1
|
Zhao Y, Hao Y, Wang Z, Liu S, Yuan S, Zhou C, Yu J. Effect of CYP3A5*3 genotype on exposure and efficacy of quetiapine: A retrospective, cohort study. J Affect Disord 2025; 370:134-139. [PMID: 39490424 DOI: 10.1016/j.jad.2024.10.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND The involvement of cytochrome P450 3A5 (CYP3A5) in the metabolism of quetiapine has been proposed, though conclusive evidence is lacking. This study aimed to quantitatively assess the impact of CYP3A5 genetic variability on quetiapine exposure in a Chinese patient population. METHODS Patient data were retrospectively collected from the database of the Mental Health Centre at the First Hospital of Hebei Medical University, covering the period from September 1, 2019, to July 1, 2023. The study included patients genotyped for CYP3A5 who were treated with quetiapine. Inclusion criteria for the analysis of pharmacokinetic parameters, such as serum concentrations of the drug and its metabolites, included oral administration of quetiapine, availability of information on the prescribed daily dose and concomitant medications, and the determination of steady-state blood levels at the time of sampling (after at least 3 days of continuous administration at the same dose). Exclusion criteria comprised polypharmacy with known CYP3A4 inducers or inhibitors, as well as patients with hepatic or renal insufficiency. The primary endpoint was the exposure to quetiapine and N-dealkylquetiapine, measured using dose-corrected concentrations (C/D). The secondary endpoint was the metabolism of quetiapine to N-dealkylquetiapine, assessed by the ratio of metabolite to parent drug concentrations. The third endpoint is the differences in adverse reactions, QTc intervals, and biochemical parameters among patients with different CYP3A5 genotypes. RESULT Based on the inclusion and exclusion criteria, clinical data from 207 patients were ultimately included in the study. Of these, 20 patients had the CYP3A5*1/*1 genotype, 78 had the CYP3A5*1/*3 genotype, and 109 had the CYP3A5*3/*3 genotype. The CYP3A5*3 variant was found to significantly impact the metabolism of quetiapine. The C/D values for both quetiapine and N-dealkyl quetiapine were notably higher in individuals with the *3/*3 genotype compared to those with the *1/*1 and *1/*3 genotypes (P1 < 0.001 and P2 = 0.002, respectively). A comparison of the variability in metabolic ratios among different genotype groups revealed no significant difference (P = 0.067). However, a post hoc analysis indicated that the metabolic ratio in poor metabolizers was significantly lower than that in intermediate metabolizers (P = 0.021). The analysis of adverse reaction incidence and QTc intervals among different genotypes showed no statistically significant differences (P = 0.652, P = 0.486). However, comparison of biochemical parameters across different genotype groups revealed that alanine aminotransferase, uric acid, hemoglobin, and gamma-glutamyl transferase levels were significantly higher in patients with the CYP3A5*3/*3 genotype compared to those with the CYP3A5*1/*1 and CYP3A5*1/*3 genotypes. CONCLUSION The results indicated that the genetic polymorphism of CYP3A5*3 significantly influences the metabolism of quetiapine. Specifically, carriers of the CYP3A5*3/*3 genotype exhibited higher blood levels of quetiapine, with a greater likelihood of these levels exceeding the therapeutic range. This finding underscores the need for clinicians to pay special attention to the efficacy and occurrence of adverse reactions when prescribing quetiapine to patients carrying the CYP3A5*3/*3 genotype.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yupei Hao
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ziyi Wang
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuai Liu
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shizhao Yuan
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunhua Zhou
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jing Yu
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
2
|
Chen X, Zhang Y, Yin D, Jin YW, He SM, Liu CX, Zhang C, Wang DD. Optimization of initial dosage of quetiapine in schizophrenic patients: effects of fluvoxamine or duloxetine coadministration. Front Pharmacol 2024; 15:1496043. [PMID: 39635430 PMCID: PMC11614649 DOI: 10.3389/fphar.2024.1496043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
Objective Although quetiapine has been approved for use in schizophrenic patients, its individualized dosage regimen remains unclear, especially with respect to drug-drug interactions (DDIs). Thus, we investigated the potential DDIs and optimal initial dosage of quetiapine in schizophrenic patients based on population pharmacokinetics (PPK). Methods Ninety-six schizophrenic patients treated with quetiapine were included to establish the PPK model, which also includes coadministration of multiple drugs. Results It was found that the patient weights and fluvoxamine or duloxetine coadministration affected quetiapine clearance in schizophrenic patients. Without fluvoxamine or duloxetine coadministration, 16 and 12 mg/kg/day of quetiapine were recommended to schizophrenic patients whose weights were in the ranges of 40-50 and 50-120 kg, respectively. With fluvoxamine coadministration, 8 mg/kg/day of quetiapine was recommended to patients with weights in the range of 40-120 kg. With duloxetine coadministration, 8 mg/kg/day of quetiapine was recommended to patients with weights in the 40-120 kg range. With simultaneous coadministration of fluvoxamine and duloxetine, 4 mg/kg/day of quetiapine was recommended to patients with weights in the 40-120 kg range. Conclusion The present study was a pilot effort at investigating the potential DDIs and optimal initial dosage of quetiapine in schizophrenic patients based on PPK. The initial dosages of quetiapine administered to the patients were optimized according to the coadministration of fluvoxamine or duloxetine.
Collapse
Affiliation(s)
- Xiao Chen
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy and School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Di Yin
- Department of Pharmacy, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Ying-Wei Jin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy and School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Pharmacy, The Suqian Clinical College of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Su-Mei He
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Chen-Xu Liu
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Cun Zhang
- Department of Pharmacy, Xuzhou Oriental Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dong-Dong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy and School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Watermeyer F, Gaebler AJ, Neuner I, Haen E, Hiemke C, Schoretsanitis G, Paulzen M. Discovering interactions in polypharmacy: Impact of metamizole on the metabolism of quetiapine. Br J Clin Pharmacol 2024; 90:2793-2801. [PMID: 38970468 DOI: 10.1111/bcp.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024] Open
Abstract
AIMS Metamizole is quite an old drug with analgesic, antipyretic and spasmolytic properties. Recent findings have shown that it may induce several cytochrome P450 (CYP) enzymes, especially CYP3A4 and CYP2B6. The clinical relevance of these properties is uncertain. We aimed to unravel potential pharmacokinetic interactions between metamizole and the CYP3A4 substrate quetiapine. METHODS Plasma concentrations of quetiapine from a large therapeutic drug monitoring database were analysed. Two groups of 33 patients, either receiving quetiapine as a monotherapy (without CYP modulating comedications) or with concomitantly applied metamizole, were compared addressing a potential impact of metamizole on the metabolism of quetiapine being reflected in differences of plasma concentrations of quetiapine and dose-adjusted plasma concentrations. RESULTS Patients comedicated with metamizole showed >50% lower plasma concentrations of quetiapine (median 45.2 ng/mL, Q1 = 15.5; Q3 = 90.5 vs. 92.0 ng/mL, Q1 = 52.3; Q3 = 203.8, P = .003). The dose-adjusted plasma concentrations were 69% lower in the comedication group (P = .001). Subgroup analyses did not suggest a dose dependency of the metamizole effect or an influence of quetiapine formulation (immediate vs. extended release). Finally, the comedication group exhibited a significantly higher proportion of patients whose quetiapine concentrations were below the therapeutic reference range (78.8% in the metamizole group vs. 54.4% in the control group, P = .037) indicating therapeutically insufficient drug concentrations. CONCLUSION The combination of metamizole and quetiapine leads to significantly lower drug concentrations of quetiapine, probably via an induction of CYP3A4. Clinicians must consider the risk of adverse drug reactions, especially treatment failure under quetiapine when adding metamizole.
Collapse
Affiliation(s)
- Fabian Watermeyer
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Aachen, Germany
- JARA-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Arnim Johannes Gaebler
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Aachen, Germany
- JARA-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Physiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Aachen, Germany
- JARA-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Ekkehard Haen
- Department of Psychiatry and Psychotherapy, Clinical Pharmacology, University of Regensburg, Regensburg, Germany
- Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
- Clinical Pharmacology Institute AGATE gGmbH, Pentling, Germany
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy and Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zürich, Switzerland
- University of Zurich, Zurich, Switzerland
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York, USA
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Aachen, Germany
- JARA-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Alexianer Hospital Aachen, Aachen, Germany
| |
Collapse
|
4
|
Jean Jacques A, D’Avanzo N. Inhibition of HCN1 currents by norquetiapine, an active metabolite of the atypical anti-psychotic drug quetiapine. Front Pharmacol 2024; 15:1445509. [PMID: 39434909 PMCID: PMC11491390 DOI: 10.3389/fphar.2024.1445509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Quetiapine is a second-generation atypical antipsychotic drug that has been commonly prescribed for the treatment of schizophrenia, major depressive disorder (depression), and other psychological disorders. Targeted inhibition of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels, which generate Ih, may provide effective resistance against schizophrenia and depression. We investigated if HCN channels could contribute to the therapeutic effect of quetiapine, and its major active metabolite norquetiapine. Two-electrode voltage clamp recordings were used to assess the effects of quetiapine and its active metabolites 7-hydroxyquetiapine and norquetiapine on currents from HCN1 channels expressed in Xenopus laevis oocytes. Norquetiapine, but not quetiapine nor 7-hydroxyquetiapine, has an inhibitory effect on HCN1 channels. Norquetiapine selectively inhibited HCN1 currents by shifting the voltage-dependence of activation to more hyperpolarized potentials in a concentration-dependent manner with an IC50 of 13.9 ± 0.8 μM for HCN1 and slowing channel opening, without changing the kinetics of closing. Inhibition by norquetiapine primarily occurs from in the closed state. Norquetiapine inhibition is not sensitive to the external potassium concentration, and therefore, likely does not block the pore. Norquetiapine inhibition also does not dependent on the cyclic-nucleotide binding domain. Norquetiapine also inhibited HCN4 channels with reduced efficacy than HCN1 and had no effect on HCN2 channels. Therefore, HCN channels are key targets of norquetiapine, the primary active metabolite of quetiapine. These data help to explain the therapeutic mechanisms by which quetiapine aids in the treatment of anxiety, major depressive disorder, bipolar disorder, and schizophrenia, and may represent a novel structure for future drug design of HCN inhibitors.
Collapse
Affiliation(s)
| | - Nazzareno D’Avanzo
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
5
|
Gilleßen F, Gaebler AJ, Haen E, Schoretsanitis G, Wozniak J, Stingl JC, Paulzen M. Pharmacokinetic interaction of quetiapine and lamotrigine - victim and perpetrator? Expert Rev Clin Pharmacol 2024:1-8. [PMID: 39360663 DOI: 10.1080/17512433.2024.2410400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVE We aimed to investigate the ambiguous findings of earlier research regarding the reduction of quetiapine plasma levels when combined with lamotrigine, most likely via UDP-glucuronosyltransferase induction by lamotrigine. METHODS One thousand one hundred and fifty samples, divided into four groups of patients receiving either quetiapine immediate- (IR) or extended-release (XR) without or in combination with lamotrigine were compared regarding absolute and dose-adjusted plasma concentrations. Furthermore, samples of intra-individual controls were analyzed. RESULTS Patients receiving quetiapine IR in combination with lamotrigine showed 31% lower plasma (p = 0.002) and 23% lower dose-adjusted plasma concentrations (p = 0.004) compared to those receiving IR monotherapy. The proportion of patients with quetiapine plasma concentrations below the lower limit of the therapeutic reference range was 50% and 30% in the combination group and in patients receiving monotherapy, respectively (p = 0.03). However, no significant differences regarding plasma concentration (p = 0.13) and dose-adjusted plasma concentration (p = 0.42) were observed in patients with combination vs. monotherapy with the XR formulation of quetiapine. In the intra-individual controls, no trends could be identified, possibly due to insufficient number of samples (p > 0.05). CONCLUSIONS The combination of quetiapine IR with lamotrigine is associated with significantly lower drug concentrations of quetiapine, potentially impacting quetiapine effectiveness. For quetiapine ER, a significant interaction is less likely.
Collapse
Affiliation(s)
- Florian Gilleßen
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany
| | - Arnim Johannes Gaebler
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Aachen, Germany
- JARA-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Physiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ekkehard Haen
- Department of Psychiatry and Psychotherapy, Clinical Pharmacology, University of Regensburg, Regensburg, Germany
- Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
- Clinical Pharmacology Institute AGATE gGmbH, Pentling, Germany
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatry University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Justyna Wozniak
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Aachen, Germany
- JARA-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
- Alexianer Center for Mental Health Aachen, Aachen, Germany
| |
Collapse
|
6
|
Chen X, Hu K, Shi HZ, Chen L, Zhang YJ, He SM, Zhang C, Wang DD. Initial dosage optimization of olanzapine in patients with bipolar disorder based on model-informed precision dosing: a study from the real world. Front Pharmacol 2024; 15:1444169. [PMID: 39234112 PMCID: PMC11371603 DOI: 10.3389/fphar.2024.1444169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Objectives Olanzapine is used for treating bipolar disorder (BPD); however, the optimal initial dosing regimen is unclear. The present study aimed to investigate the optimal olanzapine initial dosage in patients with BPD via model-informed precision dosing (MIPD) based on a real-world study. Methods Thirty-nine patients with BPD from the real-world study were collected to construct the MIPD model. Results Weight, combined used quetiapine influenced olanzapine clearances in patients with BPD, where the clearance rates were 0.152:1 in patients with or without quetiapine under the same weight. We simulated olanzapine doses once a day or twice a day, of which twice a day was optimal. Without quetiapine, for twice-a-day olanzapine doses, 0.80, 0.70, and 0.60 mg/kg/day were suitable for 40- to 56-kg BPD patients, 56- to 74-kg BPD patients, and 74- to 100-kg BPD patients, respectively. With quetiapine, for twice-a-day olanzapine doses, 0.05 mg/kg/day was suitable for 40- to 100-kg BPD patients. Conclusion This study was the first to investigate the optimal olanzapine initial dosage in patients with BPD via MIPD based on a real-world study, providing clinical reference for the precision medication of olanzapine in BPD patients.
Collapse
Affiliation(s)
- Xiao Chen
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ke Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy and School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao-Zhe Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy and School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy and School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi-Jia Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy and School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Su-Mei He
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Cun Zhang
- Department of Pharmacy, Xuzhou Oriental Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dong-Dong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy and School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
7
|
Solhaug V, Tveito M, Waade RB, Høiseth G, Molden E, Smith RL. Impact of age, sex and cytochrome P450 genotype on quetiapine and N-desalkylquetiapine serum concentrations: A study based on real-world data from 8118 patients. Br J Clin Pharmacol 2023; 89:3503-3511. [PMID: 37438870 DOI: 10.1111/bcp.15849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023] Open
Abstract
AIMS To investigate the effect of aging, sex and cytochrome P450 (CYP) genotypes on the exposure of quetiapine (QUE) and the pharmacologically active metabolite N-desalkylquetiapine (NDQ). METHODS Patients with serum concentrations of QUE and NDQ were included retrospectively from a therapeutic drug monitoring service. The outcome measures were concentration:dose (C:D) ratios of QUE and NDQ, and NDQ:QUE metabolic ratio. Linear mixed model analyses were used to evaluate the effects of age, sex and, subsequently, CYP2D6/3A genotypes. RESULTS The average age of the included population (n = 8118 patients) was 44 years (13.5% ≥65 years). The C:D ratio of QUE and NDQ gradually increased in patients aged >50 years compared to those aged 18-30 years, with 28 and 29% increase, respectively, for patients aged >70 years (P < .001). Compared to males, females had 15% lower QUE C:D ratio and 10% higher C:D ratio of NDQ (both P < .001). The NDQ:QUE metabolic ratio was 30% higher in females than in males (P < .001). For females ≥65 years, the NDQ C:D ratio was 36% higher compared to males <65 years (P < .001). A significantly higher NDQ C:D ratio was observed for CYP2D6 intermediate (+7%, P = .012) and poor (+17%, P = .001) compared to normal metabolizers. No effects of CYP3A4*22 and CYP3A5*1 allele variants were observed. CONCLUSION This study shows an increase of the QUE and NDQ exposures during aging. Old age, female sex and CYP2D6 allele variants encoding reduced activity are factors associated with high NDQ exposure. Therefore, females ≥65 years carrying CYP2D6 allele variants encoding reduced activity have the highest risk of dose-dependent side effects of NDQ during QUE treatment.
Collapse
Affiliation(s)
- Vigdis Solhaug
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Marit Tveito
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | | | - Gudrun Høiseth
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Robert Løvsletten Smith
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT Center, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Shang X. A response to "Effect of CYP2D6 pharmacogenetic phenotype and phenoconversion on serum concentrations of antidepressants and antipsychotics: a retrospective cohort study". Int J Clin Pharm 2023; 45:1307-1308. [PMID: 37318752 DOI: 10.1007/s11096-023-01613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Affiliation(s)
- Xiang Shang
- Department of Pharmacy, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Stäuble CK, Lampert ML, Mikoteit T, Hatzinger M, Hersberger KE, Meyer zu Schwabedissen HE. Severe Adverse Drug Reactions to Quetiapine in Two Patients Carrying CYP2D6*4 Variants: A Case Report. Int J Mol Sci 2021; 22:ijms22126480. [PMID: 34204223 PMCID: PMC8233787 DOI: 10.3390/ijms22126480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
We report two cases of patients who developed severe adverse drug reactions including persistent movement disorders, nausea, and vertigo during treatment with quetiapine at maximum daily doses ranging between 300 and 400 mg. The extensive hepatic metabolism of quetiapine is mainly attributed to cytochrome P450 3A4 (CYP3A4). However, there is recent evidence supporting the idea of CYP2D6 playing a role in the clearance of the quetiapine active metabolite norquetiapine. Interestingly, both patients we are reporting of are carriers of the CYP2D6*4 variant, predicting an intermediate metabolizer phenotype. Additionally, co-medication with a known CYP2D6 inhibitor and renal impairment might have further affected quetiapine pharmacokinetics. The herein reported cases could spark a discussion on the potential impact of a patient's pharmacogenetic predisposition in the treatment with quetiapine. However, further studies are warranted to promote the adoption of pharmacogenetic testing for the prevention of drug-induced toxicities associated with quetiapine.
Collapse
Affiliation(s)
- Céline K. Stäuble
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland;
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4001 Basel, Switzerland; (M.L.L.); (K.E.H.)
- Institute of Hospital Pharmacy, Solothurner Spitäler, 4600 Olten, Switzerland
- Correspondence:
| | - Markus L. Lampert
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4001 Basel, Switzerland; (M.L.L.); (K.E.H.)
- Institute of Hospital Pharmacy, Solothurner Spitäler, 4600 Olten, Switzerland
| | - Thorsten Mikoteit
- Psychiatric Services Solothurn, Solothurner Spitäler and Department of Medicine, University of Basel, 4503 Solothurn, Switzerland; (T.M.); (M.H.)
| | - Martin Hatzinger
- Psychiatric Services Solothurn, Solothurner Spitäler and Department of Medicine, University of Basel, 4503 Solothurn, Switzerland; (T.M.); (M.H.)
| | - Kurt E. Hersberger
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4001 Basel, Switzerland; (M.L.L.); (K.E.H.)
| | | |
Collapse
|
10
|
Le Daré B, Ferron PJ, Allard PM, Clément B, Morel I, Gicquel T. New insights into quetiapine metabolism using molecular networking. Sci Rep 2020; 10:19921. [PMID: 33199804 PMCID: PMC7669884 DOI: 10.1038/s41598-020-77106-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolism is involved in both pharmacology and toxicology of most xenobiotics including drugs. Yet, visualization tools facilitating metabolism exploration are still underused, despite the availibility of pertinent bioinformatics solutions. Since molecular networking appears as a suitable tool to explore structurally related molecules, we aimed to investigate its interest in in vitro metabolism exploration. Quetiapine, a widely prescribed antipsychotic drug, undergoes well-described extensive metabolism, and is therefore an ideal candidate for such a proof of concept. Quetiapine was incubated in metabolically competent human liver cell models (HepaRG) for different times (0 h, 3 h, 8 h, 24 h) with or without cytochrom P450 (CYP) inhibitor (ketoconazole as CYP3A4/5 inhibitor and quinidine as CYP2D6 inhibitor), in order to study its metabolism kinetic and pathways. HepaRG culture supernatants were analyzed on an ultra-high performance liquid chromatography coupled with tandem mass spectrometry (LC-HRMS/MS). Molecular networking approach on LC-HRMS/MS data allowed to quickly visualize the quetiapine metabolism kinetics and determine the major metabolic pathways (CYP3A4/5 and/or CYP2D6) involved in metabolite formation. In addition, two unknown putative metabolites have been detected. In vitro metabolite findings were confirmed in blood sample from a patient treated with quetiapine. This is the first report using LC-HRMS/MS untargeted screening and molecular networking to explore in vitro drug metabolism. Our data provide new evidences of the interest of molecular networking in drug metabolism exploration and allow our in vitro model consistency assessment.
Collapse
Affiliation(s)
- Brendan Le Daré
- INSERM, INRAE, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), PREVITOX Network, Univ Rennes, 35033, Rennes, France. .,Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France.
| | - Pierre-Jean Ferron
- INSERM, INRAE, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), PREVITOX Network, Univ Rennes, 35033, Rennes, France
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, and Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211, Geneva 4, Switzerland
| | - Bruno Clément
- INSERM, INRAE, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), PREVITOX Network, Univ Rennes, 35033, Rennes, France
| | - Isabelle Morel
- INSERM, INRAE, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), PREVITOX Network, Univ Rennes, 35033, Rennes, France.,Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France
| | - Thomas Gicquel
- INSERM, INRAE, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), PREVITOX Network, Univ Rennes, 35033, Rennes, France.,Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France
| |
Collapse
|
11
|
Turra BO, Barbisan F, Azzolin VF, Teixeira CF, Flores T, Braun LE, de Oliveira Nerys DA, Rissi VB, de Oliveira Alves A, Assmann CE, da Cruz Jung IE, Marques LPS, da Cruz IBM. Unmetabolized quetiapine exerts an in vitro effect on innate immune cells by modulating inflammatory response and neutrophil extracellular trap formation. Biomed Pharmacother 2020; 131:110497. [PMID: 33152899 DOI: 10.1016/j.biopha.2020.110497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022] Open
Abstract
Quetiapine is an antipsychotic drug that is used to treat psychiatric and neurological disorders. Despite its efficiency and low-toxicity, quetiapine administration has been associated with undesirable side effects such as the development of low-grade inflammatory disorders and neutropenia states. As the liver rapidly metabolizes quetiapine to metabolites, the non-metabolized part of this molecule might play a role in immune alterations. In an in vitro study, this hypothesis was tested by exposing activated and inactivated RAW-264.7 macrophages and human neutrophils to unmetabolized quetiapine (u-QUE). Based on our findings, u-QUE was not cytotoxic to these cells. u-QUE differentially modulates macrophages according to their activation states. In inactivated macrophages, u-QUE induced a proinflammatory state as observed by an increase in cellular proliferation; increased levels of oxidative molecules (nitric oxide and superoxide), protein levels, and gene overexpression of proinflammatory cytokines (IL-1β, IL-6, and TNF-α); and decreased levels of IL-10, an anti-inflammatory cytokine. Conversely, on phytohemagglutinin (PHA)-activated macrophages, u-QUE exerted an anti-inflammatory effect. u-QUE induced neutrophil extracellular trap (NET) formation and increased the sensitivity of the neutrophils previously activated by exposure to dead yeast cells for NET formation. These results confirm the effect of quetiapine on macrophage and neutrophil function, which may be associated with the side effects of this psychopharmaceutical agent.
Collapse
Affiliation(s)
- Bárbara Osmarin Turra
- Graduate Program of Pharmacology, Universidade Federal Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Barbisan
- Graduate Program in Gerontology, Universidade Federal Santa Maria, Santa Maria, RS, Brazil
| | | | | | - Thamara Flores
- Graduate Program of Pharmacology, Universidade Federal Santa Maria, Santa Maria, RS, Brazil
| | | | | | - Vitor Braga Rissi
- Biotechnology and Animal Reproduction Laboratory, Universidade Federal Santa Maria, Santa Maria, RS, Brazil
| | | | - Charles Elias Assmann
- Graduate Program of Biological Sciences, Universidade Federal Santa Maria, Santa Maria, RS, Brazil
| | | | | | - Ivana Beatrice Mânica da Cruz
- Graduate Program of Pharmacology, Universidade Federal Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Gerontology, Universidade Federal Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
12
|
McGrane IR, Campbell TJ. Probable Genitourinary Adverse Events Associated With Atomoxetine in an Adult Male: A Case Report. J Pharm Pract 2020; 34:962-965. [PMID: 32862763 DOI: 10.1177/0897190020953022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atomoxetine is a norepinephrine reuptake inhibitor used for treatment of attention-deficit/hyperactivity disorder. Prescribing information from the manufacturer lists genitourinary-related adverse events such as urinary hesitancy/retention and priapism as precautions for atomoxetine. We report a case of urinary hesitancy with milky, white-colored discharge associated with atomoxetine use in a 42-year-old male. The onset of genitourinary symptoms occurred within 2 days of atomoxetine 40 mg daily initiation. Laboratories, urinalysis, sexually transmitted infection analysis, and genital examinations were all unremarkable. Within 2 days of atomoxetine discontinuation, the genitourinary symptoms were no longer present. We calculated a Naranjo adverse event score of 5, indicating atomoxetine probably caused the genitourinary adverse events. A review of literature suggests that urine outflow obstruction-related adverse events occur more commonly in men compared to women. Discontinuation of atomoxetine appears to lead to rapid resolution of the adverse events. Additionally, spontaneous ejaculation and sexual side effects rarely occur with atomoxetine. Clinicians should educate and monitor patients explicitly for genitourinary-related adverse events, as they may not be spontaneously reported.
Collapse
Affiliation(s)
- Ian R McGrane
- Skaggs School of Pharmacy, College of Health, The University of Montana, Missoula, MT, USA
| | - Trevor J Campbell
- Skaggs School of Pharmacy, College of Health, The University of Montana, Missoula, MT, USA
| |
Collapse
|
13
|
Sfera A, Osorio C, Diaz EL, Maguire G, Cummings M. The Other Obesity Epidemic-Of Drugs and Bugs. Front Endocrinol (Lausanne) 2020; 11:488. [PMID: 32849279 PMCID: PMC7411001 DOI: 10.3389/fendo.2020.00488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic psychiatric patients with schizophrenia and related disorders are frequently treatment-resistant and may require higher doses of psychotropic drugs to remain stable. Prolonged exposure to these agents increases the risk of weight gain and cardiometabolic disorders, leading to poorer outcomes and higher medical cost. It is well-established that obesity has reached epidemic proportions throughout the world, however it is less known that its rates are two to three times higher in mentally ill patients compared to the general population. Psychotropic drugs have emerged as a major cause of weight gain, pointing to an urgent need for novel interventions to attenuate this unintended consequence. Recently, the gut microbial community has been linked to psychotropic drugs-induced obesity as these agents were found to possess antimicrobial properties and trigger intestinal dysbiosis, depleting Bacteroidetes phylum. Since germ-free animals exposed to psychotropics have not demonstrated weight gain, altered commensal flora composition is believed to be necessary and sufficient to induce dysmetabolism. Conversely, not only do psychotropics disrupt the composition of gut microbiota but the later alter the metabolism of the former. Here we review the role of gut bacterial community in psychotropic drugs metabolism and dysbiosis. We discuss potential biomarkers reflecting the status of Bacteroidetes phylum and take a closer look at nutritional interventions, fecal microbiota transplantation, and transcranial magnetic stimulation, strategies that may lower obesity rates in chronic psychiatric patients.
Collapse
Affiliation(s)
- Adonis Sfera
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
- *Correspondence: Adonis Sfera
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Eddie Lee Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Gerald Maguire
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
14
|
Żelaszczyk D, Jakubczyk M, Pytka K, Rapacz A, Walczak M, Janiszewska P, Pańczyk K, Żmudzki P, Słoczyńska K, Marona H, Waszkielewicz AM. Design, synthesis and evaluation of activity and pharmacokinetic profile of new derivatives of xanthone and piperazine in the central nervous system. Bioorg Med Chem Lett 2019; 29:126679. [PMID: 31537425 DOI: 10.1016/j.bmcl.2019.126679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/23/2019] [Accepted: 09/08/2019] [Indexed: 11/18/2022]
Abstract
Searching for CNS active cyclic amines derivatives containing heterocyclic xanthone core we designed and synthesized a set of fourteen novel 2- or 4-methylxanthone substituted by alkyl- or aryl-piperazine moieties. The compounds were evaluated in vivo for their potential antidepressant-like activity (in the forced swim test) and anxiolytic-like activity (four-plate test) and their inhibitory effect against rat 5-HT2 receptor was checked. The pharmacokinetic analysis of active compounds done by a non-compartmental approach have shown a rapid absorption of all studied molecules from intraperitoneal cavity and good penetration the blood-brain barrier after i.p. administration with brain to plasma ratios varied from 2.8 to 31.6. Genotoxicity and biotransformation of active compounds were studied. Compound 19 interactions with major classes of GPCRs, uptake systems and ion channels were tested and results indicated that it binds to 5-HT2A, 5-HT2B receptors and sodium channels.
Collapse
Affiliation(s)
- Dorota Żelaszczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Bioorganic Chemistry, Chair of Organic Chemistry, Poland.
| | - Magdalena Jakubczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacodynamics, Poland
| | - Karolina Pytka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacodynamics, Poland
| | - Anna Rapacz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacodynamics, Poland
| | - Maria Walczak
- Jagiellonian University Medical College, Faculty of Pharmacy, Chair and Department of Toxicology, Poland
| | - Paulina Janiszewska
- Jagiellonian University Medical College, Faculty of Pharmacy, Chair and Department of Toxicology, Poland
| | - Katarzyna Pańczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Bioorganic Chemistry, Chair of Organic Chemistry, Poland
| | - Paweł Żmudzki
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poland
| | - Karolina Słoczyńska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Poland
| | - Henryk Marona
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Bioorganic Chemistry, Chair of Organic Chemistry, Poland
| | - Anna M Waszkielewicz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Bioorganic Chemistry, Chair of Organic Chemistry, Poland
| |
Collapse
|
15
|
Javelot H, Rangoni F, Weiner L, Michel B. High-dose quetiapine and therapeutic monitoring. Eur J Hosp Pharm 2019; 26:285-287. [DOI: 10.1136/ejhpharm-2018-001605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/05/2018] [Accepted: 06/26/2018] [Indexed: 11/03/2022] Open
|
16
|
Almeida F, Albuquerque E, Murta I. Delirium Induced by Quetiapine and the Potential Role of Norquetiapine. Front Neurosci 2019; 13:886. [PMID: 31481872 PMCID: PMC6710379 DOI: 10.3389/fnins.2019.00886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
Quetiapine in an atypical antipsychotic drug that is frequently used for delirium and behavioral and psychological symptoms in dementia. However, its potential anticholinergic effects, mediated primarily through its metabolite norquetiapine, could present as counterproductive adverse effects in these situations. There is little data published discussing this potential negative impact on quetiapine’s safety and tolerability, especially in the elderly. Here, we present what is, to our knowledge, the first published case report of delirium apparently induced by low-dose quetiapine, in a 95-year-old patient with no prior history of mental illness, and the potential role of its metabolite norquetiapine.
Collapse
Affiliation(s)
- Filipe Almeida
- Department of Psychiatry, The Coimbra Hospital and University Centre, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Elisabete Albuquerque
- Department of Psychiatry, The Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Ilda Murta
- Department of Psychiatry, The Coimbra Hospital and University Centre, Coimbra, Portugal
| |
Collapse
|
17
|
Analysis of smoking behavior on the pharmacokinetics of antidepressants and antipsychotics: evidence for the role of alternative pathways apart from CYP1A2. Int Clin Psychopharmacol 2019; 34:93-100. [PMID: 30557209 DOI: 10.1097/yic.0000000000000250] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Smoking is common among psychiatric patients and has been shown to accelerate the metabolism of different drugs. We aimed to determine the effect of smoking on the serum concentrations of psychopharmacological drugs in a naturalistic clinical setting. Dose-corrected, steady-state serum concentrations of individual patients were analyzed retrospectively by linear regression including age, sex, and smoking for amitriptyline (n=503), doxepin (n=198), mirtazapine (n=572), venlafaxine (n=534), clozapine (n=106), quetiapine (n=182), and risperidone (n=136). Serum levels of amitriptyline (P=0.038), clozapine (P=0.02), and mirtazapine (P=0.002) were significantly lower in smokers compared with nonsmokers after correction for age and sex. In addition, the ratios of nortriptyline/amitriptyline (P=0.001) and nordoxepin/doxepin (P=0.014) were significantly higher in smokers compared with nonsmokers. Smoking may not only induce CYP1A2, but may possibly also affect CYP2C19. Furthermore, CYP3A4, UGT1A3, and UGT1A4 might be induced by tobacco smoke. Hence, a different dosing strategy is required among smoking and nonsmoking patients. Nevertheless, the clinical relevance of the results remained unclear.
Collapse
|
18
|
Chen X, Liang C, Cui L, Le J, Qian Z, Zhang R, Hong Z, Chai Y. A rapid LC-MS/MS method for simultaneous determination of quetiapine and duloxetine in rat plasma and its application to pharmacokinetic interaction study. J Food Drug Anal 2018; 27:323-331. [PMID: 30648587 PMCID: PMC9298631 DOI: 10.1016/j.jfda.2018.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 02/02/2023] Open
Abstract
Combinations of new antidepressants like duloxetine and second-generation antipsychotics like quetiapine are used in clinical treatment of major depressive disorder, as well as in forensic toxicology scenarios. The drug–drug interaction (DDI) between quetiapine and duloxetine is worthy of attention to avoid unnecessary adverse effects. However, no pharmacokinetic DDI studies of quetiapine and duloxetine have been reported. In the present study, a rapid and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for simultaneous determination of quetiapine and duloxetine in rat plasma. A one-step protein precipitation with acetonitrile was applied for sample preparation. The analytes were eluted on an Eclipse XDB-C18 column using the mixture of acetonitrile and 2 mM ammonium formate containing 0.1% formic acid at a gradient elution within 6.0 min. Quantification was performed in multiple-reaction-monitoring mode with the ion transitions m/z 384.4 → 253.2 for quetiapine, m/z 298.1→154.1 for duloxetine and m/z 376.2→165.2 for IS (haloperidol), respectively. Good linearity was obtained in the range of 0.50–100 ng/mL for quetiapine (r2 = 0.9972) and 1.00–200 ng/mL for duloxetine (r2 = 0.9982) using 50 μL of rat plasma, respectively. The method was fully validated with accuracy, precision, matrix effects, recovery and stability. The validated data have met the acceptance criteria in FDA guideline. The method was applied to a pharmacokinetic interaction study and the results indicated that quetiapine had significant effect on the enhanced plasma exposure of duloxetine in rats under combination use. This study could be readily applied in therapeutic drug monitoring of major depressive disorder patients receiving such drug combinations.
Collapse
Affiliation(s)
- Xiujuan Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai Key Laboratory for Pharmaceutical Metabolites Research, Shanghai 200433, China
| | - Chen Liang
- Shanghai Institute of Forensic Science, Shanghai Key Laboratory of Crime Scene Evidence, Shanghai 200083, China
| | - Lijun Cui
- School of Pharmacy, Shanghai University of Medicine &Health Sciences, Shanghai 201318, China
| | - Jian Le
- Shanghai Institute of Food and Drug Control, Shanghai 201083, China
| | - Zheyuan Qian
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai Key Laboratory for Pharmaceutical Metabolites Research, Shanghai 200433, China
| | - Runsheng Zhang
- Shanghai Institute of Forensic Science, Shanghai Key Laboratory of Crime Scene Evidence, Shanghai 200083, China.
| | - Zhanying Hong
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai Key Laboratory for Pharmaceutical Metabolites Research, Shanghai 200433, China.
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai Key Laboratory for Pharmaceutical Metabolites Research, Shanghai 200433, China
| |
Collapse
|
19
|
The use of quetiapine in the treatment of major depressive disorder: Evidence from clinical and experimental studies. Neurosci Biobehav Rev 2018; 86:36-50. [DOI: 10.1016/j.neubiorev.2017.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/24/2017] [Accepted: 12/24/2017] [Indexed: 12/19/2022]
|
20
|
Lee HJ, Choi JS, Choi BH, Hahn SJ. Effects of norquetiapine, the active metabolite of quetiapine, on cloned hERG potassium channels. Neurosci Lett 2017; 664:66-73. [PMID: 29133173 DOI: 10.1016/j.neulet.2017.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/25/2022]
Abstract
Quetiapine is an atypical antipsychotic drug that is widely used for the treatment of schizophrenia. It is mainly metabolized by a cytochrome P450 system in the liver. Norquetiapine is a major active metabolite in humans with a pharmacological profile that differs distinctly from that of quetiapine. We used the whole-cell patch-clamp technique to investigate the effects of norquetiapine on hERG channels that are stably expressed in HEK cells. Quetiapine and norquetiapine inhibited the hERG tail currents at -50mV in a concentration-dependent manner with IC50 values of 8.3 and 10.8μM, respectively, which suggested equal potency. The block of hERG currents by norquetiapine was voltage-dependent with a steep increase over a range of voltages for channel activation. However, at more depolarized potentials where the channels were fully activated, the block by norquetiapine was voltage-independent. The steady-state inactivation curve of the hERG currents was shifted to the hyperpolarizing direction in the presence of norquetiapine. Norquetiapine did not produce a use-dependent block. A fast application of norquetiapine inhibited the hERG current elicited by a 5s depolarizing pulse to +60mV, which fully inactivated the hERG currents, suggesting an inactivated-state block. During a repolarizing pulse wherein the hERG current was slowly deactivated, albeit remaining in an open state, a fast application of norquetiapine rapidly and reversibly inhibited the open state of the hERG current. Our results indicated that quetiapine and norquetiapine had equal potency in inhibiting hERG tail currents. Norquetiapine inhibited the hERG current by preferentially interacting with the open and/or inactivated states of the channels.
Collapse
Affiliation(s)
- Hong Joon Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin-Sung Choi
- College of Pharmacy, Integrated Research Institute of Pharmaceutical, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Bok Hee Choi
- Department of Pharmacology, Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54097, Republic of Korea
| | - Sang June Hahn
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
21
|
Cornelis C, Van Gastel A, Dumont G, Coppens V, Sabbe B, Morrens M, Van Den Eede F. A case of dose escalation of quetiapine in persistent insomnia disorder. Acta Clin Belg 2017; 72:346-348. [PMID: 27960654 DOI: 10.1080/17843286.2016.1252546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Quetiapine, an atypical antipsychotic drug, is recommended for the treatment of schizophrenia and mood disorders. In addition, given its sedative effects, a low dose of the agent is also widely used in the treatment of anxiety disorders, personality disorders, substance abuse, and sleep disturbances. In this case study, quetiapine was the first effective drug in reducing chronic insomnia in a male patient with a long treatment history. Because its effect declined over time, in the course of two years, a gradual dose increase led to a posology 50 times higher than the off-label dosage used to obtain sedation, i.e. 25-100 mg quetiapine administered once daily. This case raises awareness of the ease with which dose escalation of quetiapine occurs. The risk of side effects and, possibly, dependence and abuse underlines the importance of regular and careful patient monitoring. Given the unexpected effectiveness of the agent and the absence of side effects in the described case, we argue that in treatment-resistant insomnia, a high dose of quetiapine may be justifiable in selected cases but also urge that further research on the long-term effects and potential adverse events of quetiapine for this indication is of the utmost importance.
Collapse
Affiliation(s)
- Claudia Cornelis
- Department of Adult Psychiatry, Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Department of Psychiatry, Campus Psychiatric Hospital, Duffel, Belgium
| | - Ann Van Gastel
- Department of Adult Psychiatry, Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Department of Psychiatry, Campus Antwerp University Hospital, Edegem, Belgium
| | - Glenn Dumont
- Department of Clinical Pharmacology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Violette Coppens
- Department of Adult Psychiatry, Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Department of Psychiatry, Campus Psychiatric Hospital, Duffel, Belgium
| | - Bernard Sabbe
- Department of Adult Psychiatry, Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Department of Psychiatry, Campus Psychiatric Hospital, Duffel, Belgium
- University Department of Psychiatry, Campus Antwerp University Hospital, Edegem, Belgium
| | - Manuel Morrens
- Department of Adult Psychiatry, Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Department of Psychiatry, Campus Psychiatric Hospital, Duffel, Belgium
| | - Filip Van Den Eede
- Department of Adult Psychiatry, Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Department of Psychiatry, Campus Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
22
|
Carreño F, Paese K, Silva CM, Guterres SS, Dalla Costa T. Pharmacokinetic Investigation of Quetiapine Transport across Blood-Brain Barrier Mediated by Lipid Core Nanocapsules Using Brain Microdialysis in Rats. Mol Pharm 2016; 13:1289-97. [PMID: 26905300 DOI: 10.1021/acs.molpharmaceut.5b00875] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipid-core nanocapsules (LCNs) have been proposed as drug carriers to improve brain delivery by modulating drug pharmacokinetics (PK). However, it is not clear whether the LCNs carry the drug through the blood-brain barrier or increase free drug penetration due to changes in the barrier permeability. Quetiapine (QTP) penetration to the brain is mediated by influx transporters and therefore might be reduced by drug transporters inhibitiors as probenecid. The goal of this work was to investigate the role of type-III LCNs on brain penetration of QTP using microdialysis in the presence probenecid. QTP-loaded LCN (QLNC) was successfully obtained with a small particle size (143 ± 6 nm), low polydispersity index (PI < 0.1), and high encapsulation efficiency (95.4 ± 1.82%.). Total and free drug concentration in plasma and free drug concentration in brain were analyzed following i.v. bolus dosing of nonencapsulated drug (FQ) and QLNC formulations alone and in association with probenecid to male Wistar rats. QTP free plasma fraction right after administration of QLNC was smaller than the fraction observed after FQ dosing; however, it increased over time until similar free drug levels were attained, suggesting that type-III LNCs produce a short in vivo sustained release of the drug. The inhibition of influx transporters by PB led to a reduction of free QTP brain penetration, as observed by the reduction of penetration factor from 1.55 ± 0.17 to a value closer to unit (0.94 ± 0.15). However, when the drug was nanoencapsulated, the inhibition of influx transporters had no effect on the brain penetration factor (0.88 ± 0.21 to 0.92 ± 0.13) probably because QTP is loaded into LNC and not available to interact with transporters. Taken together, these results suggest that LNC type-III carried QTP in the bloodstream and delivered the drug to the brain.
Collapse
Affiliation(s)
- Fernando Carreño
- Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul , Av. Ipiranga, 2759, 90610-000 Porto Alegre, Rio Grande do Sul, RS, Brazil
| | - Karina Paese
- Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul , Av. Ipiranga, 2759, 90610-000 Porto Alegre, Rio Grande do Sul, RS, Brazil
| | - Carolina Miranda Silva
- Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul , Av. Ipiranga, 2759, 90610-000 Porto Alegre, Rio Grande do Sul, RS, Brazil
| | - Silvia S Guterres
- Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul , Av. Ipiranga, 2759, 90610-000 Porto Alegre, Rio Grande do Sul, RS, Brazil
| | - Teresa Dalla Costa
- Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul , Av. Ipiranga, 2759, 90610-000 Porto Alegre, Rio Grande do Sul, RS, Brazil
| |
Collapse
|
23
|
Development of a Physiologically Based Pharmacokinetic/Pharmacodynamic Model to Predict the Impact of Genetic Polymorphisms on the Pharmacokinetics and Pharmacodynamics Represented by Receptor/Transporter Occupancy of Central Nervous System Drugs. Clin Pharmacokinet 2016; 55:957-69. [DOI: 10.1007/s40262-016-0367-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Impact of genetic variability in CYP2D6, CYP3A5, and ABCB1 on serum concentrations of quetiapine and N-desalkylquetiapine in psychiatric patients. Ther Drug Monit 2015; 37:256-61. [PMID: 25254417 DOI: 10.1097/ftd.0000000000000135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND To investigate the impact of genetic variability in CYP2D6, CYP3A5, and ABCB1 on steady-state serum concentrations of quetiapine and the active metabolite, N-desalkylquetiapine, in psychiatric patients. METHODS Measured serum concentrations of quetiapine and N-desalkylquetiapine from patients with biobanked DNA samples were included retrospectively from a routine therapeutic drug monitoring database. The impact of CYP2D6, CYP3A5, and ABCB1 (345C>T) genotypes on dose-adjusted serum concentrations (C/D ratios) of quetiapine and N-desalkylquetiapine was investigated by multivariate mixed model analysis. RESULTS In total, 289 patients with 633 serum measurements were included. In the multivariate analysis, mean C/D ratio of N-desalkylquetiapine was estimated to be 33% and 22% higher in inherent CYP2D6 poor metabolizers (P = 0.03) and heterozygous extensive metabolizers (P < 0.001), respectively, compared with inherent extensive metabolizers. The ABCB1 3435C>T polymorphism and CYP3A5 genotype had no significant influence on either of the substances in the present material. CONCLUSIONS Genetic variability in CYP2D6 contributes to the interindividual variability in steady-state serum concentrations of N-desalkylquetiapine. Although the metabolite exhibits relevant pharmacological activity, the quantitative effect of CYP2D6 genotype on serum concentration of N-desalkylquetiapine is probably of limited clinical relevance for quetiapine treatment.
Collapse
|
25
|
Singman EL, Hocum B, Yohannan J, Pearson V. Fluvoxamine-associated oscillopsia and a role for personalized medication dosing. Drug Metab Pers Ther 2015; 30:271-275. [PMID: 26351962 DOI: 10.1515/dmpt-2015-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/22/2015] [Indexed: 06/05/2023]
Abstract
A 60-year-old woman reported horizontal "shimmering" movement while reading crossword puzzles when using fluvoxamine, bupropion, quetiapine, lithium, and levothyroxine. This visual disturbance, likely oscillopsia, started after the fluvoxamine was added and waned as the fluvoxamine was tapered, disappearing after the drug was discontinued. Genetic testing to explore how the patient metabolizes these medications combined with YouScript® interaction analysis suggest that she may have had abnormally high plasma concentrations of fluvoxamine during this time. Oscillopsia may be a novel dose-dependent side effect of fluvoxamine. Genetic testing combined with YouScript has the potential to discover novel drug side effects, elucidate drug interactions and guide future prescribing decisions.
Collapse
|
26
|
Effects of green tea extracts on the pharmacokinetics of quetiapine in rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:615285. [PMID: 25793001 PMCID: PMC4352449 DOI: 10.1155/2015/615285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/29/2014] [Indexed: 01/16/2023]
Abstract
Quetiapine is an atypical antipsychotic, used clinically in the treatment of schizophrenia, acute mania in bipolar disorders, and bipolar depression in adults. In this study, the effect of green tea extracts (GTE) on the pharmacokinetics of quetiapine (substrate of CYP3A4) was investigated in rats. Male Wistar albino rats received GTE (175 mg/kg) or saline (control) by oral gavage for 7 days before a single intragastric administration of 25 mg/kg quetiapine. Plasma concentrations of quetiapine were measured up to 12 h after its administration by a validated ultraperformance liquid chromatography-tandem mass spectroscopy. Pretreatment with GTE produced significant reductions in the maximum plasma concentration and area under the curve of quetiapine by 45% and 35%, respectively, compared to quetiapine alone. However, GTE did not produce significant change in elimination half-life and oral clearance of quetiapine. This study concluded that GTE may decrease the bioavailability of quetiapine when coadministered.
Collapse
|
27
|
López-Muñoz F, Alamo C. Active metabolites as antidepressant drugs: the role of norquetiapine in the mechanism of action of quetiapine in the treatment of mood disorders. Front Psychiatry 2013; 4:102. [PMID: 24062697 PMCID: PMC3770982 DOI: 10.3389/fpsyt.2013.00102] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/27/2013] [Indexed: 11/13/2022] Open
Abstract
Active metabolites of some antipsychotic drugs exhibit pharmacodynamic and pharmacokinetic properties that may be similar to or differ from the original compound and that can be translated by a different profile of responses and interactions to clinical level. Some of these antipsychotics' active metabolites might participate in mechanisms of antidepressant activity, as m-chlorophenylpiperazine (aripiprazole), 9-OH-risperidone and norquetiapine. Norquetiapine exhibits distinct pharmacological activity from quetiapine and plays a fundamental role in its antidepressant efficacy. In this review, we analyze the differential pharmacological aspects between quetiapine and norquetiapine, both from the pharmacokinetic and pharmacodynamic perspectives (affinity for dopaminergic, noradrenegic, and/or serotonergic receptors, etc.), as well as differential neuroprotective role. The pharmacological differences between the two drugs could explain the differential clinical effect, as well as some differences in tolerability profile and drug interactions. The available data are sufficient to arrive at the conclusion that antidepressant activity of quetiapine is mediated, at least in part, by the active metabolite norquetiapine, which selectively inhibits noradrenaline reuptake, is a partial 5-HT1A receptor agonist, and acts as an antagonist at presynaptic α2, 5-HT2C, and 5-HT7 receptors.
Collapse
Affiliation(s)
- Francisco López-Muñoz
- Faculty of Health Sciences, Camilo José Cela University , Madrid , Spain ; Department of Pharmacology, Faculty of Medicine, University of Alcalá , Madrid , Spain
| | | |
Collapse
|