1
|
Wang XM, Wang J, Fokina V, Patrikeeva S, Rytting E, Ahmed MS, La JH, Nanovskaya T. Effect of deuteration on the single dose pharmacokinetic properties and postoperative analgesic activity of methadone. Drug Metab Pharmacokinet 2022; 47:100477. [PMID: 36368298 PMCID: PMC9886271 DOI: 10.1016/j.dmpk.2022.100477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 02/01/2023]
Abstract
Although methadone is effective in the management of acute pain, the complexity of its absorption-distribution-metabolism-excretion profile limits its use as an opioid of choice for perioperative analgesia. Because deuteration is known to improve the pharmacokinetic, pharmacodynamic and toxicological properties of some drugs, here we characterized the single dose pharmacokinetic properties and post-operative analgesic efficacy of d9-methadone. The pharmacokinetic profiles of d9-methadone and methadone administered intravenously to CD-1 male mice revealed that deuteration leads to a 5.7- and 4.4-fold increase in the area under the time-concentration curve and maximum concentration in plasma, respectively, as well as reduction in clearance (0.9 ± 0.3 L/h/kg vs 4.7 ± 0.8 L/h/kg). The lower brain-to-plasma ratio of d9-methadone compared to that of methadone (0.35 ± 0.12 vs 2.05 ± 0.62) suggested that deuteration decreases the transfer of the drug across the blood-brain barrier. The estimated LD50 value for a single intravenous dose of d9-methadone was 2.1-fold higher than that for methadone. Moreover, d9-methadone outperformed methadone in the efficacy against postoperative pain by primarily activating peripheral opioid receptors. Collectively, these data suggest that the replacement of three hydrogen atoms in three methyl groups of methadone altered its pharmacokinetic properties, improved safety, and enhanced its analgesic efficacy.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jigong Wang
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Valentina Fokina
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Svetlana Patrikeeva
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Erik Rytting
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mahmoud S Ahmed
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jun-Ho La
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Tatiana Nanovskaya
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
2
|
Shen Y, Yu Y, Lai W, Li S, Xu Z, Jin J, Yan X, Xing H, Chen X, Xiong A, Xia C, He J, Hong K. Evaluation of a Potential Clinical Significant Drug-Drug Interaction between Digoxin and Bupropion in Cynomolgus Monkeys. Pharm Res 2018; 36:1. [PMID: 30402714 DOI: 10.1007/s11095-018-2525-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/16/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE A three-period digoxin-bupropion drug-drug interaction study was performed in cynomolgus monkeys to assess the effect of bupropion and its metabolites on digoxin disposition. METHODS Monkeys were administered either an i.v. infusion (0.1 mg/kg) or an oral dose of digoxin (0.2 mg/kg) as control. In single-dosing period, monkeys received an i.v. infusion of bupropion at 1.5 mg/kg together with an infusion or oral dosing of digoxin, respectively. During multiple-dosing period, bupropion was orally administered q.d. at 7.72 mg/kg for 12-day. Then it was co-administered with an i.v. infusion or oral dosing of digoxin, respectively. Renal expression of OATP4C1 and P-gp was examined. RESULTS Bupropion significantly increased i.v. digoxin CLrenal0-48h by 1 fold in single-dosing period. But it had no effect on the systemic disposition of digoxin. In multiple-dosing period, bupropion significantly increased oral digoxin CLrenal0-48h, CLtotal0-48h, CLnon-renal0-48h and decreased its plasma exposure. Bupropion and its metabolites did not alter creatinine clearance. OATP4C1 was located at the basolateral membrane of proximal tubule cells, while P-gp was on the apical membrane. CONCLUSIONS The effect of multiple dosing with bupropion on the pharmacokinetics of digoxin is more pronounced. The magnitude of increase in digoxin CLrenal0-48h contributed to the decrease in AUC of digoxin in some extent, but certainly is not the major driving force. The lack of systemic exposure after a single dose but a significant decrease in exposure mediated by an increase in the digoxin CLnon-renal0-48h with repeated dosing is likely to be the more clinically relevant.
Collapse
Affiliation(s)
- Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi,, China.,The Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Yu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Minde Road No.1, Nanchang, 330006, Jiangxi,, China.,Clinical Pharmacology Institute, Department of Pharmacy, Nanchang University, Bayi Avenue No. 461, Nanchang, 330006, Jiangxi,, China
| | - Wei Lai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Minde Road No.1, Nanchang, 330006, Jiangxi, China
| | - Shuai Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Minde Road No.1, Nanchang, 330006, Jiangxi, China
| | - Zixuan Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Minde Road No.1, Nanchang, 330006, Jiangxi, China
| | - Jiejing Jin
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi,, China
| | - Xia Yan
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi,, China
| | - Han Xing
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Aizhen Xiong
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Minde Road No.1, Nanchang, 330006, Jiangxi,, China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Department of Pharmacy, Nanchang University, Bayi Avenue No. 461, Nanchang, 330006, Jiangxi,, China.
| | - Jiake He
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Minde Road No.1, Nanchang, 330006, Jiangxi,, China. .,Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Minde Road No.1, Nanchang, 330006, Jiangxi, China.
| | - Kui Hong
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi,, China.,The Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Minde Road No.1, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
3
|
Al-Enazy S, Ali S, Albekairi N, El-Tawil M, Rytting E. Placental control of drug delivery. Adv Drug Deliv Rev 2017; 116:63-72. [PMID: 27527665 DOI: 10.1016/j.addr.2016.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/25/2016] [Accepted: 08/04/2016] [Indexed: 01/04/2023]
Abstract
The placenta serves as the interface between the maternal and fetal circulations and regulates the transfer of oxygen, nutrients, and waste products. When exogenous substances are present in the maternal bloodstream-whether from environmental contact, occupational exposure, medication, or drug abuse-the extent to which this exposure affects the fetus is determined by transport and biotransformation processes in the placental barrier. Advances in drug delivery strategies are expected to improve the treatment of maternal and fetal diseases encountered during pregnancy.
Collapse
|
4
|
Methamphetamine-like discriminative stimulus effects of bupropion and its two hydroxy metabolites in male rhesus monkeys. Behav Pharmacol 2016; 27:196-203. [PMID: 26886209 DOI: 10.1097/fbp.0000000000000224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The dopamine transporter (DAT) inhibitor and nicotinic acetylcholine (nACh) receptor antagonist bupropion is being investigated as a candidate 'agonist' medication for methamphetamine addiction. In addition to its complex pharmacology, bupropion also has two distinct pharmacologically active metabolites. However, the mechanism by which bupropion produces methamphetamine-like 'agonist' effects remains unknown. The aim of the present study was to determine the role of DAT inhibition, nACh receptor antagonism, and the hydroxybupropion metabolites in the methamphetamine-like discriminative stimulus effects of bupropion in rhesus monkeys. In addition, varenicline, a partial agonist at the nACh receptor, and risperidone, a dopamine antagonist, were tested as controls. Monkeys (n=4) were trained to discriminate 0.18 mg/kg intramuscular methamphetamine from saline in a two-key food-reinforced discrimination procedure. The potency and time course of methamphetamine-like discriminative stimulus effects were determined for all compounds. Bupropion, methylphenidate, and 2S,3S-hydroxybupropion produced full, at least 90%, methamphetamine-like effects. 2R,3R-Hydroxybupropion, mecamylamine, and nicotine also produced full methamphetamine-like effects, but drug potency was more variable between monkeys. Varenicline produced partial methamphetamine-like effects, whereas risperidone did not. Overall, these results suggest DAT inhibition as the major mechanism of the methamphetamine-like 'agonist' effects of bupropion, although nACh receptor antagonism appeared, at least partially, to contribute. Furthermore, the contribution of the 2S,3S-hydroxybupropion metabolite could not be completely ruled out.
Collapse
|
5
|
Ilekis JV, Tsilou E, Fisher S, Abrahams VM, Soares MJ, Cross JC, Zamudio S, Illsley NP, Myatt L, Colvis C, Costantine MM, Haas DM, Sadovsky Y, Weiner C, Rytting E, Bidwell G. Placental origins of adverse pregnancy outcomes: potential molecular targets: an Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am J Obstet Gynecol 2016; 215:S1-S46. [PMID: 26972897 DOI: 10.1016/j.ajog.2016.03.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/11/2016] [Accepted: 03/01/2016] [Indexed: 12/26/2022]
Abstract
Although much progress is being made in understanding the molecular pathways in the placenta that are involved in the pathophysiology of pregnancy-related disorders, a significant gap exists in the utilization of this information for the development of new drug therapies to improve pregnancy outcome. On March 5-6, 2015, the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health sponsored a 2-day workshop titled Placental Origins of Adverse Pregnancy Outcomes: Potential Molecular Targets to begin to address this gap. Particular emphasis was given to the identification of important molecular pathways that could serve as drug targets and the advantages and disadvantages of targeting these particular pathways. This article is a summary of the proceedings of that workshop. A broad number of topics were covered that ranged from basic placental biology to clinical trials. This included research in the basic biology of placentation, such as trophoblast migration and spiral artery remodeling, and trophoblast sensing and response to infectious and noninfectious agents. Research findings in these areas will be critical for the formulation of the development of future treatments and the development of therapies for the prevention of a number of pregnancy disorders of placental origin that include preeclampsia, fetal growth restriction, and uterine inflammation. Research was also presented that summarized ongoing clinical efforts in the United States and in Europe that has tested novel interventions for preeclampsia and fetal growth restriction, including agents such as oral arginine supplementation, sildenafil, pravastatin, gene therapy with virally delivered vascular endothelial growth factor, and oxygen supplementation therapy. Strategies were also proposed to improve fetal growth by the enhancement of nutrient transport to the fetus by modulation of their placental transporters and the targeting of placental mitochondrial dysfunction and oxidative stress to improve placental health. The roles of microRNAs and placental-derived exosomes, as well as messenger RNAs, were also discussed in the context of their use for diagnostics and as drug targets. The workshop discussed the aspect of safety and pharmacokinetic profiles of potential existing and new therapeutics that will need to be determined, especially in the context of the unique pharmacokinetic properties of pregnancy and the hurdles and pitfalls of the translation of research findings into practice. The workshop also discussed novel methods of drug delivery and targeting during pregnancy with the use of macromolecular carriers, such as nanoparticles and biopolymers, to minimize placental drug transfer and hence fetal drug exposure. In closing, a major theme that developed from the workshop was that the scientific community must change their thinking of the pregnant woman and her fetus as a vulnerable patient population for which drug development should be avoided, but rather be thought of as a deprived population in need of more effective therapeutic interventions.
Collapse
Affiliation(s)
- John V Ilekis
- Pregnancy and Perinatology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Department of Health and Human Services, Bethesda, MD.
| | - Ekaterini Tsilou
- Obstetric and Pediatric Pharmacology and Therapeutics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Department of Health and Human Services, Bethesda, MD.
| | - Susan Fisher
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA
| | - Vikki M Abrahams
- Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine; New Haven, CT
| | - Michael J Soares
- Institute of Reproductive Health and Regenerative Medicine and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - James C Cross
- Comparative Biology and Experimental Medicine, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - Stacy Zamudio
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ
| | - Nicholas P Illsley
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ
| | - Leslie Myatt
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX
| | - Christine Colvis
- Therapeutics Discovery Program, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
| | - Maged M Costantine
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - David M Haas
- Department of Obstetrics and Gynecology Indiana University, Indianapolis, IN
| | | | - Carl Weiner
- University of Kansas Medical Center, Kansas City, KS
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Gene Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
6
|
Placental transfer of antidepressant medications: implications for postnatal adaptation syndrome. Clin Pharmacokinet 2015; 54:359-70. [PMID: 25711391 DOI: 10.1007/s40262-014-0233-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Seven to thirteen percent of women are either prescribed or taking (depending on the study) an antidepressant during pregnancy. Because antidepressants freely cross into the intrauterine environment, we aim to summarize the current findings on placental transfer of antidepressants. Although generally low risk, antidepressants have been associated with postnatal adaptation syndrome (PNAS). Specifically, we explore whether the antidepressants most closely associated with PNAS (paroxetine, fluoxetine, venlafaxine) cross the placenta to a greater extent than other antidepressants. We review research on antidepressants in the context of placental anatomy, placental transport mechanisms, placental metabolism, pharmacokinetics, as well as non-placental maternal and fetal factors. This provides insight into the complexity involved in understanding how placental transfer of antidepressants may relate to adverse perinatal outcomes. Ultimately, from this data there is no pattern in which PNAS is related to placental transfer of antidepressant medications. In general, there is large interindividual variability for each type of antidepressant. To make the most clinically informed decisions about the use of antidepressants in pregnancy, studies that link maternal, placental and fetal genetic polymorphisms, placental transfer rates and infant outcomes are needed.
Collapse
|
7
|
Bauer C. The baboon (Papio sp.) as a model for female reproduction studies. Contraception 2015; 92:120-3. [PMID: 26072741 DOI: 10.1016/j.contraception.2015.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 01/11/2023]
Abstract
BIOLOGY AND REPRODUCTION Due to their size and anatomical similarity to humans, baboons make an excellent model for reproductive studies. Baboons have a simple short cervix, muscular uterus, ovaries just lateral to the uterus and similar vasculature to that of humans. Because of the size of the animals, instruments designed for use in women can be readily used on baboons. Noninvasive determination of phase of estrous cycle is readily made by observation of changes in perineal sexual skin turgor and color. ADVANTAGES Some advantages of use of baboons compared to other nonhuman primates is that they are nonseasonal breeders allowing for studies to be conducted year round, have minimal infectious disease risks to humans as they do not carry Herpes B and have a social structure allowing for easy group formation. Baboons serve as good models for many conditions in humans and should be considered for studies investigating reproductive issues.
Collapse
Affiliation(s)
- Cassondra Bauer
- Southwest National Primate Research Center, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78245-0549, USA.
| |
Collapse
|