1
|
Zhang R, Li X, Su Z, Ning F, Gao Y. Effect of dietary antioxidants on excretion of perfluorooctanoic acid (PFOA) via regulating uptake transporters expression and intestinal permeability in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115224. [PMID: 37413964 DOI: 10.1016/j.ecoenv.2023.115224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Dietary antioxidants, including 2,6-di-tert-butyl-hydroxytoluene (BHT), α-tocopherol (αT) and tea polyphenol (TP), have been widely used in food. However, no data about the effect of food antioxidants on PFOA excretion were available. In this study, excretion of PFOA toward mice (four mice in each group) under the influence of co-ingested food antioxidants (i.e., BHT, αT, and TP) were investigated, and mechanism involved in excretion of PFOA, including RNA expression of uptake and efflux transporters in kidneys and liver involved in PFOA transport and intestinal permeability were also investigated. Chronic exposure to BHT (1.56 mg/kg) increased urinary PFOA excretion from 1795 ± 340 ng/mL (control) to 3340 ± 29.9 ng/mL (BHT treatment). TP treatment (12.5 mg/kg) decreased urinary excretion of PFOA, i.e., with a decrease percentage of 70% compared to the control. Organic anion transporting polypeptides (Oatps) act as uptake transporter mediate renal elimination or reabsorption of PFOA in the kidney. The decrease in urinary excretion of PFOA under TP treatment was associated with significantly (p < 0.05) enhanced expression of Oatp1a1 in the kidney (1.78 ± 0.58 vs 1.00 ± 0.18 in control), which facilitated renal reabsorption of PFOA and in turn decreased urinary excretion of PFOA. αT treatment (12.5 mg/kg) increased fecal PFOA excretion with a value of 228 ± 95.8 ng/g vs control (96.8 ± 22.7 ng/g). Mechanistic investigation revealed that αT treatment reduced intestinal permeability, resulting in increased fecal PFOA excretion.
Collapse
Affiliation(s)
- Ruirui Zhang
- Jinan Environmental Research Academy, Jinan 250100, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China.
| | - Xin Li
- Jinan Environmental Research Academy, Jinan 250100, China
| | - Zhaoxin Su
- Jinan Environmental Research Academy, Jinan 250100, China
| | - Fangyuan Ning
- Jinan Environmental Research Academy, Jinan 250100, China
| | - Yuxue Gao
- Jinan Environmental Research Academy, Jinan 250100, China
| |
Collapse
|
2
|
TAN D, WANG J, ZHANG Q, QIN L, WANG Y, HE Y. The role of organic anion transport protein 1a4 in drug delivery and diseases: a review. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | - Lin QIN
- Zunyi Medical University, China
| | - Yuhe WANG
- Affiliated Hospital of Zunyi Medical University
| | - Yuqi HE
- Zunyi Medical University, China
| |
Collapse
|
3
|
WANG YINGYING, ZHOU YING, WANG YU, YU LUSHAN, ZENG SU. Epigenetic Regulation of Drug Transporters in Cancer. DRUG METABOLISM HANDBOOK 2022:573-603. [DOI: 10.1002/9781119851042.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Zhou S, Shu Y. Transcriptional Regulation of Solute Carrier (SLC) Drug Transporters. Drug Metab Dispos 2022; 50:DMD-MR-2021-000704. [PMID: 35644529 PMCID: PMC9488976 DOI: 10.1124/dmd.121.000704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 09/03/2023] Open
Abstract
Facilitated transport is necessitated for large size, charged, and/or hydrophilic drugs to move across the membrane. The drug transporters in the solute carrier (SLC) superfamily, mainly including organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug and toxin extrusion proteins (MATEs), are critical facilitators of drug transport and distribution in human body. The expression of these SLC drug transporters is found in tissues throughout the body, with high abundance in the epithelial cells of major organs for drug disposition, such as intestine, liver, and kidney. These SLC drug transporters are clinically important in drug absorption, metabolism, distribution, and excretion. The mechanisms underlying their regulation have been revealing in recent years. Epigenetic and nuclear receptor-mediated transcriptional regulation of SLC drug transporters have particularly attracted much attention. This review focuses on the transcriptional regulation of major SLC drug transporter genes. Revealing the mechanisms underlying the transcription of those critical drug transporters will help us understand pharmacokinetics and pharmacodynamics, ultimately improving drug therapeutic effectiveness while minimizing drug toxicity. Significance Statement It has become increasingly recognized that solute carrier (SLC) drug transporters play a crucial, and sometimes determinative, role in drug disposition and response, which is reflected in decision-making during not only clinical drug therapy but also drug development. Understanding the mechanisms accounting for the transcription of these transporters is critical to interpret their abundance in various tissues under different conditions, which is necessary to clarify the pharmacological response, adverse effects, and drug-drug interactions for clinically used drugs.
Collapse
Affiliation(s)
- Shiwei Zhou
- Pharmaceutical Sciences, University of Maryland, United States
| | - Yan Shu
- Pharmaceutical Sciences, University of Maryland, United States
| |
Collapse
|
5
|
Brouwer KLR, Evers R, Hayden E, Hu S, Li CY, Meyer Zu Schwabedissen HE, Neuhoff S, Oswald S, Piquette-Miller M, Saran C, Sjöstedt N, Sprowl JA, Stahl SH, Yue W. Regulation of Drug Transport Proteins-From Mechanisms to Clinical Impact: A White Paper on Behalf of the International Transporter Consortium. Clin Pharmacol Ther 2022; 112:461-484. [PMID: 35390174 PMCID: PMC9398928 DOI: 10.1002/cpt.2605] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/20/2022] [Indexed: 12/14/2022]
Abstract
Membrane transport proteins are involved in the absorption, disposition, efficacy, and/or toxicity of many drugs. Numerous mechanisms (e.g., nuclear receptors, epigenetic gene regulation, microRNAs, alternative splicing, post‐translational modifications, and trafficking) regulate transport protein levels, localization, and function. Various factors associated with disease, medications, and dietary constituents, for example, may alter the regulation and activity of transport proteins in the intestine, liver, kidneys, brain, lungs, placenta, and other important sites, such as tumor tissue. This white paper reviews key mechanisms and regulatory factors that alter the function of clinically relevant transport proteins involved in drug disposition. Current considerations with in vitro and in vivo models that are used to investigate transporter regulation are discussed, including strengths, limitations, and the inherent challenges in predicting the impact of changes due to regulation of one transporter on compensatory pathways and overall drug disposition. In addition, translation and scaling of in vitro observations to in vivo outcomes are considered. The importance of incorporating altered transporter regulation in modeling and simulation approaches to predict the clinical impact on drug disposition is also discussed. Regulation of transporters is highly complex and, therefore, identification of knowledge gaps will aid in directing future research to expand our understanding of clinically relevant molecular mechanisms of transporter regulation. This information is critical to the development of tools and approaches to improve therapeutic outcomes by predicting more accurately the impact of regulation‐mediated changes in transporter function on drug disposition and response.
Collapse
Affiliation(s)
- Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raymond Evers
- Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania, USA
| | - Elizabeth Hayden
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Shuiying Hu
- College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | | | - Chitra Saran
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jason A Sprowl
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Simone H Stahl
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Wei Yue
- College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
6
|
TAN D, CUI J, QIN L, CHEN L, WANG Y, ZHANG Q, HE Y. The role of OATP1A1 in cholestasis and drug-induced toxicity: a systematic review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.70722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Jinguo CUI
- Baodi Clinical College of Tianjin Medical University, China
| | - Lin QIN
- Zunyi Medical University, China
| | - Li CHEN
- Zunyi Medical University, China
| | - Yuhe WANG
- Affiliated Hospital of Zunyi Medical University, China
| | | | - Yuqi HE
- Zunyi Medical University, China
| |
Collapse
|
7
|
Abstract
Our social environment, from the microscopic to the macro-social, affects us for the entirety of our lives. One integral line of research to examine how interpersonal and societal environments can get "under the skin" is through the lens of epigenetics. Epigenetic mechanisms are adaptations made to our genome in response to our environment which include tags placed on and removed from the DNA itself to how our DNA is packaged, affecting how our genes are read, transcribed, and interact. These tags are affected by social environments and can persist over time; this may aid us in responding to experiences and exposures, both the enriched and the disadvantageous. From memory formation to immune function, the experience-dependent plasticity of epigenetic modifications to micro- and macro-social environments may contribute to the process of learning from comfort, pain, and stress to better survive in whatever circumstances life has in store.
Collapse
Affiliation(s)
- Sarah M Merrill
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Gladish
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, BC, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
- Human Early Learning Partnership, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Tanaka T, Hirota T, Ieiri I. Relationship between DNA Methylation in the 5' CpG Island of the SLC47A1 (Multidrug and Toxin Extrusion Protein MATE1) Gene and Interindividual Variability in MATE1 Expression in the Human Liver. Mol Pharmacol 2018; 93:1-7. [PMID: 29070695 DOI: 10.1124/mol.117.109553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/18/2017] [Indexed: 01/05/2023] Open
Abstract
Multidrug and toxin extrusion protein 1 (MATE1), which is encoded by solute carrier 47A1 (SLC47A1), mediates the excretion of organic cations into bile and urine. Some genetic variants in human MATE1 altered its transport function in in vitro experiments; however, differences in the pharmacokinetics of substrate drugs cannot be explained by genetic variations in humans. In this study, we investigated whether DNA methylation was involved in interindividual variability in MATE1 expression in the human liver. Approximately 20-fold interindividual variability in MATE1 mRNA expression levels was observed in liver samples and mRNA expression levels negatively correlated with methylation levels of the CpG island in the 27 kb upstream of SLC47A1 DNA demethylation by treatment with 5-aza-2'-deoxycytidine increased MATE1 mRNA expression in MATE1-negative cell lines. The luciferase reporter assay showed that the CpG island increased the transcriptional activity of the SLC47A1 promoter. MATE1 mRNA expression levels were significantly lower in CpG island knockout HepG2 cells than in control cells. These results suggest that the 5' CpG island of SLC47A1 acts as an enhancer for SLC47A1, and DNA methylation in the CpG island plays an important role in interindividual differences in hepatic MATE1 expression.
Collapse
Affiliation(s)
- Toshihiro Tanaka
- Division of Clinical Pharmacy, Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Hirota
- Division of Clinical Pharmacy, Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ichiro Ieiri
- Division of Clinical Pharmacy, Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Hirota T, Tanaka T, Takesue H, Ieiri I. Epigenetic regulation of drug transporter expression in human tissues. Expert Opin Drug Metab Toxicol 2016; 13:19-30. [DOI: 10.1080/17425255.2017.1230199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Ramboer E, Rogiers V, Vanhaecke T, Vinken M. Effects of Trichostatin A on drug uptake transporters in primary rat hepatocyte cultures. EXCLI JOURNAL 2015; 14:567-76. [PMID: 26648816 PMCID: PMC4669911 DOI: 10.17179/excli2015-220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/30/2015] [Indexed: 11/10/2022]
Abstract
The present study was set up to investigate the effects of Trichostatin A (TSA), a prototypical epigenetic modifier, on the expression and activity of hepatic drug uptake transporters in primary cultured rat hepatocytes. To this end, the expression of the sinusoidal transporters sodium-dependent taurocholate cotransporting polypeptide (Ntcp) and organic anion transporting polypeptide 4 (Oatp4) was monitored by real-time quantitative reverse transcriptase polymerase chain reaction analysis and immunoblotting. The activity of the uptake transporters was analyzed using radiolabeled substrates and chemical inhibitors. Downregulation of the expression and activity of Oatp4 and Ntcp was observed as a function of the cultivation time and could not be counteracted by TSA. In conclusion, the epigenetic modifier TSA does not seem to exert a positive effect on the expression and activity of the investigated uptake transporters in primary rat hepatocyte cultures.
Collapse
Affiliation(s)
- Eva Ramboer
- In Vitro Toxicology and Dermato-cosmetology research group, Center for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel
| | - Vera Rogiers
- In Vitro Toxicology and Dermato-cosmetology research group, Center for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel
| | - Tamara Vanhaecke
- In Vitro Toxicology and Dermato-cosmetology research group, Center for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel
| | - Mathieu Vinken
- In Vitro Toxicology and Dermato-cosmetology research group, Center for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel
| |
Collapse
|
11
|
Prakash C, Zuniga B, Song CS, Jiang S, Cropper J, Park S, Chatterjee B. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions. NUCLEAR RECEPTOR RESEARCH 2015; 2:101178. [PMID: 27478824 PMCID: PMC4963026 DOI: 10.11131/2015/101178] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug's impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and microfluidic organs-on-chips, which mimic the physiology of a multicellular environment, will likely replace the current cell-based workflow.
Collapse
Affiliation(s)
- Chandra Prakash
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- William Carey University College of Osteopathic Medicine, 498 Tucsan Ave, Hattiesburg, Mississipi 39401
| | - Baltazar Zuniga
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- University of Texas at Austin, 2100 Comal Street, Austin, Texas 78712
| | - Chung Seog Song
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Shoulei Jiang
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Jodie Cropper
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Sulgi Park
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Bandana Chatterjee
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- South Texas Veterans Health Care System, Audie L Murphy VA Hospital, 7400 Merton Minter Boulevard, San Antonio, Texas 78229
| |
Collapse
|
12
|
Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, Bhatnagar V, Wu W. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev 2015; 95:83-123. [PMID: 25540139 PMCID: PMC4281586 DOI: 10.1152/physrev.00025.2013] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The organic anion transporter (OAT) subfamily, which constitutes roughly half of the SLC22 (solute carrier 22) transporter family, has received a great deal of attention because of its role in handling of common drugs (antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins (mercury, aristolochic acid), and nutrients (vitamins, flavonoids). Oats are expressed in many tissues, including kidney, liver, choroid plexus, olfactory mucosa, brain, retina, and placenta. Recent metabolomics and microarray data from Oat1 [Slc22a6, originally identified as NKT (novel kidney transporter)] and Oat3 (Slc22a8) knockouts, as well as systems biology studies, indicate that this pathway plays a central role in the metabolism and handling of gut microbiome metabolites as well as putative uremic toxins of kidney disease. Nuclear receptors and other transcription factors, such as Hnf4α and Hnf1α, appear to regulate the expression of certain Oats in conjunction with phase I and phase II drug metabolizing enzymes. Some Oats have a strong selectivity for particular signaling molecules, including cyclic nucleotides, conjugated sex steroids, odorants, uric acid, and prostaglandins and/or their metabolites. According to the "Remote Sensing and Signaling Hypothesis," which is elaborated in detail here, Oats may function in remote interorgan communication by regulating levels of signaling molecules and key metabolites in tissues and body fluids. Oats may also play a major role in interorganismal communication (via movement of small molecules across the intestine, placental barrier, into breast milk, and volatile odorants into the urine). The role of various Oat isoforms in systems physiology appears quite complex, and their ramifications are discussed in the context of remote sensing and signaling.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Kevin T Bush
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Gleb Martovetsky
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Sun-Young Ahn
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Henry C Liu
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Erin Richard
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Vibha Bhatnagar
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Wei Wu
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
13
|
Abstract
Organic anion-transporting polypeptides or OATPs are central transporters in the disposition of drugs and other xenobiotics. In addition, they mediate transport of a wide variety of endogenous substrates. The critical role of OATPs in drug disposition has spurred research both in academia and in the pharmaceutical industry. Translational aspects with clinical questions are the focus in academia, while the pharmaceutical industry tries to define and understand the role these transporters play in pharmacotherapy. The present overview summarizes our knowledge on the interaction of food constituents with OATPs and on the OATP transport mechanisms. Further, it gives an update on the available information on the structure-function relationship of the OATPs and, finally, covers the transcriptional and posttranscriptional regulation of OATPs.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zürich, Switzerland.
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
14
|
Imai S, Kikuchi R, Tsuruya Y, Naoi S, Nishida S, Kusuhara H, Sugiyama Y. Epigenetic regulation of organic anion transporting polypeptide 1B3 in cancer cell lines. Pharm Res 2013; 30:2880-2890. [PMID: 23812637 DOI: 10.1007/s11095-013-1117-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/11/2013] [Indexed: 11/30/2022]
Abstract
PURPOSE The expression of a multispecific organic anion transporter, OATP1B3/SLCO1B3, is associated with clinical prognosis and survival of cancer cells. The aims of present study were to investigate the involvement of epigenetic regulation in mRNA expression of a cancer-type variant of OATP1B3 (Ct-OATP1B3) in cancer cell lines. METHODS The membrane localization and transport functions of Ct-OATP1B3 were investigated in HEK293 cells transiently expressing Ct-OATP1B3. DNA methylation profiles around the transcriptional start site of Ct-OATP1B3 in cancer cell lines were determined. The effects of a DNA methyltransferase inhibitor and siRNA knockdown of methyl-DNA binding proteins (MBDs) on the expression of Ct-OATP1B3 mRNA were investigated. RESULTS 5'-RACE identified the TSS of Ct-OATP1B3 in PK-8 cells. Ct-OATP1B3 was localized on the plasma membrane, and showed the transport activities of E217βG, fluvastatin, rifampicin, and Gd-EOB-DTPA. The CpG dinucleotides were hypomethylated in Ct-OATP1B3-positive cell lines (DLD-1, TFK-1, PK-8, and PK-45P) but were hypermethylated in Ct-OATP1B3-negative cell lines (HepG2 and Caco-2). Treatment with a DNA methyltransferase inhibitor and siRNA knockdown of MBD2 significantly increased the expression of Ct-OATP1B3 mRNA in HepG2 and Caco-2. CONCLUSIONS Ct-OATP1B3 is capable of transporting its substrates into cancer cells. Its mRNA expression is regulated by DNA methylation-dependent gene silencing involving MBD2.
Collapse
Affiliation(s)
- Satoki Imai
- Laboratory of Molecular Pharmacokinetics Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhong XB, Leeder JS. Epigenetic regulation of ADME-related genes: focus on drug metabolism and transport. Drug Metab Dispos 2013; 41:1721-4. [PMID: 23935066 PMCID: PMC3920173 DOI: 10.1124/dmd.113.053942] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/01/2013] [Indexed: 02/02/2023] Open
Abstract
Epigenetic regulation of gene expression refers to heritable factors that are functionally relevant genomic modifications but that do not involve changes in DNA sequence. Examples of such modifications include DNA methylation, histone modifications, noncoding RNAs, and chromatin architecture. Epigenetic modifications are crucial for packaging and interpreting the genome, and they have fundamental functions in regulating gene expression and activity under the influence of physiologic and environmental factors. Recently, epigenetics has become one of the fastest-growing areas of science and has now become a central issue in biologic studies of development and disease pathogenesis. The interest in epigenetics is also true for studies of drug metabolism and transport. In this issue of Drug Metabolism and Disposition, a series of articles is presented to demonstrate the role of epigenetic factors in regulating the expression of genes involved in drug absorption, distribution, metabolism, and excretion in organ development, tissue-specific gene expression, sexual dimorphism, and in the adaptive response to xenobiotic exposure, both therapeutic and toxic. The articles also demonstrate that, in addition to genetic polymorphisms, epigenetics may also contribute to wide interindividual variations in drug metabolism and transport. Identification of functionally relevant epigenetic biomarkers in human specimens has the potential to improve prediction of drug responses based on patient's epigenetic profiles.
Collapse
Affiliation(s)
- Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.B.Z.); and Division of Clinical Pharmacology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City, Kansas City, Missouri (J.S.L.)
| | | |
Collapse
|
16
|
Tumor-specific expression of organic anion-transporting polypeptides: transporters as novel targets for cancer therapy. JOURNAL OF DRUG DELIVERY 2013; 2013:863539. [PMID: 23431456 PMCID: PMC3574750 DOI: 10.1155/2013/863539] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/24/2012] [Indexed: 01/16/2023]
Abstract
Members of the organic anion transporter family (OATP) mediate the transmembrane uptake of clinical important drugs and hormones thereby affecting drug disposition and tissue penetration. Particularly OATP subfamily 1 is known to mediate the cellular uptake of anticancer drugs (e.g., methotrexate, derivatives of taxol and camptothecin, flavopiridol, and imatinib). Tissue-specific expression was shown for OATP1B1/OATP1B3 in liver, OATP4C1 in kidney, and OATP6A1 in testis, while other OATPs, for example, OATP4A1, are expressed in multiple cells and organs. Many different tumor entities show an altered expression of OATPs. OATP1B1/OATP1B3 are downregulated in liver tumors, but highly expressed in cancers in the gastrointestinal tract, breast, prostate, and lung. Similarly, testis-specific OATP6A1 is expressed in cancers in the lung, brain, and bladder. Due to their presence in various cancer tissues and their limited expression in normal tissues, OATP1B1, OATP1B3, and OATP6A1 could be a target for tumor immunotherapy. Otherwise, high levels of ubiquitous expressed OATP4A1 are found in colorectal cancers and their metastases. Therefore, this OATP might serve as biomarkers for these tumors. Expression of OATP is regulated by nuclear receptors, inflammatory cytokines, tissue factors, and also posttranslational modifications of the proteins. Through these processes, the distribution of the transporter in the tissue will be altered, and a shift from the plasma membrane to cytoplasmic compartments is possible. It will modify OATP uptake properties and, subsequently, change intracellular concentrations of drugs, hormones, and various other OATP substrates. Therefore, screening tumors for OATP expression before therapy should lead to an OATP-targeted therapy with higher efficacy and decreased side effects.
Collapse
|