1
|
Xu C, Liu Y, Li K, Zhang J, Wei B, Wang H. Absorption of food-derived peptides: Mechanisms, influencing factors, and enhancement strategies. Food Res Int 2024; 197:115190. [PMID: 39593400 DOI: 10.1016/j.foodres.2024.115190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Food-derived peptides (FPs) are bioactive molecules produced from dietary proteins through enzymatic hydrolysis or fermentation. These peptides exhibit various biological activities. However, their efficacy largely depends on bioavailability, the ability to cross absorption barriers, and reach target sites within the body. This review addresses key issues in FP absorption, including barriers, pathways, influencing factors, and strategies to enhance absorption. The biochemical and physical barriers to FP absorption include pH variations, enzymes, unstirred water layer, mucus layer, and intestinal epithelial cells. FPs enter the bloodstream via four main pathways: carrier-mediated transport, endocytosis, paracellular, and passive diffusion. The barrier-crossing efficiency depends on the structural properties and state of FPs and coexisting substances. Absorption efficiency can be significantly improved with permeability enhancers, nano-delivery systems, and chemical modifications. These insights provide a scientific basis and practical guidance for optimizing the bioactivity and health benefits of food-derived peptides.
Collapse
Affiliation(s)
- Chengzhi Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Yuting Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Ke Li
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Juntao Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Benmei Wei
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China.
| |
Collapse
|
2
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:790387. [PMID: 34790692 PMCID: PMC8591313 DOI: 10.3389/fnut.2021.790387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:718356. [PMID: 34589512 PMCID: PMC8475765 DOI: 10.3389/fnut.2021.718356] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial barrier (IEB) is one of the largest interfaces between the environment and the internal milieu of the body. It is essential to limit the passage of harmful antigens and microorganisms and, on the other side, to assure the absorption of nutrients and water. The maintenance of this delicate equilibrium is tightly regulated as it is essential for human homeostasis. Luminal solutes and ions can pass across the IEB via two main routes: the transcellular pathway or the paracellular pathway. Tight junctions (TJs) are a multi-protein complex responsible for the regulation of paracellular permeability. TJs control the passage of antigens through the IEB and have a key role in maintaining barrier integrity. Several factors, including cytokines, gut microbiota, and dietary components are known to regulate intestinal TJs. Gut microbiota participates in several human functions including the modulation of epithelial cells and immune system through the release of several metabolites, such as short-chain fatty acids (SCFAs). Mediators released by immune cells can induce epithelial cell damage and TJs dysfunction. The subsequent disruption of the IEB allows the passage of antigens into the mucosa leading to further inflammation. Growing evidence indicates that dysbiosis, immune activation, and IEB dysfunction have a role in several diseases, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gluten-related conditions. Here we summarize the interplay between the IEB and gut microbiota and mucosal immune system and their involvement in IBS, IBD, and gluten-related disorders.
Collapse
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Amigo L, Hernández-Ledesma B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020; 25:E4479. [PMID: 33003506 PMCID: PMC7582556 DOI: 10.3390/molecules25194479] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
Food protein-derived bioactive peptides are recognized as valuable ingredients of functional foods and/or nutraceuticals to promote health and reduce the risk of chronic diseases. However, although peptides have been demonstrated to exert multiple benefits by biochemical assays, cell culture, and animal models, the ability to translate the new findings into practical or commercial uses remains delayed. This fact is mainly due to the lack of correlation of in vitro findings with in vivo functions of peptides because of their low bioavailability. Once ingested, peptides need to resist the action of digestive enzymes during their transit through the gastrointestinal tract and cross the intestinal epithelial barrier to reach the target organs in an intact and active form to exert their health-promoting properties. Thus, for a better understanding of the in vivo physiological effects of food bioactive peptides, extensive research studies on their gastrointestinal stability and transport are needed. This review summarizes the most current evidence on those factors affecting the digestive and absorptive processes of food bioactive peptides, the recently designed models mimicking the gastrointestinal environment, as well as the novel strategies developed and currently applied to enhance the absorption and bioavailability of peptides.
Collapse
Affiliation(s)
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Research in Food Sciences (CIAL, CSIC-UAM, CEI-UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
5
|
Affiliation(s)
- Weilin Shen
- Division of Bioscience and Biotechnology Faculty of Agriculture Graduate School of Kyushu University 744 Motooka Nishi‐ku Fukuoka 819‐0395 Japan
| | - Toshiro Matsui
- Division of Bioscience and Biotechnology Faculty of Agriculture Graduate School of Kyushu University 744 Motooka Nishi‐ku Fukuoka 819‐0395 Japan
| |
Collapse
|
6
|
Epling D, Hu Y, Smith DE. Evaluating the intestinal and oral absorption of the prodrug valacyclovir in wildtype and huPepT1 transgenic mice. Biochem Pharmacol 2018; 155:1-7. [PMID: 29935147 DOI: 10.1016/j.bcp.2018.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/11/2018] [Indexed: 10/28/2022]
Abstract
The purpose of this work was to evaluate the intestinal permeability, oral absorption and disposition of the ester prodrug valacyclovir in wildtype mice and a huPepT1 transgenic mouse model. PepT1 (SLC15A1) is a transporter apically expressed along the lumen of the gastrointestinal tract and is responsible for the absorption of di-/tripeptides, ACE inhibitors, β-lactam antibiotics and numerous prodrugs. Unfortunately, PepT1-mediated substrates that have been extensively studied were shown to exhibit species-dependent absorption and pharmacokinetics. Accordingly, in situ intestinal perfusion studies were conducted and valacyclovir uptake was shown to have a 30-fold lower Km and 100-fold lower Vmax in huPepT1 compared to wildtype mice. Moreover, inhibition studies demonstrated that the huPepT1 transporter alone was responsible for valacyclovir uptake, and segment-dependent studies reported significant reductions in permeability along the length of small intestine in huPepT1 mice. Subsequent oral administration studies revealed that the in vivo rate and extent of valacyclovir absorption were lower in huPepT1 mice, as indicated by 3-fold lower Cmax and 3-fold higher Tmax values, and an AUC0-180 that was 80% of that observed in wildtype mice. However, no significant changes in drug disposition were observed between genotypes after intravenous bolus administration of acyclovir. Lastly, mass balance studies established that the bioavailability of acyclovir, after oral dosing of valacyclovir, was 77.5% in wildtype mice and 52.8% in huPepT1 mice, which corroborated values of 51.3% in clinical studies. Thus, it appears the huPepT1 transgenic mice may be a better model to study prodrug absorption and disposition in humans than wildtype mice.
Collapse
Affiliation(s)
- Daniel Epling
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Yang B, Smith DE. In Silico Absorption Analysis of Valacyclovir in Wildtype and Pept1 Knockout Mice Following Oral Dose Escalation. Pharm Res 2017; 34:2349-2361. [PMID: 28770489 DOI: 10.1007/s11095-017-2242-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/26/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE We developed simulation and modeling methods to predict the in vivo pharmacokinetic profiles of acyclovir, following escalating oral doses of valacyclovir, in wildtype and Pept1 knockout mice. We also quantitated the contribution of specific intestinal segments in the absorption of valacyclovir in these mice. METHODS Simulations were conducted using a mechanistic advanced compartmental absorption and transit (ACAT) model implemented in GastroPlus™. Simulations were performed for 3 h post-dose in wildtype and Pept1 knockout mice following single oral doses of 10, 25, 50 and 100 nmol/g valacyclovir, and compared to experimentally observed plasma concentration-time profiles of acyclovir. RESULTS Good fits were obtained in wildtype and Pept1 knockout mice. Valacyclovir was primarily absorbed from duodenum (42%) and jejunum (24%) of wildtype mice, with reduced uptake from ileum (3%) and caecum/colon (1%), for a total of 70% absorption. In contrast, the absorption of valacyclovir in Pept1 knockout mice was slow and sustained throughout the entire intestinal tract in which duodenum (4%), jejunum (14%), ileum (10%) and caecum/colon (12%) accounted for a total of 40% absorption. CONCLUSION The ACAT model bridged the gap between in situ and in vivo experimental findings, and facilitated our understanding of the complicated intestinal absorption processes of valacyclovir.
Collapse
Affiliation(s)
- Bei Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109-1065, USA
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109-1065, USA.
| |
Collapse
|
8
|
Albrecht T, Schilperoort M, Zhang S, Braun JD, Qiu J, Rodriguez A, Pastene DO, Krämer BK, Köppel H, Baelde H, de Heer E, Anna Altomare A, Regazzoni L, Denisi A, Aldini G, van den Born J, Yard BA, Hauske SJ. Carnosine Attenuates the Development of both Type 2 Diabetes and Diabetic Nephropathy in BTBR ob/ob Mice. Sci Rep 2017; 7:44492. [PMID: 28281693 PMCID: PMC5345040 DOI: 10.1038/srep44492] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/08/2017] [Indexed: 01/05/2023] Open
Abstract
We previously demonstrated that polymorphisms in the carnosinase-1 gene (CNDP1) determine the risk of nephropathy in type 2 diabetic patients. Carnosine, the substrate of the enzyme encoded by this gene, is considered renoprotective and could possibly be used to treat diabetic nephropathy (DN). In this study, we examined the effect of carnosine treatment in vivo in BTBR (Black and Tan, BRachyuric) ob/ob mice, a type 2 diabetes model which develops a phenotype that closely resembles advanced human DN. Treatment of BTBR ob/ob mice with 4 mM carnosine for 18 weeks reduced plasma glucose and HbA1c, concomitant with elevated insulin and C-peptide levels. Also, albuminuria and kidney weights were reduced in carnosine-treated mice, which showed less glomerular hypertrophy due to a decrease in the surface area of Bowman's capsule and space. Carnosine treatment restored the glomerular ultrastructure without affecting podocyte number, resulted in a modified molecular composition of the expanded mesangial matrix and led to the formation of carnosine-acrolein adducts. Our results demonstrate that treatment with carnosine improves glucose metabolism, albuminuria and pathology in BTBR ob/ob mice. Hence, carnosine could be a novel therapeutic strategy to treat patients with DN and/or be used to prevent DN in patients with diabetes.
Collapse
Affiliation(s)
- Thomas Albrecht
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Maaike Schilperoort
- The Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Shiqi Zhang
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Jana D Braun
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Jiedong Qiu
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Angelica Rodriguez
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Diego O Pastene
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Bernhard K Krämer
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Hannes Köppel
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Hans Baelde
- The Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Emile de Heer
- The Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Luca Regazzoni
- The Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Alessandra Denisi
- The Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giancarlo Aldini
- The Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Jacob van den Born
- Department of Nephrology, University Medical Center Groningen, Groningen, the Netherlands
| | - Benito A Yard
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Sibylle J Hauske
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| |
Collapse
|
9
|
Intestinal barrier dysfunction: implications for chronic inflammatory conditions of the bowel. Nutr Res Rev 2016; 29:40-59. [DOI: 10.1017/s0954422416000019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractThe intestinal epithelium of adult humans acts as a differentially permeable barrier that separates the potentially harmful contents of the lumen from the underlying tissues. Any dysfunction of this boundary layer that disturbs the homeostatic equilibrium between the internal and external environments may initiate and sustain a biochemical cascade that results in inflammation of the intestine. Key to such dysfunction are genetic, microbial and other environmental factors that, singularly or in combination, result in chronic inflammation that is symptomatic of inflammatory bowel disease (IBD). The aim of the present review is to assess the scientific evidence to support the hypothesis that defective transepithelial transport mechanisms and the heightened absorption of intact antigenic proinflammatory oligopeptides are important contributing factors in the pathogenesis of IBD.
Collapse
|
10
|
Xie Y, Hu Y, Smith DE. The proton-coupled oligopeptide transporter 1 plays a major role in the intestinal permeability and absorption of 5-aminolevulinic acid. Br J Pharmacol 2015; 173:167-76. [PMID: 26444978 DOI: 10.1111/bph.13356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE 5-Aminolevulinic acid (5-ALA) has been widely used in photodynamic therapy and immunofluorescence of tumours. In the present study, the intestinal permeability and oral pharmacokinetics of 5-ALA were evaluated to probe the contribution of the proton-coupled oligopeptide transporter 1 (PEPT1) to the oral absorption and systemic exposure of this substrate. EXPERIMENTAL APPROACH In situ single-pass intestinal perfusions and in vivo oral pharmacokinetic studies were performed in wildtype and Pept1 knockout mice. Perfusion studies were performed as a function of concentration dependence, specificity and permeability of 5-ALA in different intestinal segments. Pharmacokinetic studies were performed after 0.2 and 2.0 μmoL·g(-1) doses of 5-ALA. KEY RESULTS The permeability of 5-ALA was substantial in duodenal, jejunal and ileal regions of wildtype mice, but the residual permeability of 5-ALA in the small intestine from Pept1 knockout mice was only about 10% of that in wildtype animals. The permeability of 5-ALA in jejunum was specific for PEPT1 with no apparent contribution of other transporters, including the proton-coupled amino acid transporter 1 (PAT1). After oral dosing, the systemic exposure of 5-ALA was reduced by about twofold during PEPT1 ablation, and the pharmacokinetics were dose-proportional after the 0.2 and 2.0 µmol·g(-1) doses. PEPT1 had a minor effect on the disposition and peripheral tissue distribution of 5-ALA. CONCLUSION AND IMPLICATIONS Our findings suggested a major role of PEPT1 in the intestinal permeability and oral absorption of 5-ALA. In contrast, another proton-coupled transporter, PAT1, appeared to play a limited role, at best.
Collapse
Affiliation(s)
- Yehua Xie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Di L. Strategic approaches to optimizing peptide ADME properties. AAPS J 2015; 17:134-43. [PMID: 25366889 PMCID: PMC4287298 DOI: 10.1208/s12248-014-9687-3] [Citation(s) in RCA: 447] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 09/22/2014] [Indexed: 12/21/2022] Open
Abstract
Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability.
Collapse
Affiliation(s)
- Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut, 06340, USA,
| |
Collapse
|
12
|
Dahan A, Zimmermann EM, Ben-Shabat S. Modern prodrug design for targeted oral drug delivery. Molecules 2014; 19:16489-505. [PMID: 25317578 PMCID: PMC6271014 DOI: 10.3390/molecules191016489] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022] Open
Abstract
The molecular information that became available over the past two decades significantly influenced the field of drug design and delivery at large, and the prodrug approach in particular. While the traditional prodrug approach was aimed at altering various physiochemical parameters, e.g., lipophilicity and charge state, the modern approach to prodrug design considers molecular/cellular factors, e.g., membrane influx/efflux transporters and cellular protein expression and distribution. This novel targeted-prodrug approach is aimed to exploit carrier-mediated transport for enhanced intestinal permeability, as well as specific enzymes to promote activation of the prodrug and liberation of the free parent drug. The purpose of this article is to provide a concise overview of this modern prodrug approach, with useful successful examples for its utilization. In the past the prodrug approach used to be viewed as a last option strategy, after all other possible solutions were exhausted; nowadays this is no longer the case, and in fact, the prodrug approach should be considered already in the very earliest development stages. Indeed, the prodrug approach becomes more and more popular and successful. A mechanistic prodrug design that aims to allow intestinal permeability by specific transporters, as well as activation by specific enzymes, may greatly improve the prodrug efficiency, and allow for novel oral treatment options.
Collapse
Affiliation(s)
- Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Ellen M Zimmermann
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL 32608, USA
| | - Shimon Ben-Shabat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
13
|
Hu Y, Xie Y, Wang Y, Chen X, Smith DE. Development and characterization of a novel mouse line humanized for the intestinal peptide transporter PEPT1. Mol Pharm 2014; 11:3737-46. [PMID: 25148225 PMCID: PMC4186676 DOI: 10.1021/mp500497p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
The
proton-coupled oligopeptide transporter PEPT1 (SLC15A1) is
abundantly expressed in the small intestine, but not colon, of mammals
and found to mediate the uptake of di/tripeptides and peptide-like
drugs from the intestinal lumen. However, species differences have
been observed in both the expression (and localization) of PEPT1 and
its substrate affinity. With this in mind, the objectives of this
study were to develop a humanized PEPT1 mouse model
(huPEPT1) and to characterize hPEPT1 expression and
functional activity in the intestines. Thus, after generating huPEPT1 mice in animals previously nulled for mouse Pept1, phenotypic, PCR, and immunoblot analyses were performed,
along with in situ single-pass intestinal perfusion
and in vivo oral pharmacokinetic studies with a model
dipeptide, glycylsarcosine (GlySar). Overall, the huPEPT1 mice had normal survival rates, fertility, litter size, gender distribution,
and body weight. There was no obvious behavioral or pathological phenotype.
The mRNA and protein profiles indicated that huPEPT1 mice had substantial PEPT1 expression in all regions of the small
intestine (i.e., duodenum, jejunum, and ileum) along with low but
measurable expression in both proximal and distal segments of the
colon. In agreement with PEPT1 expression, the in situ permeability of GlySar in huPEPT1 mice was similar
to but lower than wildtype animals in small intestine, and greater
than wildtype mice in colon. However, a species difference existed
in the in situ transport kinetics of jejunal PEPT1,
in which the maximal flux and Michaelis constant of GlySar were reduced
7-fold and 2- to 4-fold, respectively, in huPEPT1 compared to wildtype mice. Still, the in vivo function
of intestinal PEPT1 appeared fully restored (compared to Pept1 knockout mice) as indicated by the nearly identical pharmacokinetics
and plasma concentration–time profiles following a 5.0 nmol/g
oral dose of GlySar to huPEPT1 and wildtype mice.
This study reports, for the first time, the development and characterization
of mice humanized for PEPT1. This novel transgenic huPEPT1 mouse model should prove useful in examining the
role, relevance, and regulation of PEPT1 in diet and disease, and
in the drug discovery process.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | | | |
Collapse
|
14
|
In vivo absorption and disposition of cefadroxil after escalating oral doses in wild-type and PepT1 knockout mice. Pharm Res 2014; 30:2931-9. [PMID: 23959853 DOI: 10.1007/s11095-013-1168-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/28/2013] [Indexed: 02/03/2023]
Abstract
PURPOSE To determine the effect of PepT1 on the absorption and disposition of cefadroxil, including the potential for saturable intestinal uptake, after escalating oral doses of drug. METHODS The absorption and disposition kinetics of [3H]cefadroxil were determined in wild-type and PepT1 knockout mice after 44.5, 89.1, 178, and 356 nmol/g oral doses of drug. The pharmacokinetics of [3H]cefadroxil were also determined in both genotypes after 44.5 nmol/g intravenous bolus doses. RESULTS PepT1 deletion reduced the area under the plasma concentration-time profile (AUC0-120) of cefadroxil by 10-fold, the maximum plasma concentration (Cmax) by 17.5-fold, and increased the time to reach a maximum plasma concentration (Tmax) by 3-fold. There was no evidence of nonlinear intestinal absorption since AUC0-120 and Cmax values changed in a dose-proportional manner. Moreover, the pharmacokinetics of cefadroxil were not different between genotypes after intravenous bolus doses, indicating that PepT1 did not affect drug disposition. Finally, no differences were observed in the peripheral tissue distribution of cefadroxil (i.e., outside gastrointestinal tract) once these tissues were corrected for differences in perfusing blood concentrations. CONCLUSIONS The findings demonstrate convincingly the critical role of intestinal PepT1 in both the rate and extent of oral administration for cefadroxil and potentially other aminocephalosporin drugs.
Collapse
|
15
|
Smith DE, Clémençon B, Hediger MA. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med 2013; 34:323-36. [PMID: 23506874 DOI: 10.1016/j.mam.2012.11.003] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/22/2012] [Indexed: 01/04/2023]
Abstract
Mammalian members of the proton-coupled oligopeptide transporter family (SLC15) are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. The driving force for uphill electrogenic symport is the chemical gradient and membrane potential which favors proton uptake into the cell along with the peptide/mimetic substrate. The peptide transporters are responsible for the absorption and conservation of dietary protein digestion products in the intestine and kidney, respectively, and in maintaining homeostasis of neuropeptides in the brain. They are also responsible for the absorption and disposition of a number of pharmacologically important compounds including some aminocephalosporins, angiotensin-converting enzyme inhibitors, antiviral prodrugs, and others. In this review, we provide updated information on the structure-function of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4) and PhT2 (SLC15A3), and their expression and localization in key tissues. Moreover, mammalian peptide transporters are discussed in regard to pharmacogenomic and regulatory implications on host pharmacology and disease, and as potential targets for drug delivery. Significant emphasis is placed on the evolving role of these peptide transporters as elucidated by studies using genetically modified animals. Whenever possible, the relevance of drug-drug interactions and regulatory mechanisms are evaluated using in vivo studies.
Collapse
Affiliation(s)
- David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
16
|
Posada MM, Smith DE. Relevance of PepT1 in the intestinal permeability and oral absorption of cefadroxil. Pharm Res 2013; 30:1017-25. [PMID: 23224978 PMCID: PMC3596500 DOI: 10.1007/s11095-012-0937-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/11/2012] [Indexed: 01/04/2023]
Abstract
PURPOSE To determine the contribution of intestinal PepT1 on the permeability and oral absorption of the β-lactam antibiotic drug cefadroxil. METHODS The effective permeability (P eff ) of cefadroxil was evaluated in wild-type and PepT1 knockout mice following in situ single-pass intestinal perfusions. The plasma concentration-time profiles of cefadroxil were also examined after oral gavage. RESULTS The P eff (cm/s) of cefadroxil in wild-type mice was 0.49 × 10(-4) in duodenum, 0.80 × 10(-4) in jejunum, 0.88 × 10(-4) in ileum and 0.064 × 10(-4) in colon. The P eff (cm/s) in PepT1 knockout mice was significantly reduced in small intestine, but not in colon, as shown by values of 0.003 × 10(-4), 0.090 × 10(-4), 0.042 × 10(-4) and 0.032 × 10(-4), respectively. Jejunal uptake of cefadroxil was saturable (Km = 2-4 mM) and significantly attenuated by the sodium-proton exchange inhibitor 5-(N,N-dimethyl)amiloride. Jejunal permeability of cefadroxil was not affected by L-histidine, glycine, cephalothin, p-aminohippurate or N-methylnicotinamide. In contrast, cefadroxil permeability was significantly reduced by glycylproline, glycylsarcosine, or cephalexin. Finally, PepT1 ablation resulted in 23-fold reductions in peak plasma concentrations and 14-fold reductions in systemic exposure of cefadroxil after oral dosing. CONCLUSIONS The findings are definitive in demonstrating that PepT1 is the major transporter responsible for the small intestinal permeability of cefadroxil as well as its enhanced oral drug performance.
Collapse
Affiliation(s)
- Maria M Posada
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-5633, USA
| | | |
Collapse
|
17
|
Yang B, Smith DE. Significance of peptide transporter 1 in the intestinal permeability of valacyclovir in wild-type and PepT1 knockout mice. Drug Metab Dispos 2013; 41:608-14. [PMID: 23264448 PMCID: PMC3583488 DOI: 10.1124/dmd.112.049239] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/20/2012] [Indexed: 02/01/2023] Open
Abstract
The purpose of this study was to quantitatively determine the contribution of PepT1 [peptide transporter 1 (SLC15A1)] to the intestinal permeability of valacyclovir, an ester prodrug of the antiviral drug acyclovir. In situ single-pass intestinal perfusions were employed (pH 6.5 × 90 minutes) to assess the effective permeability (P(eff)) of 100 μM [(3)H]valacyclovir in wild-type and PepT1 knockout mice. Acyclovir pharmacokinetics was also evaluated after oral administration of 25 nmol/g valacyclovir. In wild-type mice, jejunal uptake of valacyclovir was best described by both saturable (K(m) = 10.2 mM) and nonsaturable components where the saturable pathway accounted for 82% of total transport. Valacyclovir P(eff) was 2.4 × 10(-4) cm/s in duodenum, 1.7 × 10(-4) cm/s in jejunum, 2.1 × 10(-4) cm/s in ileum, and 0.27 × 10(-4) cm/s in colon. In Pept1 knockout mice, P(eff) values were about 10% of that in wild-type animals for these small intestinal segments. Valacyclovir P(eff) was similar in the colon of both genotypes. There were no differences in valacyclovir P(eff) between any of the intestinal segments of PepT1 knockout mice. Valacyclovir P(eff) was significantly reduced by the dipeptide glycylsarcosine and the aminocephalosporin cefadroxil, but not by the amino acids l-valine or l-histidine, the organic acid p-aminohippurate, or the organic base tetraethylammonium (all at 25 mM). PepT1 ablation resulted in 3- to 5-fold reductions in the in vivo rate and extent of valacyclovir absorption. Our findings conclusively demonstrate, using in situ and in vivo validations in genetically modified mice, that PepT1 has a major influence in improving the oral absorption of valacyclovir.
Collapse
Affiliation(s)
- Bei Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 1150 W. Medical Center Drive, 4742C Medical Sciences II, Ann Arbor, MI 48109-5633, USA
| | | |
Collapse
|
18
|
Di L, Artursson P, Avdeef A, Ecker GF, Faller B, Fischer H, Houston JB, Kansy M, Kerns EH, Krämer SD, Lennernäs H, Sugano K. Evidence-based approach to assess passive diffusion and carrier-mediated drug transport. Drug Discov Today 2012; 17:905-12. [DOI: 10.1016/j.drudis.2012.03.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
|
19
|
Dahan A, Khamis M, Agbaria R, Karaman R. Targeted prodrugs in oral drug delivery: the modern molecular biopharmaceutical approach. Expert Opin Drug Deliv 2012; 9:1001-13. [PMID: 22703376 DOI: 10.1517/17425247.2012.697055] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The molecular revolution greatly impacted the field of drug design and delivery in general, and the utilization of the prodrug approach in particular. The increasing understanding of membrane transporters has promoted a novel 'targeted-prodrug' approach utilizing carrier-mediated transport to increase intestinal permeability, as well as specific enzymes to promote activation to the parent drug. AREAS COVERED This article provides the reader with a concise overview of this modern approach to prodrug design. Targeting the oligopeptide transporter PEPT1 for absorption and the serine hydrolase valacyclovirase for activation will be presented as examples for the successful utilization of this approach. Additionally, the use of computational approaches, such as DFT and ab initio molecular orbital methods, in modern prodrugs design will be discussed. EXPERT OPINION Overall, in the coming years, more and more information will undoubtedly become available regarding intestinal transporters and potential enzymes that may be exploited for the targeted modern prodrug approach. Hence, the concept of prodrug design can no longer be viewed as merely a chemical modification to solve problems associated with parent compounds. Rather, it opens promising opportunities for precise and efficient drug delivery, as well as enhancement of treatment options and therapeutic efficacy.
Collapse
Affiliation(s)
- Arik Dahan
- Ben-Gurion University of the Negev, School of Pharmacy, Faculty of Health Sciences, Department of Clinical Pharmacology, P.O. Box 653, Beer-Sheva 84105, Israel.
| | | | | | | |
Collapse
|