1
|
Riddick DS. Canadian Content in the Pages of Drug Metabolism and Disposition: A Comprehensive Historical Analysis. Drug Metab Dispos 2023; 52:Pages 1-18. [PMID: 37833076 DOI: 10.1124/dmd.123.001517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
Scientists from Canadian institutions have a rich history of making interesting and important contributions to the journal Drug Metabolism and Disposition (DMD) over the past 51 years. A goal of this minireview is to highlight these contributions and pay tribute to many of the scientists at Canadian institutions that have aided in the evolution of the discipline through their DMD publications. We conducted a geographical and research sectoral analysis of the temporal trends of DMD publications originating from Canadian sources. The fraction of total DMD papers of Canadian origin achieved a peak during the 1990s and since that time, this metric has displayed a pronounced and steady decline to the present situation, where the country needs to be concerned about its potentially vulnerable global status within the realm of drug metabolism and disposition science. Stronger and timely investment by Canadian academic institutions in drug metabolism and disposition science may help to restore the nation's research excellence in this discipline and ensure a more robust pipeline of appropriately trained scientists to take on careers in academia, industry, and government. Significance Statement The substantial contributions made by scientists at Canadian institutions to the journal Drug Metabolism and Disposition (DMD) are highlighted and celebrated in this minireview. Analysis of temporal trends in the fraction of total DMD papers of Canadian origin paints a concerning picture of Canada's current global status in the realm of drug metabolism and disposition science. Further investment in this discipline at Canadian universities may be needed.
Collapse
Affiliation(s)
- David S Riddick
- Department of Pharmacology & Toxicology, University of Toronto, Canada
| |
Collapse
|
2
|
Leal JG, Piccoli BC, Oliveira CS, D’Avila da Silva F, Omage FB, Rocha JBTD, Sonego MS, Segatto NV, Seixas FK, Collares TV, da Silva RS, Sarturi JM, Dornelles L, Faustino MAF, Rodrigues OED. Synthesis, antioxidant and antitumoral activity of new 5′-arylchalcogenyl-3′- N-( E)-feruloyl-3′, 5′-dideoxy-amino-thymidine (AFAT) derivatives. NEW J CHEM 2022. [DOI: 10.1039/d2nj03487e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A new multitarget arylchalcogenyl zidovudine derivative is disclosed. The compounds showed a prominent antioxidant and antitumoral activity with no overt sign of toxicity for in vivo evaluations.
Collapse
Affiliation(s)
- Julliano G. Leal
- Department of Chemistry, LabSelen-NanoBio, Federal University of Santa Maria, CEP 97105-900, Santa Maria, RS, Brazil
| | - Bruna Candia Piccoli
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cláudia Sirlene Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda D’Avila da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Folorunsho Bright Omage
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Mariana Souza Sonego
- Technological Development Center, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Natália Vieira Segatto
- Technological Development Center, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabiana Kommling Seixas
- Technological Development Center, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Tiago Veiras Collares
- Technological Development Center, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Rafael Santos da Silva
- Department of Chemistry, LabSelen-NanoBio, Federal University of Santa Maria, CEP 97105-900, Santa Maria, RS, Brazil
| | - Joelma Menegazzi Sarturi
- Department of Chemistry, LabSelen-NanoBio, Federal University of Santa Maria, CEP 97105-900, Santa Maria, RS, Brazil
| | - Luciano Dornelles
- Department of Chemistry, LabSelen-NanoBio, Federal University of Santa Maria, CEP 97105-900, Santa Maria, RS, Brazil
| | | | - Oscar E. D. Rodrigues
- Department of Chemistry, LabSelen-NanoBio, Federal University of Santa Maria, CEP 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
3
|
Hardy D, Bill RM, Jawhari A, Rothnie AJ. Functional Expression of Multidrug Resistance Protein 4 MRP4/ABCC4. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:1000-1008. [PMID: 31381460 PMCID: PMC6873218 DOI: 10.1177/2472555219867070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Abstract
To study the function and structure of membrane proteins, high quantities of pure and stable protein are needed. One of the first hurdles in accomplishing this is expression of the membrane protein at high levels and in a functional state. Membrane proteins are naturally expressed at low levels, so finding a suitable host for overexpression is imperative. Multidrug resistance protein 4 (MRP4) or ATP-binding cassette subfamily C member 4 (ABCC4) is a multi-transmembrane protein that is able to transport a range of organic anionic compounds (both endogenous and xenobiotic) out of the cell. This versatile transporter has been linked with extracellular signaling pathways and cellular protection, along with conferring drug resistance in cancers. Here we report the use of MRP4 as a case study to be expressed in three different expression systems: mammalian, insect, and yeast cells, to gain the highest yield possible. Interestingly, using the baculovirus expression system with Sf9 insect cells produced the highest protein yields. Vesicular transport assays were used to confirm that MRP4 expressed in Sf9 was functional using a fluorescent cAMP analogue (fluo-cAMP) instead of the traditional radiolabeled substrates. MRP4 transported fluo-cAMP in an ATP-dependent manner. The specificity of functional expression of MRP4 was validated by the use of nonhydrolyzable ATP analogues and MRP4 inhibitor MK571. Functionally expressed MRP4 in Sf9 cells can now be used in downstream processes such as solubilization and purification in order to better understand its function and structure.
Collapse
Affiliation(s)
- David Hardy
- Life & Health Sciences, Aston
University, Birmingham, UK
- CALIXAR, Lyon, France
| | - Roslyn M. Bill
- Life & Health Sciences, Aston
University, Birmingham, UK
| | | | | |
Collapse
|
4
|
Osa-Andrews B, Tan KW, Sampson A, Iram SH. Development of Novel Intramolecular FRET-Based ABC Transporter Biosensors to Identify New Substrates and Modulators. Pharmaceutics 2018; 10:pharmaceutics10040186. [PMID: 30322148 PMCID: PMC6321552 DOI: 10.3390/pharmaceutics10040186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1) can efflux a wide variety of molecules including toxic chemicals, drugs, and their derivatives out of cells. Substrates of MRP1 include anti-cancer agents, antibiotics, anti-virals, anti-human immunodeficiency virus (HIV), and many other drugs. To identify novel substrates and modulators of MRP1 by exploiting intramolecular fluorescence resonance energy transfer (FRET), we genetically engineered six different two-color MRP1 proteins by changing green fluorescent protein (GFP) insertion sites, while keeping the red fluorescent protein (RFP) at the C-terminal of MRP1. Four of six recombinant proteins showed normal expression, localization, and transport activity. We quantified intramolecular FRET using ensemble fluorescence spectroscopy in response to binding of known substrate or ATP alone, substrate/ATP, and trapping of the transporter in closed conformation by vanadate. Recombinant MRP1 proteins GR-881, GR-888, and GR-905 exhibited reproducible and higher FRET changes under all tested conditions and are very promising for use as MRP1 biosensors. Furthermore, we used GR-881 to screen 40 novel anti-cancer drugs and identified 10 hits that potentially directly interact with MRP1 and could be substrates or modulators. Profiling of drug libraries for interaction with MRP1 can provide very useful information to improve the efficacy and reduce the toxicity of various therapies.
Collapse
Affiliation(s)
- Bremansu Osa-Andrews
- Department of Chemistry & Biochemistry, College of Arts and Sciences, South Dakota State University, Brookings, SD 57007, USA.
| | - Kee W Tan
- Department of Chemistry & Biochemistry, College of Arts and Sciences, South Dakota State University, Brookings, SD 57007, USA.
| | - Angelina Sampson
- Department of Chemistry & Biochemistry, College of Arts and Sciences, South Dakota State University, Brookings, SD 57007, USA.
| | - Surtaj H Iram
- Department of Chemistry & Biochemistry, College of Arts and Sciences, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
5
|
Stefan SM, Wiese M. Small-molecule inhibitors of multidrug resistance-associated protein 1 and related processes: A historic approach and recent advances. Med Res Rev 2018; 39:176-264. [DOI: 10.1002/med.21510] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/05/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Sven Marcel Stefan
- Pharmaceutical Institute; Rheinische Friedrich-Wilhelms-University; Bonn Germany
| | - Michael Wiese
- Pharmaceutical Institute; Rheinische Friedrich-Wilhelms-University; Bonn Germany
| |
Collapse
|
6
|
Synthetic Organotellurium Compounds Sensitize Drug-Resistant Candida albicans Clinical Isolates to Fluconazole. Antimicrob Agents Chemother 2016; 61:AAC.01231-16. [PMID: 27821447 DOI: 10.1128/aac.01231-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/20/2016] [Indexed: 02/07/2023] Open
Abstract
Invasive Candida albicans infections are a serious health threat for immunocompromised individuals. Fluconazole is most commonly used to treat these infections, but resistance due to the overexpression of multidrug efflux pumps is of grave concern. This study evaluated the ability of five synthetic organotellurium compounds to reverse the fluconazole resistance of C. albicans clinical isolates. Compounds 1 to 4, at <10 μg/ml, ameliorated the fluconazole resistance of Saccharomyces cerevisiae strains overexpressing the major C. albicans multidrug efflux pumps Cdr1p and Mdr1p, whereas compound 5 only sensitized Mdr1p-overexpressing strains to fluconazole. Compounds 1 to 4 also inhibited efflux of the fluorescent substrate rhodamine 6G and the ATPase activity of Cdr1p, whereas all five of compounds 1 to 5 inhibited Nile red efflux by Mdr1p. Interestingly, all five compounds demonstrated synergy with fluconazole against efflux pump-overexpressing fluconazole-resistant C. albicans clinical isolates, isolate 95-142 overexpressing CDR1 and CDR2, isolate 96-25 overexpressing MDR1 and ERG11, and isolate 12-99 overexpressing CDR1, CDR2, MDR1, and ERG11 Overall, organotellurium compounds 1 and 2 were the most promising fluconazole chemosensitizers of fluconazole-resistant C. albicans isolates. Our data suggest that these novel organotellurium compounds inhibit pump efflux by two very important and distinct families of fungal multidrug efflux pumps: the ATP-binding cassette transporter Cdr1p and the major facilitator superfamily transporter Mdr1p.
Collapse
|
7
|
Csandl MA, Conseil G, Cole SPC. Cysteinyl Leukotriene Receptor 1/2 Antagonists Nonselectively Modulate Organic Anion Transport by Multidrug Resistance Proteins (MRP1-4). Drug Metab Dispos 2016; 44:857-66. [PMID: 27068271 DOI: 10.1124/dmd.116.069468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/07/2016] [Indexed: 02/13/2025] Open
Abstract
Active efflux of both drugs and organic anion metabolites is mediated by the multidrug resistance proteins (MRPs). MRP1 (ABCC1), MRP2 (ABCC2), MRP3 (ABCC3), and MRP4 (ABCC4) have partially overlapping substrate specificities and all transport 17β-estradiol 17-(β-d-glucuronide) (E217βG). The cysteinyl leukotriene receptor 1 (CysLT1R) antagonist MK-571 inhibits all four MRP homologs, but little is known about the modulatory effects of newer leukotriene modifiers (LTMs). Here we examined the effects of seven CysLT1R- and CysLT2R-selective LTMs on E217βG uptake into MRP1-4-enriched inside-out membrane vesicles. Their effects on uptake of an additional physiologic solute were also measured for MRP1 [leukotriene C4 (LTC4)] and MRP4 [prostaglandin E2 (PGE2)]. The two CysLT2R-selective LTMs studied were generally more potent inhibitors than CysLT1R-selective LTMs, but neither class of antagonists showed any MRP selectivity. For E217βG uptake, LTM IC50s ranged from 1.2 to 26.9 μM and were most comparable for MRP1 and MRP4. The LTM rank order inhibitory potencies for E217βG versus LTC4 uptake by MRP1, and E217βG versus PGE2 uptake by MRP4, were also similar. Three of four CysLT1R-selective LTMs also stimulated MRP2 (but not MRP3) transport and thus exerted a concentration-dependent biphasic effect on MRP2. The fourth CysLT1R antagonist, LY171883, only stimulated MRP2 (and MRP3) transport but none of the MRPs were stimulated by either CysLT2R-selective LTM. We conclude that, in contrast to their CysLTR selectivity, CysLTR antagonists show no MRP homolog selectivity, and data should be interpreted cautiously if obtained from LTMs in systems in which more than one MRP is present.
Collapse
Affiliation(s)
- Mark A Csandl
- Departments of Biomedical and Molecular Sciences (M.A.C., S.P.C.C.), and Pathology and Molecular Medicine (G.C., S.P.C.C.), Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - Gwenaëlle Conseil
- Departments of Biomedical and Molecular Sciences (M.A.C., S.P.C.C.), and Pathology and Molecular Medicine (G.C., S.P.C.C.), Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - Susan P C Cole
- Departments of Biomedical and Molecular Sciences (M.A.C., S.P.C.C.), and Pathology and Molecular Medicine (G.C., S.P.C.C.), Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada
| |
Collapse
|
8
|
Xu Q, Wang C, Liu Q, Meng Q, Sun H, Peng J, Sun P, Huo X, Liu K. Decreased liver distribution of entecavir is related to down-regulation of Oat2/Oct1 and up-regulation of Mrp1/2/3/5 in rat liver fibrosis. Eur J Pharm Sci 2015; 71:73-79. [PMID: 25712368 DOI: 10.1016/j.ejps.2015.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/31/2014] [Accepted: 02/15/2015] [Indexed: 12/12/2022]
Abstract
AIMS We aimed to elucidate whether entecavir was taken-up into liver by transporters and clarify the possible molecular mechanisms of changes in the distribution of entecavir in rat liver fibrosis. METHODS Thioacetamide (TAA) was applied to induce rat liver fibrosis. Samples of liver uptake index (LUI) study and uptake of entecavir in isolated rat hepatocytes were determined by LC-MS/MS. qRT-PCR and western blotting were used to examine the expression of transporters in rat liver. RESULTS The uptake of entecavir in hepatocytes was significantly higher at 37 °C compared to 4 °C. Furthermore, TEA and PAH could inhibit significantly the uptake of entecavir by the hepatocytes. It indicated that Oat2 and Oct1 were contributed to uptake of entecavir. Compared with control group, LUI and the uptake of entecavir, PAH and TEA in hepatocytes were significantly reduced in liver fibrosis group. Further study indicated that entecavir Vmax in liver fibrosis group was significantly decreased while the Km was not changed. These results indicated that transport capacity TAA treated isolated rat liver hepatocytes were reduced. Oat2 and Oct1 expressions were down-regulated and Mrp1/2/3/5 mRNA expressions were up-regulated in liver fibrosis group. CONCLUSIONS The changes of these transporters were contributed to decrease liver distribution of entecavir.
Collapse
Affiliation(s)
- Qinghan Xu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Jinyong Peng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China.
| |
Collapse
|
9
|
Cheung L, Yu DM, Neiron Z, Failes TW, Arndt GM, Fletcher JI. Identification of new MRP4 inhibitors from a library of FDA approved drugs using a high-throughput bioluminescence screen. Biochem Pharmacol 2015; 93:380-8. [DOI: 10.1016/j.bcp.2014.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/24/2022]
|
10
|
Baiceanu E, Crisan G, Loghin F, Falson P. Modulators of the human ABCC2: hope from natural sources? Future Med Chem 2015; 7:2041-63. [PMID: 26496229 DOI: 10.4155/fmc.15.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human ABCC2 is an ATP-binding cassette transporter involved in the export of endobiotics and xenobiotics. It is involved in cisplatin resistance in cancer cells, particularly in ovarian cancer. The few known ABCC2 modulators are poorly efficient, so it is necessary to explore new ways to select and optimize efficient compounds ABCC2. Natural products offer an original scaffold for such a strategy and brings hope for this aim. This review covers basic knowledge about ABCC2, from distribution and topology aspects to physiological and pathological functions. It summarizes the effect of natural products as ABCC2 modulators. Certain plant metabolites act on different ABCC2 regulation levels and therefore are promising candidates to block the multidrug resistance mediated by ABCC2 in cancer cells.
Collapse
Affiliation(s)
- Elisabeta Baiceanu
- Drug Resistance Modulation & Membrane Proteins Laboratory, Molecular & Structural Basis of Infectious Systems, Mixed Research Unit between the National Centre for Scientific Research & Lyon I University n 5086, Institute of Biology & Chemistry of Proteins, 7 passage du Vercors 69367, Lyon, Cedex, France
- Pharmaceutical Botany Department, Faculty of Pharmacy, University of Medicine & Pharmacy 'Iuliu Haţieganu' Cluj-Napoca, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Gianina Crisan
- Pharmaceutical Botany Department, Faculty of Pharmacy, University of Medicine & Pharmacy 'Iuliu Haţieganu' Cluj-Napoca, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Felicia Loghin
- Toxicology Department, Faculty of Pharmacy, University of Medicine & Pharmacy 'Iuliu Haţieganu' Cluj-Napoca, 5-9 Louis Pasteur Street, Cluj-Napoca, Romania
| | - Pierre Falson
- Drug Resistance Modulation & Membrane Proteins Laboratory, Molecular & Structural Basis of Infectious Systems, Mixed Research Unit between the National Centre for Scientific Research & Lyon I University n 5086, Institute of Biology & Chemistry of Proteins, 7 passage du Vercors 69367, Lyon, Cedex, France
| |
Collapse
|
11
|
Cheung L, Flemming CL, Watt F, Masada N, Yu DMT, Huynh T, Conseil G, Tivnan A, Polinsky A, Gudkov AV, Munoz MA, Vishvanath A, Cooper DMF, Henderson MJ, Cole SPC, Fletcher JI, Haber M, Norris MD. High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4). Biochem Pharmacol 2014; 91:97-108. [PMID: 24973542 DOI: 10.1016/j.bcp.2014.05.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/27/2022]
Abstract
Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application.
Collapse
Affiliation(s)
- Leanna Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Claudia L Flemming
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Fujiko Watt
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Nanako Masada
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | - Denise M T Yu
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Tony Huynh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Gwenaëlle Conseil
- Division of Cancer Biology & Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada.
| | - Amanda Tivnan
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | | | - Andrei V Gudkov
- Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - Marcia A Munoz
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Anasuya Vishvanath
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | | | - Michelle J Henderson
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Susan P C Cole
- Division of Cancer Biology & Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada.
| | - Jamie I Fletcher
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Murray D Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| |
Collapse
|
12
|
Abstract
Multidrug resistance presents one of the most important causes of cancer treatment failure. Numerous in vitro and in vivo data have made it clear that multidrug resistance is frequently caused by enhanced expression of ATP-binding cassette (ABC) transporters. ABC transporters are membrane-bound proteins involved in cellular defense mechanisms, namely, in outward transport of xenobiotics and physiological substrates. Their function thus prevents toxicity as carcinogenesis on one hand but may contribute to the resistance of tumor cells to a number of drugs including chemotherapeutics on the other. Within 48 members of the human ABC superfamily there are several multidrug resistance-associated transporters. Due to the well documented susceptibility of numerous drugs to efflux via ABC transporters it is highly desirable to assess the status of ABC transporters for individualization of treatment by their substrates. The multidrug resistance associated protein 1 (MRP1) encoded by ABCC1 gene is one of the most studied ABC transporters. Despite the fact that its structure and functions have already been explored in detail, there are significant gaps in knowledge which preclude clinical applications. Tissue-specific patterns of expression and broad genetic variability make ABCC1/MRP1 an optimal candidate for use as a marker or member of multi-marker panel for prediction of chemotherapy resistance. The purpose of this review was to summarize investigations about associations of gene and protein expression and genetic variability with prognosis and therapy outcome of major cancers. Major advances in the knowledge have been identified and future research directions are highlighted.
Collapse
Affiliation(s)
- Tereza Kunická
- Department of Toxicogenomics, National Institute of Public Health , Prague , Czech Republic
| | | |
Collapse
|
13
|
A new tellurium-containing amphiphilic molecule induces apoptosis in HCT116 colon cancer cells. Biochim Biophys Acta Gen Subj 2014; 1840:1808-16. [PMID: 24530428 DOI: 10.1016/j.bbagen.2014.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Chalcogen-based redox modulators over the years have attracted considerable attention as anti-cancer agents. New selenium- and tellurium-containing compounds with a polar head group and aryl-groups of various lengths have recently been reported as biologically active in several organisms. In the present study, we used the most active of the tellurium compound DP41, and its selenium counterpart DP31 to investigate their effects on the human cancer cell line HCT116. METHODS Cells were treated with DP41 or DP31 and the formation of superoxide radicals was determined using dihydroethidium. Cell cycle analysis and apoptosis was determined by cytofluorimetry. Proteins involved in ER signaling and apoptosis were determined by Western blot analysis and fluorescence microscopy. RESULTS With 50μM of DP41, we observed an increase in O2(-) formation. There was, however, no such increase in O2(-) after treatment with the corresponding selenium compound under the same conditions. In the case of DP41, the production of O2(-) radicals was followed by an up-regulation of Nrf2, HO-1, phospho-eIF2α and ATF4. CHOP was also induced and cells entered apoptosis. Unlike the cancer cells, normal retinal epithelial ARPE-19 cells did not produce elevated levels of O2(-) radicals nor did they induce the ER signaling pathway or apoptosis. CONCLUSIONS The tellurium-containing compound DP41, in contrast to the corresponding selenium compound, induces O2(-) radical formation and oxidative and ER stress responses, including CHOP activation and finally apoptosis. GENERAL SIGNIFICANCE These results indicate that DP41 is a redox modulating agent with promising anti-cancer potentials.
Collapse
|
14
|
Conseil G, Cole SPC. Two polymorphic variants of ABCC1 selectively alter drug resistance and inhibitor sensitivity of the multidrug and organic anion transporter multidrug resistance protein 1. Drug Metab Dispos 2013; 41:2187-96. [PMID: 24080162 DOI: 10.1124/dmd.113.054213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
In this study we compared the in silico predictions of the effect of ABCC1 nonsynonymous single nucleotide polymorphisms (nsSNPs) with experimental data on MRP1 transport function and response to chemotherapeutics and multidrug resistance protein 1 (MRP1) inhibitors. Vectors encoding seven ABCC1 nsSNPs were stably expressed in human embryonic kidney (HEK) cells, and levels and localization of the mutant MRP1 proteins were determined by confocal microscopy and immunoblotting. The function of five of the mutant proteins was determined using cell-based drug and inhibitor sensitivity and efflux assays, and membrane-based organic anion transport assays. Predicted consequences of the mutations were determined by multiple bioinformatic methods. Mutants C43S and S92F were correctly routed to the HEK cell plasma membrane, but the levels were too low to permit functional characterization. In contrast, levels and membrane trafficking of R633Q, G671V, R723Q, A989T, and C1047S were similar to wild-type MRP1. In cell-based assays, all five mutants were equally effective at effluxing calcein, but only two exhibited reduced resistance to etoposide (C1047S) and vincristine (A989T; C1047S). The GSH-dependent inhibitor LY465803 (LY465803 [N-[3-(9-chloro-3-methyl-4-oxo-4H-isoxazolo-[4,3-c]quinolin-5-yl)-cyclohexylmethyl]-benzamide)] was less effective at blocking calcein efflux by A989T, but in a membrane-based assay, organic anion transport by A989T and C1047S was inhibited by MRP1 modulators as well as wild-type MRP1. GSH accumulation assays suggest cellular GSH efflux by A989T and C1047S may be impaired. In conclusion, although six in silico analyses consistently predict deleterious consequences of ABCC1 nsSNPs G671V, changes in drug resistance and inhibitor sensitivity were only observed for A989T and C1047S, which may relate to GSH transport differences.
Collapse
Affiliation(s)
- Gwenaëlle Conseil
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario, Canada
| | | |
Collapse
|
15
|
Cole SPC. Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Annu Rev Pharmacol Toxicol 2013; 54:95-117. [PMID: 24050699 DOI: 10.1146/annurev-pharmtox-011613-135959] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human ATP-binding cassette transporter multidrug resistance protein 1 (MRP1), encoded by ABCC1, was initially identified because of its ability to confer multidrug resistance in lung cancer cells. It is now established that MRP1 plays a role in protecting certain tissues from xenobiotic insults and that it mediates the cellular efflux of the proinflammatory cysteinyl leukotriene C4 as well as a vast array of other endo- and xenobiotic organic anions. Many of these are glutathione (GSH) or glucuronide conjugates, the products of Phase II drug metabolism. MRP1 also plays a role in the cellular efflux of the reduced and oxidized forms of GSH and thus contributes to the many physiological and pathophysiological processes influenced by these small peptides, including oxidative stress. In this review, the pharmacological and physiological aspects of MRP1 are considered in the context of the current status and future prospects of pharmacological and genetic modulation of MRP1 activity.
Collapse
Affiliation(s)
- Susan P C Cole
- Department of Pathology and Molecular Medicine, and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada;
| |
Collapse
|