethylbutyryl metabolite), M4 (hydroxylated metabolite), M8 (the active hydroxy acid metabolite), and M9 (hydroxylated M8), indicating involvement of the gut microbiota in lovastatin metabolism. The plasma concentration-time profiles of M8 were compared after oral administration of lovastatin to control rats or those treated with either ampicillin (100 mg/kg) or an antibiotic mixture consisting of cefadroxil (150 mg/kg), oxytetracycline (300 mg/kg), and erythromycin (300 mg/kg). Pharmacokinetic analyses indicated that systemic exposure to M8 was significantly lower in antibiotic-treated rats compared with controls. In addition, fecal M8 formation decreased by 58.3 and 59.9% in the ampicillin- and antibiotic mixture-treated rats, respectively. These results suggested that antibiotic intake may reduce the biotransformation of orally administered drugs by gut microbiota and that the subsequent impact on microbiota metabolism could result in altered systemic concentrations of either the intact drug and/or its metabolite(s).
Collapse
Affiliation(s)
- Dae-Hyoung Yoo
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Korea (D.H.Y., T.K.V.L., I.H.J., D.H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Korea (I.S.K., H.H.Y.)
| | - In Sook Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Korea (D.H.Y., T.K.V.L., I.H.J., D.H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Korea (I.S.K., H.H.Y.)
| | - Thi Kim Van Le
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Korea (D.H.Y., T.K.V.L., I.H.J., D.H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Korea (I.S.K., H.H.Y.)
| | - Il-Hoon Jung
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Korea (D.H.Y., T.K.V.L., I.H.J., D.H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Korea (I.S.K., H.H.Y.)
| | - Hye Hyun Yoo
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Korea (D.H.Y., T.K.V.L., I.H.J., D.H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Korea (I.S.K., H.H.Y.)
| | - Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Korea (D.H.Y., T.K.V.L., I.H.J., D.H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Korea (I.S.K., H.H.Y.)
| |
Collapse
|
10
|
Wang C, Wang C, Liu Q, Meng Q, Cang J, Sun H, Peng J, Ma X, Huo X, Liu K. Aspirin and probenecid inhibit organic anion transporter 3-mediated renal uptake of cilostazol and probenecid induces metabolism of cilostazol in the rat. Drug Metab Dispos 2014; 42:996-1007. [PMID: 24692216 DOI: 10.1124/dmd.113.055194] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
This study aimed to evaluate the transporter-mediated renal excretion mechanism for cilostazol and to characterize the mechanism of drug-drug interaction (DDI) between cilostazol and aspirin or probenecid. Concentrations of cilostazol and its metabolites OPC-13015 [6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)butoxy]-2(1H)-quinolinone] and OPC-13213 [3,4-dihydro-6-[4-[1-(trans-4-hydroxycyclohexyl)-1H-tetrazol-5-yl]butoxy]-2-(1H)-quinolinone] in rat biologic or cell samples were measured by liquid chromatography-tandem mass spectrometry. Coadministration with probenecid, benzylpenicillin, or aspirin decreased the cumulative urinary excretion of cilostazol and renal clearance. Concentrations of cilostazol and OPC-13213 in plasma decreased, and the concentration of OPC-13015 increased in the presence of probenecid. By contrast, rat plasma cilostazol, in combination with benzylpenicillin or aspirin, sharply increased, and concentrations of OPC-13015 and OPC-13213 did not change. In urine, OPC-13015 was below the level of detection. The cumulative urinary excretion of OPC-13213 decreased in the presence of probenecid, benzylpenicillin, or aspirin. Cilostazol was distributed in the kidney and liver, with tissue to plasma partition coefficient (Kp) values of 8.4 ml/g and 16.3 ml/g, respectively. Probenecid and aspirin reduced cilostazol distribution in the kidney. Probenecid did not affect cilostazol metabolism in the kidney but increased cilostazol metabolism in the liver, and aspirin had no effect on cilostazol metabolism. Benzylpenicillin, aspirin, and cyclo-trans-4-l-hydroxyprolyl-l-serine (JBP485) reduced cilostazol uptake in kidney slices and human organic anion transporter 3 (hOAT3)-human embryonic kidney 293 (HEK293) cells, whereas p-aminohippuric acid did not. Compared with the vector, hOAT3-HEK293 cells accumulated more cilostazol, whereas hOAT1-HEK293 cells did not. OAT3 and Oat3 play a major role in cilostazol renal excretion, whereas OAT1 and Oat1 do not. Oat3 and Cyp3a are both targets of the DDI between cilostazol and probenecid. Aspirin inhibits OAT3-mediated uptake of cilostazol and does not influence cilostazol metabolism.
Collapse
Affiliation(s)
- Chong Wang
- Department of Clinical Pharmacology, College of Pharmacy (Cho.W., Cha.W., Q.L., Q.M., J.C., H.S., J.P., X.M., K.L.), and China Provincial Key Laboratory for Pharmacokinetics and Transport (Cha.W., Q.L., Q.M., J.C., H.S., J.P., X.M., X.H., K.L.), Dalian Medical University, Dalian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
This chapter describes the types of irreversible inhibition of drug-metabolizing enzymes and the methods commonly employed to quantify the irreversible inhibition and subsequently predict the extent and time course of clinically important drug-drug interactions.
Collapse
Affiliation(s)
- Michael Mohutsky
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | |
Collapse
|
12
|
Inhibitory Effects of Baicalin on the Expression and Activity of CYP3A Induce the Pharmacokinetic Changes of Midazolam in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:179643. [PMID: 23710212 PMCID: PMC3655607 DOI: 10.1155/2013/179643] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/24/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022]
Abstract
Baicalin, a flavonoid compound isolated from Scutellaria baicalensis, has been shown to possess antiinflammatory, antiviral, antitumour, and immune regulatory properties. The present study evaluated the potential herb-drug interaction between baicalin and midazolam in rats. Coadministration of a single dose of baicalin (0.225, 0.45, and 0.90 g/kg, i.v.) with midazolam (10 mg/kg, i.v.) in rats resulted in a dose-dependent decrease in clearance (CL) from 25% (P < 0.05) to 34% (P < 0.001) with an increase in AUC0-∞ from 47% (P < 0.05) to 53% (P < 0.01). Pretreatment of baicalin (0.90 g/kg, i.v., once daily for 7 days) also reduced midazolam CL by 43% (P < 0.001), with an increase in AUC0-∞ by 87% (P < 0.01). Multiple doses of baicalin decreased the expression of hepatic CYP3A2 by approximately 58% (P < 0.01) and reduced midazolam 1'-hydroxylation by 23% (P < 0.001) and 4'-hydroxylation by 21% (P < 0.01) in the liver. In addition, baicalin competitively inhibited midazolam metabolism in rat liver microsomes in a concentration-dependent manner. Our data demonstrated that baicalin induced changes in the pharmacokinetics of midazolam in rats, which might be due to its inhibition of the hydroxylation activity and expression of CYP3A in the liver.
Collapse
|
13
|
Vuppugalla R, Zhang Y, Chang S, Rodrigues AD, Marathe PH. Impact of nonlinear midazolam pharmacokinetics on the magnitude of the midazolam-ketoconazole interaction in rats. Xenobiotica 2012; 42:1058-68. [PMID: 22574883 DOI: 10.3109/00498254.2012.684104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Numerous groups have described the rat as an in vivo model for the assessment and prediction of drug-drug interactions (DDIs) in humans involving the inhibition of cytochrome P450 3A forms. Even for a well-established substrate-inhibitor pair like midazolam-ketoconazole, however, the magnitude of the DDI in rats (e.g. 1.5- to 5-fold) does not relate to what is observed clinically (e.g. 5- to 16-fold). Because nonlinear substrate pharmacokinetics (PK) may result in a weaker interaction, it was hypothesized that the lower magnitude of interaction observed in rats was due to the saturation of metabolic pathway(s) of midazolam at the doses used (10-20 mg/kg). Therefore, the inhibitory effects of ketoconazole were reevaluated at lower oral (1 and 5 mg/kg) and intravenous (IV) (1 mg/kg) doses of midazolam. In support of the hypothesis, oral exposure at 5 mg/kg dose of midazolam was 18-fold higher compared to that at 1 mg/kg. Furthermore, when the interaction was investigated at the lower midazolam dose (1 mg/kg), ketoconazole increased the IV and oral exposure of midazolam by 7-fold and 11-fold, respectively. A weaker DDI (1.5- to 1.8-fold) was observed at the higher oral midazolam dose. Collectively, these results suggest that the lower reported interaction in rats is likely due to saturation of midazolam clearance at the doses used. Therefore, when the rat is used as a DDI model to screen and differentiate compounds, or predict CYP3A inhibition in humans, it is important to use low doses of midazolam and ensure linear PK.
Collapse
Affiliation(s)
- Ragini Vuppugalla
- Metabolism and Pharmacokinetics, Department of Pharmaceutical Candidate Optimization, Bristol-Mye's Squibb Co., P.O. Box 4000, Princeton, NJ 08543, USA.
| | | | | | | | | |
Collapse
|
14
|
Kamel A, Colizza K, Gunduz M, Harriman S, Obach RS. In vitro-in vivo correlation for intrinsic clearance for CP-409,092 and sumatriptan: a case study to predict the in vivo clearance for compounds metabolized by monoamine oxidase. Xenobiotica 2011; 42:355-62. [PMID: 22106962 DOI: 10.3109/00498254.2011.630490] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxidative deamination of the GABA(A) partial agonist CP-409,092 and sumatriptan represents a major metabolic pathway and seems to play an important role for the clearance of these two compounds. Similar to sumatriptan, human mitochondrial incubations with deprenyl and clorgyline, probe inhibitors of monoamine oxidase B and monoamine oxidase A (MAO-B and MAO-A), respectively, showed that CP-409,092 was metabolized to a large extent by the enzyme MAO-A. The metabolism of CP-409,092 and sumatriptan was therefore studied in human liver mitochondria and in vitro intrinsic clearance (CL(int)) values were determined and compared to the corresponding in vivo oral clearance (CL(PO)) values. The overall objective was to determine whether an in vitro-in vivo correlation (IVIVC) could be described for compounds cleared by MAO-A. The intrinsic clearance, CL(int), of CP-409,092 was approximately 4-fold greater than that of sumatriptan (CL(int), values were calculated as 0.008 and 0.002 ml/mg/min for CP-409,092 and sumatriptan, respectively). A similar correlation was observed from the in vivo metabolic data where the unbound oral clearance, CL(u)(PO), values in humans were calculated as 724 and 178 ml/min/kg for CP-409,092 and sumatriptan, respectively. The present work demonstrates that it is possible to predict in vivo metabolic clearance from in vitro metabolic data for drugs metabolized by the enzyme monoamine oxidase.
Collapse
Affiliation(s)
- Amin Kamel
- Department of Pharmacokinetics, Pharmacodynamics and Metabolism, Pfizer Global Research and Development, Groton/New London Laboratories, Pfizer Inc., Groton, CT, USA.
| | | | | | | | | |
Collapse
|
15
|
Sugiyama E, Kikuchi A, Inada M, Sato H. The use of 13C-erythromycin as an in vivo probe to evaluate CYP3A-mediated drug interactions in rats. J Pharm Sci 2011; 100:3995-4005. [PMID: 21618542 DOI: 10.1002/jps.22616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/16/2011] [Accepted: 04/21/2011] [Indexed: 11/05/2022]
Abstract
(14)C-erythromycin breath test has been utilized to evaluate the extent of CYP3A activity in vivo. However, its radioactivity sometimes impedes its clinical application. In this study, we employed erythromycin labeled with (13)C ((13)C-EM), a nonradioactive stable isotope, as an in vivo probe of breath test to evaluate CYP3A-mediated drug interactions in rats. A physiologically based pharmacokinetic (PBPK) model to describe (13)CO(2) exhalation altered by drug interactions was newly constructed. Rats received an intravenous or oral administration of (13)C-EM with or without a CYP3A inhibitor or inducer, that is, ketoconazole (KCZ) or dexamethasone (DEX), respectively. Breath samples were taken at designated times, measured with an infrared spectrophotometer, and the Δ(13) CO(2) value (‰) in each sample was obtained. The C(max) and AUC(0-t) of Δ(13) CO(2) were significantly decreased with KCZ and increased with DEX. The PBPK model in this study successfully described the (13)CO(2) exhalation after (13)C-EM administration in the absence and presence of drug interactions. In conclusion, this study proposed a simple and rapid in vivo methodology to utilize (13)C-EM for the quantitative analysis of CYP3A inhibition and induction. This method using small animals may be useful in early drug development processes.
Collapse
Affiliation(s)
- Erika Sugiyama
- Department of Clinical and Molecular Pharmacokinetics/Pharmacodynamics, Faculty of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | | | | | |
Collapse
|
16
|
Hanson KL, VandenBrink BM, Babu KN, Allen KE, Nelson WL, Kunze KL. Sequential metabolism of secondary alkyl amines to metabolic-intermediate complexes: opposing roles for the secondary hydroxylamine and primary amine metabolites of desipramine, (s)-fluoxetine, and N-desmethyldiltiazem. Drug Metab Dispos 2010; 38:963-72. [PMID: 20200233 PMCID: PMC2879960 DOI: 10.1124/dmd.110.032391] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 03/03/2010] [Indexed: 11/22/2022] Open
Abstract
Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine >> primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d(3)-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation.
Collapse
Affiliation(s)
- Kelsey L Hanson
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|