1
|
Wijesinghe A, Kumari S, Booth V. Conjugates for use in peptide therapeutics: A systematic review and meta-analysis. PLoS One 2022; 17:e0255753. [PMID: 35259149 PMCID: PMC8903268 DOI: 10.1371/journal.pone.0255753] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/15/2022] [Indexed: 12/09/2022] Open
Abstract
While peptides can be excellent therapeutics for several conditions, their limited in vivo half-lives have been a major bottleneck in the development of therapeutic peptides. Conjugating the peptide to an inert chemical moiety is a strategy that has repeatedly proven to be successful in extending the half-life of some therapeutics. This systematic review and meta-analysis was conducted to examine the available literature and assess it in an unbiased manner to determine which conjugates, both biological and synthetic, provide the greatest increase in therapeutic peptide half-life. Systematic searches run on PubMed, Scopus and SciFinder databases resulted in 845 studies pertaining to the topic, 16 of these were included in this review after assessment against pre-specified inclusion criteria registered on PROSPERO (#CRD42020222579). The most common reasons for exclusion were non-IV administration and large peptide size. Of the 16 studies that were included, a diverse suite of conjugates that increased half-life from 0.1 h to 33.57 h was identified. Amongst these peptides, the largest increase in half-life was seen when conjugated with glycosaminoglycans. A meta-analysis of studies that contained fatty acid conjugates indicated that acylation contributed to a statistically significant extension of half-life. Additionally, another meta-analysis followed by a sensitivity analysis suggested that conjugation with specifically engineered recombinant peptides might contribute to a more efficient extension of peptide half-life as compared to PEGylation. Moreover, we confirmed that while polyethylene glycol is a good synthetic conjugate, its chain length likely has an impact on its effectiveness in extending half-life. Furthermore, we found that most animal studies do not include as much detail when reporting findings as compared to human studies. Inclusion of additional experimental detail on aspects such as independent assessment and randomization may be an easily accomplished strategy to drive more conjugated peptides towards clinical studies.
Collapse
Affiliation(s)
- Ashan Wijesinghe
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Sarika Kumari
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Valerie Booth
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- * E-mail:
| |
Collapse
|
2
|
Toxicity of high-molecular-weight polyethylene glycols in Sprague Dawley rats. Toxicol Lett 2022; 359:22-30. [PMID: 35092809 PMCID: PMC8932377 DOI: 10.1016/j.toxlet.2022.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Polyethylene glycol (PEG) is present in a variety of products. Little is known regarding the accumulation of high-molecular-weight PEGs or the long-term effects resulting from PEG accumulation in certain tissues, especially the choroid plexus. We evaluated the toxicity of high-molecular-weight PEGs administered to Sprague Dawley rats. Groups of 12 rats per sex were administered subcutaneous injections of 20, 40, or 60 kDa PEG or intravenous injections of 60 kDa PEG at 100 mg PEG/kg body weight/injection once a week for 24 weeks. A significant decrease in triglycerides occurred in the 60 kDa PEG groups. PEG treatment led to a molecular-weight-related increase in PEG in plasma and a low level of PEG in cerebrospinal fluid. PEG was excreted in urine and feces, with a molecular-weight-related decrease in the urinary excretion. A higher prevalence of anti-PEG IgM was observed in PEG groups; anti-PEG IgG was not detected. PEG treatment produced a molecular-weight-related increase in vacuolation in the spleen, lymph nodes, lungs, and ovaries/testes, without an inflammatory response. Mast cell infiltration at the application site was noted in all PEG-treated groups. These data indicate that subcutaneous and intravenous exposure to high-molecular-weight PEGs produces tissue vacuolation without inflammation and anti-PEG IgM antibody responses.
Collapse
|
3
|
Faust C, Ochs C, Korn M, Werner U, Jung J, Dittrich W, Schiebler W, Schauder R, Rao E, Langer T. Production of a novel heterodimeric two-chain insulin-Fc fusion protein. Protein Eng Des Sel 2020; 33:5959880. [PMID: 33159202 DOI: 10.1093/protein/gzaa026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023] Open
Abstract
Insulin is a peptide hormone produced by the pancreas. The physiological role of insulin is the regulation of glucose metabolism. Under certain pathological conditions the insulin levels can be reduced leading to the metabolic disorder diabetes mellitus (DM). For type 1 DM and, dependent on the disease progression for type 2 DM, insulin substitution becomes indispensable. To relieve insulin substitution therapy for patients, novel insulin analogs with pharmacokinetic and pharmacodynamic profiles aiming for long-lasting or fast-acting insulins have been developed. The next step in the evolution of novel insulins should be insulin analogs with a time action profile beyond 1-2 days, preferable up to 1 week. Nowadays, insulin is produced in a recombinant manner. This approach facilitates the design and production of further insulin-analogs or insulin-fusion proteins. The usage of the Fc-domain from immunoglobulin as a fusion partner for therapeutic proteins and peptides is widely used to extend their plasma half-life. Insulin consists of two chains, the A- and B-chain, which are connected by two disulfide-bridges. To produce a novel kind of Fc-fusion protein we have fused the A-chain as well as the B-chain to Fc-fragments containing either 'knob' or 'hole' mutations. The 'knob-into-hole' technique is frequently used to force heterodimerization of the Fc-domain. Using this approach, we were able to produce different variants of two-chain-insulin-Fc-protein (tcI-Fc-protein) variants. The tcI-Fc-fusion variants retained activity as shown in in vitro assays. Finally, prolonged blood glucose lowering activity was demonstrated in normoglycemic rats. Overall, we describe here the production of novel insulin-Fc-fusion proteins with prolonged times of action.
Collapse
Affiliation(s)
- Christine Faust
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Christian Ochs
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany.,Provadis School of International Management and Technology AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Marcus Korn
- Sanofi-Aventis Deutschland GmbH, R&D TA Diabetes, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Ulrich Werner
- Sanofi-Aventis Deutschland GmbH, R&D TA Diabetes, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Jennifer Jung
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Werner Dittrich
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Werner Schiebler
- Provadis School of International Management and Technology AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Rolf Schauder
- Provadis School of International Management and Technology AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Ercole Rao
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Thomas Langer
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Kjeldsen T, Hogendorf WFJ, Tornøe CW, Anderson J, Hubalek F, Stidsen CE, Sorensen JL, Hoeg-Jensen T. Dually Reactive Long Recombinant Linkers for Bioconjugations as an Alternative to PEG. ACS OMEGA 2020; 5:19827-19833. [PMID: 32803078 PMCID: PMC7424725 DOI: 10.1021/acsomega.0c02712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Covalent cross-linking of biomolecules can be useful in pursuit of tissue targeting or dual targeting of two receptors on cell surfaces for avidity effects. Long linkers (>10 kDa) can be advantageous for such purposes, and poly(ethylene glycol) (PEG) linkers are most commonly used due to the high aqueous solubility of PEG and its relative inertness toward biological targets. However, PEG is non-biodegradable, and available PEG linkers longer than 5 kDa are heterogeneous (polydisperse), which means that conjugates based on such materials will be mixtures. We describe here recombinant linkers of distinct lengths, which can be expressed in yeast, which are polar, and which carry orthogonal reactivity at each end of the linker, thus allowing chemoselective cross-linking of proteins. A conjugate between insulin and either of the two trypsin inhibitor peptides/proteins exemplifies the technology, using a GQAP-based linker of molecular weight of 17 848, having one amine at the N-terminal, and one Cys, at the C-terminal. Notably, yeast-based expression systems typically give products with mixed disulfides when expressing proteins that are equipped with one unpaired Cys, namely, mixed disulfides with glutathione, free Cys amino acid, and/or a protein homodimer. To obtain a homogeneous linker, we worked out conditions for transforming the linker with mixed disulfides into a linker with a homogeneous disulfide, using excess 4-mercaptophenylacetic acid. Subsequently, the N-terminal amine of the linker was transformed into an azide, and the C-terminal Cys disulfide was reduced to a free thiol and reacted with halo-acetyl insulin. The N-terminal azide was finally conjugated to either of the two types of alkyne-containing trypsin inhibitor peptides/proteins. This reaction sequence allowed the cross-linked proteins to carry internal disulfides, as no reduction step was needed after protein conjugations. The insulin-trypsin inhibitor conjugates were shown to be stabilized toward enzymatic digestions and to have partially retained binding to the insulin receptor.
Collapse
|
5
|
Moyers JS, Volk CB, Cao JXC, Zhang C, Ding L, Kiselyov VV, Michael MD. Internalization and localization of basal insulin peglispro in cells. Mol Cell Endocrinol 2017; 454:23-38. [PMID: 28576743 DOI: 10.1016/j.mce.2017.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Basal insulin peglispro (BIL) is a novel, PEGylated insulin lispro that has a large hydrodynamic size compared with insulin lispro. It has a prolonged duration of action, which is related to a delay in insulin absorption and a reduction in clearance. Given the different physical properties of BIL compared with native insulin and insulin lispro, it is important to assess the cellular internalization characteristics of the molecule. METHODS AND MATERIALS Using immunofluorescent confocal imaging, we compared the cellular internalization and localization patterns of BIL, biosynthetic human insulin, and insulin lispro. We assessed the effects of BIL on internalization of the insulin receptor (IR) and studied cellular clearance of BIL. RESULTS Co-localization studies using antibodies to either insulin or PEG, and the early endosomal marker EEA1 showed that the overall internalization and subcellular localization pattern of BIL was similar to that of human insulin and insulin lispro; all were rapidly internalized and co-localized with EEA1. During ligand washout for 4 h, concomitant loss of insulin, PEG methoxy group, and PEG backbone immunostaining was observed for BIL, similar to the loss of insulin immunostaining observed for insulin lispro and human insulin. Co-localization studies using an antibody to the lysosomal marker LAMP1 did not reveal evidence of lysosomal localization for insulin lispro, human insulin, BIL, or PEG using either insulin or PEG immunostaining reagents. BIL and human insulin both induced rapid phosphorylation and internalization of human IR. CONCLUSIONS Our findings show that treatment of cells with BIL stimulates internalization and localization of IR to early endosomes. Both the insulin and PEG moieties of BIL undergo a dynamic cellular process of rapid internalization and transport to early endosomes followed by loss of cellular immunostaining in a manner similar to that of insulin lispro and human insulin. The rate of clearance for the insulin lispro portion of BIL was slower than the rate of clearance for human insulin. In contrast, the PEG moiety of BIL can recycle out of cells.
Collapse
Affiliation(s)
- Julie S Moyers
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| | - Catherine B Volk
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Julia X C Cao
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Chen Zhang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Liyun Ding
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - M Dodson Michael
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
6
|
Byrd RA, Blackbourne JL, Knadler MP, Schultze AE, Vahle JL. Chronic Toxicology Studies of Basal Insulin Peglispro in Rats and Dogs: A Novel, PEGylated Insulin Lispro Analog with a Prolonged Duration of Action. Toxicol Pathol 2017; 45:402-415. [DOI: 10.1177/0192623317696283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Basal insulin peglispro (BIL) consists of insulin lispro with a 20-kDa polyethylene glycol (PEG) moiety covalently attached to lysine B28. Because chronic parenteral administration of PEGylated proteins to animals has sometimes resulted in PEG vacuolation of tissue macrophages, renal tubular cells, and choroid plexus ependymal cells, we investigated whether chronic subcutaneous (sc) injection of BIL in rats (52 weeks) and dogs (39 weeks) was associated with systemic toxicities or other changes, including vacuolation of tissue macrophages, renal tubular cells, and ependymal cells. Rats and dogs received daily sc injections of BIL (rats: 0.17, 0.45, or 1.15 mg/kg/d and dogs: 0.025, 0.10, or 0.20 mg/kg/d) and the reference compound, HUMULIN N® (neutral protamine Hagedorn [NPH] human insulin; rats: 0.15 mg/kg/d and dogs: 0.02–0.03 mg/kg/d). Animals were evaluated for standard end points including mortality, clinical signs, body weights, toxicokinetics, glucodynamics, clinical pathology, and morphological pathology. Nonadverse injection site lipohypertrophy occurred for all BIL and NPH doses but more frequently with BIL. No BIL-related hyperplasia or neoplasia was observed. There was no vacuolation of tissue macrophages, renal tubular cells, or ependymal cells attributable to PEG. These studies demonstrate BIL is not associated with tissue vacuolation attributable to PEG at 4- to 6-fold multiple of the median clinical exposure in patients with diabetes.
Collapse
Affiliation(s)
- Richard A. Byrd
- Non-Clinical Safety Assessment, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jamie L. Blackbourne
- Non-Clinical Safety Assessment, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Mary Pat Knadler
- Drug Disposition, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Albert E. Schultze
- Department of Pathology, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - John L. Vahle
- Department of Pathology, Eli Lilly and Company, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Knadler MP, Nguyen TH, Campanale K, De Veer MJ, Beals JM, Li S, Hansen R, Siesky A, Michael MD, Porter CJH. Addition of 20-kDa PEG to Insulin Lispro Alters Absorption and Decreases Clearance in Animals. Pharm Res 2016; 33:2920-2929. [PMID: 27528391 PMCID: PMC5093203 DOI: 10.1007/s11095-016-2014-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/08/2016] [Indexed: 01/21/2023]
Abstract
PURPOSE Determine the pharmacokinetics of insulin peglispro (BIL) in 5/6-nephrectomized rats and study the absorption in lymph duct cannulated (LDC) sheep. METHODS BIL is insulin lispro modified with 20-kDa linear PEG at lysine B28 increasing the hydrodynamic size to 4-fold larger than insulin lispro. Pharmacokinetics of BIL and insulin lispro after IV administration were compared in 5/6-nephrectomized and sham rats. BIL was administered IV or SC into the interdigital space of the hind leg, and peripheral lymph and/or serum samples were collected from both LDC and non-LDC sheep to determine pharmacokinetics and absorption route of BIL. RESULTS The clearance of BIL was similar in 5/6-nephrectomized and sham rats, while the clearance of insulin lispro was 3.3-fold slower in 5/6-nephrectomized rats than in the sham rats. In non-LDC sheep, the terminal half-life after SC was about twice as long vs IV suggesting flip-flop pharmacokinetics. In LDC sheep, bioavailability decreased to <2%; most of the dose was absorbed via the lymphatic system, with 88% ± 19% of the dose collected in the lymph after SC administration. CONCLUSION This work demonstrates that increasing the hydrodynamic size of insulin lispro through PEGylation can impact both absorption and clearance to prolong drug action.
Collapse
Affiliation(s)
- Mary Pat Knadler
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, 46285, USA.
| | - Tri-Hung Nguyen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Kristina Campanale
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, 46285, USA
| | - Michael J De Veer
- Department of Physiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, 3800, Australia
| | - John M Beals
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, 46285, USA
| | - Shun Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, 46285, USA
| | - Ryan Hansen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, 46285, USA
| | - Angela Siesky
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, 46285, USA
| | - M Dodson Michael
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, 46285, USA
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Jacober SJ, Prince MJ, Beals JM, Hartman ML, Qu Y, Linnebjerg H, Garhyan P, Haupt A. Basal insulin peglispro: Overview of a novel long-acting insulin with reduced peripheral effect resulting in a hepato-preferential action. Diabetes Obes Metab 2016; 18 Suppl 2:3-16. [PMID: 27723228 DOI: 10.1111/dom.12744] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/04/2023]
Abstract
Basal insulin peglispro (BIL) is a novel basal insulin with a flat, prolonged activity profile. BIL has been demonstrated in a dog model, in healthy men and in patients with type 1 diabetes (T1D) to have significant hepato-preferential action resulting from reduced peripheral activity. In the IMAGINE-Phase 3 clinical trial program, more than 6000 patients were included, of whom ~3900 received BIL. Of the 7 pivotal IMAGINE trials, 3 studies were double-blinded and 3 were in T1D patients. BIL consistently demonstrated a greater HbA1c reduction, less glycaemic variability and a clinically relevant reduction in the rates of nocturnal hypoglycaemia across comparator [glargine and isophane insulin (NPH)] studies. Trials using basal/bolus regimens had higher rates of total hypoglycaemia with BIL due to higher rates of daytime hypoglycaemia. Severe hypoglycaemia rates were similar to comparator among both patients with T1D or type 2 diabetes (T2D). T1D patients lost weight compared with glargine (GL). Patients with T2D tended to gain less weight with BIL than with glargine. Compared to glargine, BIL was associated with higher liver fat, triglycerides and alanine aminotransferase (ALT) levels, including a higher frequency of elevation of ALT ≥3 times the upper limit of normal, but without severe, acute drug-induced liver injury. Injection site reactions, primarily lipohypertrophy, were more frequent with BIL. In conclusion, BIL demonstrated better glycaemic control with reduced glucose variability and nocturnal hypoglycaemia but higher triglycerides, ALT and liver fat relative to conventional comparator insulin. The hepato-preferential action of BIL with reduced peripheral activity may account for these findings.
Collapse
Affiliation(s)
- S J Jacober
- Eli Lilly and Company, Indianapolis, Indiana.
| | - M J Prince
- Eli Lilly and Company, Indianapolis, Indiana
| | - J M Beals
- Eli Lilly and Company, Indianapolis, Indiana
| | - M L Hartman
- Eli Lilly and Company, Indianapolis, Indiana
| | - Y Qu
- Eli Lilly and Company, Indianapolis, Indiana
| | | | - P Garhyan
- Eli Lilly and Company, Indianapolis, Indiana
| | - A Haupt
- Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
9
|
Linnebjerg H, Choi SL, Lam ECQ, Mace KF, Hodgson TS, Sinha VP. Pharmacokinetics of the Long-Acting Basal Insulin LY2605541 in Subjects With Varying Degrees of Renal Function. Clin Pharmacol Drug Dev 2016; 5:216-24. [PMID: 27163501 PMCID: PMC5071690 DOI: 10.1002/cpdd.252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 01/22/2016] [Accepted: 01/06/2016] [Indexed: 11/09/2022]
Abstract
The pharmacokinetics of LY2605541 (basal insulin peglispro), a novel long-acting basal insulin analogue, was evaluated in 5 groups of subjects with varying degrees of renal function based on creatinine clearance: normal renal function (>80 mL/min), mild renal impairment (51-80 mL/min), moderate renal impairment (30-50 mL/min), severe renal impairment (<30 mL/min), or end-stage renal disease (ESRD) requiring hemodialysis. Serial blood samples for pharmacokinetic analyses were collected up to 12 days following a single 0.33 U/kg subcutaneous dose of LY2605541. The apparent clearance (CL/F) and half-life across groups were not affected by renal function. Cmax values were lower in subjects with increasing severity of renal impairment; however, the small decrease in Cmax did not affect the overall exposure. Regression analysis showed that LY2605541 clearance is independent of renal function (slope = 0.000863; P = .885). The mean fraction of LY2605541 eliminated by a single hemodialysis session was 13% in subjects with ESRD. LY2605541 was generally well tolerated in healthy subjects and those with renal impairment following a single 0.33 U/kg subcutaneous dose. Given these data, no dose adjustment of LY2605541 based on pharmacokinetics is recommended in renal impairment or in patients undergoing hemodialysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Vikram P Sinha
- U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|