1
|
Gorycki P, Magee M, Ackerman P, Miao X, Moore K. Pharmacokinetics, Metabolism and Excretion of Radiolabeled Fostemsavir Administered with or without Ritonavir in Healthy Male Subjects. Xenobiotica 2022; 52:541-554. [PMID: 36083110 DOI: 10.1080/00498254.2022.2119179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The pharmacokinetics, elimination, and metabolism of fostemsavir (FTR), a prodrug of the HIV-1 attachment inhibitor temsavir (TMR), were investigated in healthy volunteers. FTR was administered with and without ritonavir (RTV), a protease inhibitor previously shown to boost TMR exposures. In vitro studies were also used to identify the enzymes responsible for the metabolism of TMR.Total recovery of the administered dose ranged from 78% to 89%. Approximately 44% to 58% of the dose was excreted in urine, 20% to 36% in feces, and 5% in bile, as TMR and metabolites. RTV had no effect on the recovery of radioactivity in any matrix.Compared to FTR alone, pretreatment of subjects with RTV increased the exposure of TMR by ∼66% and reduced the exposure of plasma total radioactivity by ∼68%.The major route of TMR elimination was through biotransformation. TMR, M28 (N-dealkylation), and M4 (amide hydrolysis) were the major circulating components in plasma. Pretreatment with RTV increased the amount of TMR present, decreased the amount of circulating M28, and M4 was unchanged.CYP3A4 metabolism accounted for 21% of the dose, forming multiple oxidative metabolites. This pathway was inhibited by coadministration of RTV.
Collapse
Affiliation(s)
| | - Mindy Magee
- ViiV Healthcare, Research Triangle Park, NC, USA
| | | | | | - Katy Moore
- ViiV Healthcare, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Ikuta H, Shimada H, Sakamoto K, Nakamura R, Kawase A, Iwaki M. Species differences in liver microsomal hydrolysis of acyl glucuronide in humans and rats. Xenobiotica 2022; 52:653-660. [PMID: 36190839 DOI: 10.1080/00498254.2022.2131484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acyl glucuronides (AGs) are known as one of the causes of idiosyncratic drug toxicity (IDT). Although AGs can be enzymatically hydrolysed by β-glucuronidase and esterase, much information on their characteristics and species differences is lacking. This study was aimed to clarify species differences in AG hydrolysis between human and rat liver microsomes (HLM and RLM).To evaluate the AG hydrolysis profile, and the contribution of β-glucuronidase and esterase towards AG hydrolysis in HLM and RLM, nonsteroidal anti-inflammatory drugs (NSAIDs) were used. AGs were incubated with 0.1 M Tris-HCl buffer (pH 7.4) and 0.3 mg/mL HLM or RLM in the absence or presence of β-glucuronidase inhibitor, D-saccharic acid 1,4-lactone (D-SL) and esterase inhibitor, phenylmethylsulfonyl fluoride (PMSF).AGs of mefenamic acid (MEF-AG) and etodolac (ETO-AG) showed significantly higher AG hydrolysis rates in RLM than in HLM. Esterases were found to serve as AG hydrolases dominantly in HLM, whereas both esterases and β-glucuronidase equally contribute to AG hydrolysis in RLM. However, MEF-AG and ETO-AG were hydrolysed only by β-glucuronidase.We demonstrated for the first time that the activity of AG hydrolases towards NSAID-AGs differs between humans and rats.
Collapse
Affiliation(s)
| | | | | | - Rena Nakamura
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | | | - Masahiro Iwaki
- Faculty of Pharmacy, Kindai University, Osaka, Japan.,Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan.,Antiaging Center, Kindai University, Osaka, Japan
| |
Collapse
|
3
|
Carboxylesterase catalyzed 18O-labeling of carboxylic acid and its potential application in LC-MS/MS based quantification of drug metabolites. Drug Metab Pharmacokinet 2019; 34:308-316. [DOI: 10.1016/j.dmpk.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/24/2019] [Accepted: 05/27/2019] [Indexed: 11/24/2022]
|
4
|
Kawase A, Kaneto A, Ishibashi M, Kobayashi A, Shimada H, Iwaki M. Involvement of diclofenac acyl-β-d-glucuronide in diclofenac-induced cytotoxicity in glutathione-depleted isolated murine hepatocytes co-cultured with peritoneal macrophages. Toxicol Mech Methods 2018; 29:203-210. [PMID: 30489186 DOI: 10.1080/15376516.2018.1544384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Direct hepatotoxic effects of drugs can occur when a parent drug and/or its reactive metabolites induces the formation of reactive oxygen species. Reactive metabolites of diclofenac (DIC) such as DIC acyl-β-d-glucuronide (DIC-AG) bind covalently to proteins, potentially decreasing protein function or inducing an immune response. However, it is unclear whether the macrophages and GSH depletion participate in DIC-induced cytotoxicity. Mouse hepatocytes (Hep) co-cultured with peritoneal macrophages (PMs) were used to clarify the effects of presence of PM with GSH depletion on DIC-induced cytotoxicity in Hep. DIC-AG but not hydroxy-DIC concentrations in medium were significantly increased in Hep co-cultured with PM with GSH depletion. Depletion of GSH resulted in significantly higher LDH leakage. Interestingly, LDH leakage in Hep/PM (1:0.4) with GSH depletion was significantly higher than in Hep/PM (1:0 and 1:0.1) with BSO. It is likely that macrophages with GSH depletion could facilitate DIC-induced cytotoxicity.
Collapse
Affiliation(s)
- Atsushi Kawase
- a Department of Pharmacy, Faculty of Pharmacy , Kindai University , Osaka , Japan
| | - Ayaka Kaneto
- a Department of Pharmacy, Faculty of Pharmacy , Kindai University , Osaka , Japan
| | - Mao Ishibashi
- a Department of Pharmacy, Faculty of Pharmacy , Kindai University , Osaka , Japan
| | - Akihiro Kobayashi
- a Department of Pharmacy, Faculty of Pharmacy , Kindai University , Osaka , Japan
| | - Hiroaki Shimada
- a Department of Pharmacy, Faculty of Pharmacy , Kindai University , Osaka , Japan
| | - Masahiro Iwaki
- a Department of Pharmacy, Faculty of Pharmacy , Kindai University , Osaka , Japan
| |
Collapse
|
5
|
Camilleri P, Buch A, Soldo B, Hutt AJ. The influence of physicochemical properties on the reactivity and stability of acyl glucuronides. Xenobiotica 2017; 48:958-972. [DOI: 10.1080/00498254.2017.1384967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Akshay Buch
- Aerpio Therapeutics, Inc., Cincinnati, OH, USA, and
| | - Brandi Soldo
- Aerpio Therapeutics, Inc., Cincinnati, OH, USA, and
| | - Andrew J. Hutt
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire, College Lane, Hatfield, UK
| |
Collapse
|
6
|
Aceña J, Pérez S, Eichhorn P, Solé M, Barceló D. Metabolite profiling of carbamazepine and ibuprofen in Solea senegalensis bile using high-resolution mass spectrometry. Anal Bioanal Chem 2017; 409:5441-5450. [DOI: 10.1007/s00216-017-0467-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/23/2017] [Accepted: 06/13/2017] [Indexed: 01/03/2023]
|
7
|
Van Vleet TR, Liu H, Lee A, Blomme EAG. Acyl glucuronide metabolites: Implications for drug safety assessment. Toxicol Lett 2017; 272:1-7. [PMID: 28286018 DOI: 10.1016/j.toxlet.2017.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/17/2017] [Accepted: 03/05/2017] [Indexed: 12/23/2022]
Abstract
Acyl glucuronides are important metabolites of compounds with carboxylic acid moieties and have unique properties that distinguish them from other phase 2 metabolites. In particular, in addition to being often unstable, acyl glucuronide metabolites can be chemically reactive leading to covalent binding with macromolecules and toxicity. While there is circumstantial evidence that drugs forming acyl glucuronide metabolites can be associated with rare, but severe idiosyncratic toxic reactions, many widely prescribed drugs with good safety records are also metabolized through acyl glucuronidation. Therefore, there is a need to understand the various factors that can affect the safety of acyl glucuronide-producing drugs including the rate of acyl glucuronide formation, the relative reactivity of the acyl glucuronide metabolite formed, the rate of elimination, potential proteins being targeted, and the rate of aglucuronidation. In this review, these factors are discussed and various approaches to de-risk the safety liabilities of acyl glucuronide metabolites are evaluated.
Collapse
Affiliation(s)
- Terry R Van Vleet
- Abbvie, Development Sciences, Department of Preclinical Safety, United States.
| | - Hong Liu
- Abbvie, Development Sciences, Biomeasure and Metabolism, United States
| | - Anthony Lee
- Abbvie, Development Sciences, Biomeasure and Metabolism, United States
| | - Eric A G Blomme
- Abbvie, Development Sciences, Department of Preclinical Safety, United States
| |
Collapse
|
8
|
Solé M, Sanchez-Hernandez JC. An in vitro screening with emerging contaminants reveals inhibition of carboxylesterase activity in aquatic organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:215-222. [PMID: 26562051 DOI: 10.1016/j.aquatox.2015.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) form part of the new generation of pollutants present in many freshwater and marine ecosystems. Although environmental concentrations of these bioactive substances are low, they cause sublethal effects (e.g., enzyme inhibition) in non-target organisms. However, little is known on metabolism of PPCPs by non-mammal species. Herein, an in vitro enzyme trial was performed to explore sensitivity of carboxylesterase (CE) activity of aquatic organisms to fourteen PPCPs. The esterase activity was determined in the liver of Mediterranean freshwater fish (Barbus meridionalis and Squalius laietanus), coastal marine fish (Dicentrarchus labrax and Solea solea), middle-slope fish (Trachyrhynchus scabrus), deep-sea fish (Alepocephalus rostratus and Cataetix laticeps), and in the digestive gland of a decapod crustacean (Aristeus antennatus). Results showed that 100μM of the lipid regulators simvastatin and fenofibrate significantly inhibited (30-80% of controls) the CE activity of all target species. Among the personal care products, nonylphenol and triclosan were strong esterase inhibitors in most species (36-68% of controls). Comparison with literature data suggests that fish CE activity is as sensitive to inhibition by some PPCPs as that of mammals, although their basal activity levels are lower than in mammals. Pending further studies on the interaction between PPCPs and CE activity, we postulate that this enzyme may act as a molecular sink for certain PPCPs in a comparable way than that described for the organophosphorus pesticides.
Collapse
Affiliation(s)
- Montserrat Solé
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Juan C Sanchez-Hernandez
- Ecotoxicology Lab., Fac. Environmental Science and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| |
Collapse
|