1
|
Basińska-Ziobroń A, Danek PJ, Daniel WA. The effect of prolonged treatment with antipsychotic drugs on cytochrome P450 - drug metabolizing enzymes. Mechanisms of action and significance for pharmacotherapy. Expert Opin Drug Metab Toxicol 2025. [PMID: 40491297 DOI: 10.1080/17425255.2025.2517731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/14/2025] [Accepted: 06/05/2025] [Indexed: 06/11/2025]
Abstract
INTRODUCTION The treatment of schizophrenia and other psychosis-related mental disorders requires long-term therapy with selected drugs possessing adequate pharmacological receptor spectra, relevant to the patient's clinical state. Antipsychotics can interact with cytochrome P450 (CYP) reciprocally affecting each other in different ways. The enzyme plays an important role in the metabolism of antipsychotics, whereas antipsychotics can affect CYP enzymes in the liver and brain. AREAS COVERED The effects of short and prolonged administration of antipsychotic drugs belonging to different groups (first-, second- and third-generation) on the expression and activity of CYP enzymes in the liver and brain are presented (based on PubMed 3 December 2024). Possible relations between pharmacological receptor spectra of antipsychotics and their influence on the regulation of cytochrome P450 in the liver and brain are considered. The results are discussed in the light of pharmacological and therapeutic significance. EXPERT OPINION During continuous treatment in vivo, the direct mechanisms (drug/metabolite binding to the CYP enzyme) overlap with the effect of antipsychotics on CYP regulation (enzyme induction or inhibition). Clinicians using the information on particular drug-CYP interaction in combination with pharmacogenetic data can make informed decisions about drug selection and dosage, ultimately advancing more effective and safer pharmacotherapy.
Collapse
Affiliation(s)
- Agnieszka Basińska-Ziobroń
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Poland
| | - Przemysław Jan Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Poland
| |
Collapse
|
2
|
Haduch A, Bromek E, Kuban W, Basińska-Ziobroń A, Danek PJ, Alenina N, Bader M, Daniel WA. The effect of brain serotonin deficit (TPH2-KO) on the expression and activity of liver cytochrome P450 enzymes in aging male Dark Agouti rats. Pharmacol Rep 2023; 75:1522-1532. [PMID: 37848703 PMCID: PMC10661807 DOI: 10.1007/s43440-023-00540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Liver cytochrome P450 (CYP) greatly contributes to the metabolism of endogenous substances and drugs. Recent studies have demonstrated that CYP expression in the liver is controlled by the central nervous system via hormonal pathways. In particular, the expression of hepatic CYPs is negatively regulated by the brain serotoninergic system. The present study aimed to investigate changes in the function of the main liver drug-metabolizing CYP enzymes as a result of serotonin depletion in the brain of aging rats, caused by knockout of brain tryptophan hydroxylase gene (TPH2-KO). METHODS The hepatic CYP mRNA (qRT-PCR), protein level (Western blotting) and activity (HPLC), and serum hormone levels (ELISA) were measured in Dark Agouti wild-type (WT) male rats (mature 3.5-month-old and senescent 21-month-old) and in TPH2-KO senescent animals. RESULTS The expression/activity of the studied CYPs decreased with age in the liver of wild-type rats. The deprivation of serotonin in the brain of aging males decreased the mRNA level of most of the studied CYPs (CYP1A/2A/2B/3A), and lowered the protein level of CYP2C11 and CYP3A. In contrast, the activities of CYP2C11, CYP3A and CYP2C6 were increased. The expression of cytochrome b5 decreased in aging rats, but increased in TPH2-deficient senescent animals. The serum concentration of growth hormone declined in the aged and further dropped down in TPH2-deficient senescent rats. CONCLUSIONS Rat liver cytochrome P450 functions deteriorate with age, which may impair drug metabolism. The TPH2 knockout, which deprives brain serotonin, affects cytochrome P450 expression and activity differently in mature and senescent male rats.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Basińska-Ziobroń
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité University Medicine, Berlin, Germany
| | - Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
3
|
Daniel WA, Bromek E, Danek PJ, Haduch A. The mechanisms of interactions of psychotropic drugs with liver and brain cytochrome P450 and their significance for drug effect and drug-drug interactions. Biochem Pharmacol 2022; 199:115006. [PMID: 35314167 DOI: 10.1016/j.bcp.2022.115006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 (CYP) plays an important role in psychopharmacology. While liver CYP enzymes are responsible for the biotransformation of psychotropic drugs, brain CYP enzymes are involved in the local metabolism of these drugs and endogenous neuroactive substances, such as neurosteroids, and in alternative pathways of neurotransmitter biosynthesis including dopamine and serotonin. Recent studies have revealed a relation between the brain nervous system and cytochrome P450, indicating that CYP enzymes metabolize endogenous neuroactive substances in the brain, while the brain nervous system is engaged in the central neuroendocrine and neuroimmune regulation of cytochrome P450 in the liver. Therefore, the effect of neuroactive drugs on cytochrome P450 should be investigated not only in vitro, but also at in vivo conditions, since only in vivo all mechanisms of drug-enzyme interaction can be observed, including neuroendocrine and neuroimmune modulation. Psychotropic drugs can potentially affect cytochrome P450 via a number of mechanisms operating at the level of the nervous, hormonal and immune systems, and the liver. Their effect on cytochrome P450 in the brain is often different than in the liver and region-dependent. Since psychotropic drugs can affect cytochrome P450 both in the liver and brain, they can modify their own pharmacological effect at both pharmacokinetic and pharmacodynamic level. The article describes the mechanisms by which psychotropic drugs can change the expression/activity of cytochrome P450 in the liver and brain, and discusses the significance of those mechanisms for drug action and drug-drug interactions. Moreover, the brain CYP2D6 is considered as a potential target for psychotropics.
Collapse
Affiliation(s)
- Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
4
|
The Selective NMDA Receptor GluN2B Subunit Antagonist CP-101,606 with Antidepressant Properties Modulates Cytochrome P450 Expression in the Liver. Pharmaceutics 2021; 13:pharmaceutics13101643. [PMID: 34683936 PMCID: PMC8539289 DOI: 10.3390/pharmaceutics13101643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022] Open
Abstract
Recent research indicates that selective NMDA receptor GluN2B subunit antagonists may become useful for the treatment of major depressive disorders. We aimed to examine in parallel the effect of the selective NMDA receptor GluN2B subunit antagonist CP-101,606 on the pituitary/serum hormone levels and on the regulation of cytochrome P450 in rat liver. CP-101,606 (20 mg/kg ip. for 5 days) decreased the activity of CYP1A, CYP2A, CYP2B, CYP2C11 and CYP3A, but not that of CYP2C6. The alterations in enzymatic activity were accompanied by changes in the CYP protein and mRNA levels. In parallel, a decrease in the pituitary growth hormone-releasing hormone, and in serum growth hormone and corticosterone (but not T3 and T4) concentration was observed. After a 3-week administration period of CP-101,606 less changes were found. A decrease in the CYP3A enzyme activity and protein level was still maintained, though no change in the mRNA level was found. A slight decrease in the serum concentration of corticosterone was also maintained, while GH level returned to the control value. The obtained results imply engagement of the glutamatergic system in the neuroendocrine regulation of cytochrome P450 and potential involvement of drugs acting on NMDA receptors in metabolic drug–drug interactions.
Collapse
|
5
|
Kiss A, Osacka J. The effect of amisulpride, olanzapine, quetiapine, and aripiprazole single administration on c-Fos expression in vasopressinergic and oxytocinergic neurons of the rat hypothalamic paraventricular nucleus. Neuropeptides 2021; 87:102148. [PMID: 33887540 DOI: 10.1016/j.npep.2021.102148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/07/2020] [Accepted: 01/21/2021] [Indexed: 11/25/2022]
Abstract
Antipsychotics, including amisulpride (AMI), quetiapine (QUE), aripiprazole (ARI), and olanzapine (OLA), are used to treat mental illnesses associated with psychotic symptoms. The effect of these drugs on c-Fos expression in vasopressinergic (AVP) and oxytocinergic (OXY) neurons was studied in the hypothalamic paraventricular nucleus (PVN) of rats. The presence of c-Fos in AVP and OXY perikarya was investigated in seven PVN cells segregations: the anterior (Ant), dorsal cup (Dc), wing-shaped (Wi), periventricular zone (Pe), circle-shaped core (Co) and shell of core (Sh), and the posterior (pPVN) after an acute treatment with AMI-20 mg/kg, QUE-15 mg/kg, ARI-10 mg/kg, and OLA-5 mg/kg/bw in rats. Ninety min after treatments, the animals were sacrificed by transcardial perfusion with fixative and the PVN area sliced into 35 μm thick coronal sections for immunohistochemistry. The c-Fos was processed by avidin-biotin-peroxidase complex intensified with nickel-enhanced 3,3'-diaminobenzidine tetrahydrochloride. Visualization of AVP- and OXY-synthesizing neurons was achieved by a fluorescent marker Alexa Flour 568. The c-Fos-AVP and c-Fos-OXY colocalizations were evaluated from c-Fos stained sections merged with AVP or OXY ones. AMI, QUE, ARI, and OLA, single administration distinctly increased the c-Fos expression in each of the PVN cells segregations. QUE induced the highest magnitude of activation of AVP and OXY neurons, while OLA and AMI had only moderate effects. Incontestable variabilities detected in c-Fos expression in PVN AVP and OXY neurons extend the knowledge of selected antipsychotics extra-striatal actions and may also be helpful in a presumption of their possible functional impact.
Collapse
Affiliation(s)
- Alexander Kiss
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia.
| | - Jana Osacka
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia
| |
Collapse
|
6
|
Bromek E, Daniel WA. The regulation of liver cytochrome P450 expression and activity by the brain serotonergic system in different experimental models. Expert Opin Drug Metab Toxicol 2021; 17:413-424. [PMID: 33400885 DOI: 10.1080/17425255.2021.1872543] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: Cytochrome P450 (CYP) metabolizes vital endogenous (steroids, vitamins) and exogenous (drugs, toxins) substrates. Studies of the last decade have revealed that the brain dopaminergic and noradrenergic systems are involved in the regulation of CYP. Recent research indicates that the brain serotonergic system is also engaged in its regulation.Areas covered: This review focuses on the role of the brain serotonergic system in the regulation of liver CYP expression. It shows the effect of lesion and activation of the serotonergic system after peripheral or intracerebral injections of neurotoxins, serotonin precursor, or serotonin (5-HT) receptor agonists. An opposite role of the hypothalamic paraventricular and arcuate nuclei and 5-HT receptors present therein in the regulation of CYP is described. The engagement of those nuclei in the neuroendocrine regulation of CYP by hypothalamic releasing or inhibiting hormones, pituitary hormones, and peripheral gland hormones are shown.Expert opinion: In general, the brain serotonergic system negatively regulates liver cytochrome P450. However, the effects of serotonergic agents on the enzyme expression depend on their mechanism of action, the route of administration (intracerebral/peripheral), as well as on local intracerebral site of injection and 5-HT receptor-subtypes present therein.
Collapse
Affiliation(s)
- Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
7
|
Haduch A, Bromek E, Rysz M, Pukło R, Papp M, Gruca P, Łasoń M, Niemczyk M, Daniel WA. The effects of agomelatine and imipramine on liver cytochrome P450 during chronic mild stress (CMS) in the rat. Pharmacol Rep 2020; 72:1271-1287. [PMID: 32748256 PMCID: PMC7550324 DOI: 10.1007/s43440-020-00151-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The aim of our research was to determine the effects of chronic treatment with the atypical antidepressant agomelatine on the expression and activity of liver cytochrome P450 (CYP) in the chronic mild stress (CMS) model of depression, and to compare the results with those obtained for the first-generation antidepressant imipramine. METHODS Male Wistar rats were subjected to CMS for 7 weeks. Imipramine (10 mg/kg ip/day) or agomelatine (40 mg/kg ip/day) was administered to nonstressed or stressed animals for 5 weeks (weeks 3-7 of CMS). The levels of cytochrome P450 mRNA, protein and activity were measured in the liver. RESULTS Agomelatine and imipramine produced different broad-spectrum effects on cytochrome P450. Like imipramine, agomelatine increased the expression/activity of CYP2B and CYP2C6, and decreased the CYP2D activity. Unlike imipramine, agomelatine raised the expression/activity of CYP1A, CYP2A and reduced that of CYP2C11 and CYP3A. CMS modified the effects of antidepressants at transcriptional/posttranscriptional level; however, the enzyme activity in stressed rats remained similar to that in nonstressed animals. CMS alone decreased the CYP2B1 mRNA level and increased that of CYP2C11. CONCLUSION We conclude the following: (1) the effects of agomelatine and imipramine on cytochrome P450 are different and involve both central and peripheral regulatory mechanisms, which implicates the possibility of drug-drug interactions; (2) CMS influences the effects of antidepressants on cytochrome P450 expression, but does not change appreciably their effects on the enzyme activity. This suggests that the rate of antidepressant drug metabolism under CMS is similar to that under normal conditions.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Marta Rysz
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Renata Pukło
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Mariusz Papp
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Piotr Gruca
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Magdalena Łasoń
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Monika Niemczyk
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
8
|
Schoretsanitis G, Spigset O, Stingl JC, Deligiannidis KM, Paulzen M, Westin AA. The impact of pregnancy on the pharmacokinetics of antidepressants: a systematic critical review and meta-analysis. Expert Opin Drug Metab Toxicol 2020; 16:431-440. [PMID: 32238008 DOI: 10.1080/17425255.2020.1750598] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Pregnancy-related physiological changes exert a crucial impact on the pharmacokinetics of antidepressants; however, the current evidence presents inconsistencies. A clearer understanding of pregnancy-related effects on antidepressant disposition may facilitate the development of guidelines for appropriate dose adjustments during the course of pregnancy based on therapeutic drug monitoring.Areas covered: We systematically reviewed studies comparing antidepressant levels in the same individuals during pregnant and non-pregnant states. Using dose-adjusted plasma concentration measurements, we estimated alteration ratios between the 3rd trimester and baseline (before or after pregnancy). Additionally, we performed a meta-analysis for changes in dose-adjusted concentrations to estimate mean differences.Expert opinion: Data for several antidepressants display clear alteration patterns during pregnancy. On the basis of the alteration ratios trimipramine, fluvoxamine, and nortriptyline show a prominent decrease in dose-adjusted levels, especially in the 3rd trimester. Clomipramine, imipramine, citalopram, and paroxetine show smaller decreases in dose-adjusted concentrations in the third trimester. For escitalopram, venlafaxine and fluoxetine, changes are considered negligible. For sertraline, there was a tendency toward increased dose-adjusted concentrations in pregnancy. Available evidence suffers from major limitations and factors affecting pharmacokinetics have been insufficiently addressed. Further research is required to promote knowledge on pregnancy effects on antidepressant pharmacokinetics.
Collapse
Affiliation(s)
- Georgios Schoretsanitis
- The Zucker Hillside Hospital, Department of Psychiatry Research, Northwell Health, Glen Oaks, NY, USA
| | - Olav Spigset
- Department of Clinical Pharmacology, St Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Kristina M Deligiannidis
- The Zucker Hillside Hospital, Department of Psychiatry Research, Northwell Health, Glen Oaks, NY, USA.,Zucker School of Medicine, Hempstead, New York, Manhasset, New York, USA.,The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Michael Paulzen
- Alexianer Hospital Aachen, Aachen, Germany and Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, and JARA - Translational Brain Medicine, Aachen, Germany
| | - Andreas A Westin
- Department of Clinical Pharmacology, St Olav University Hospital, Trondheim, Norway
| |
Collapse
|
9
|
Bromek E, Rysz M, Haduch A, Daniel WA. Stimulation of 5-HT 2C serotonin receptor subtype in the hypothalamic arcuate nuclei (ARC) increases the cytochrome P450 activity in the liver. Pharmacol Rep 2019; 71:1210-1212. [PMID: 31671379 DOI: 10.1016/j.pharep.2019.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Our previous study has demonstrated that activation of the 5-HT2, but not 5-HT1 serotonin receptor type in the hypothalamic arcuate nucleus (ARC) is responsible for the neuroendocrine regulation of liver cytochrome P450. The goal of these studies was to determine whether 5-HT2C serotonin receptor subtype in the ARC is engaged in the regulation of liver cytochrome P450. METHODS The 5-HT2C serotonin receptor agonist CP-809,101 was injected into the ARC for 5 days. The liver cytochrome P450 activity and protein level were measured. RESULTS In rats receiving an injection of the 5-HT2C serotonin receptor agonist CP-809,101 into the ARC (1 μg/side) for five days, the activities of CYP2B, CYP2C11 and CYP3A significantly increased corresponding with the elevated enzyme protein level. CONCLUSIONS The obtained results suggest that the 5-HT2C serotonin receptor subtype in the ARC is involved in the positive neuroendocrine regulation of cytochrome P450. Further studies are in progress to explain the physiological mechanism which is responsible for the observed regulation of cytochrome P450 by 5-HT2C receptor present in the ARC.
Collapse
Affiliation(s)
- Ewa Bromek
- Maj Institute of Pharmacology, Department of Pharmacokinetics and Drug Metabolism, Polish Academy of Sciences, Kraków, Poland
| | - Marta Rysz
- Maj Institute of Pharmacology, Department of Pharmacokinetics and Drug Metabolism, Polish Academy of Sciences, Kraków, Poland
| | - Anna Haduch
- Maj Institute of Pharmacology, Department of Pharmacokinetics and Drug Metabolism, Polish Academy of Sciences, Kraków, Poland
| | - Władysława A Daniel
- Maj Institute of Pharmacology, Department of Pharmacokinetics and Drug Metabolism, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
10
|
Bromek E, Rysz M, Haduch A, Daniel WA. Serotonin Receptors of 5-HT 2 Type in the Hypothalamic Arcuate Nuclei Positively Regulate Liver Cytochrome P450 via Stimulation of the Growth Hormone-Releasing Hormone/Growth Hormone Hormonal Pathway. Drug Metab Dispos 2019; 47:80-85. [PMID: 30518657 DOI: 10.1124/dmd.118.083808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/30/2018] [Indexed: 02/13/2025] Open
Abstract
Our recent study carried out after local injection of the serotonergic neurotoxin 5,7-dihydroxytryptamine into the arcuate nucleus (ARC) of the hypothalamus suggested a positive influence of the serotonergic innervation of the ARC on growth hormone (GH) secretion and GH-dependent expression of cytochrome P450. The aim of our present study was to determine the effect of the activation of the serotonin (5-HT)-type receptors, 5-HT1 or 5-HT2, in the ARC on the expression and activity of cytochrome P450 in the liver of male rats. The serotonergic agonist 5-carboxyamidotryptamine [(5-CT), a 5-HT1-type receptor agonist] or 2,5-dimethoxy-4-iodoamphetamine [(DOI), a 5-HT2-type receptor agonist] was injected into the ARC for 5 days. The activity and expression of cytochrome P450 isoenzymes and the levels of serum and pituitary hormones were estimated. DOI significantly increased the activity and expression (both mRNA and protein levels) of CYP2C11, CYP3A1/23, and CYP3A2, which positively correlated with an increase in the pituitary growth hormone-releasing hormone (GHRH) and serum GH level. The injection of 5-CT into the ARC did not affect the activity of liver P450 enzymes or hormone levels. The obtained results indicate that 5-HT2, but not the 5-HT1-type receptors in the ARC, are engaged in the positive neuroendocrine regulation of cytochrome P450, possibly by the stimulation of hypothalamic GHRH release and pituitary GH secretion, and an increase in the serum GH concentration. Further studies are going to identify which of the 5-HT2 receptor subtypes (5-HT2A, 5-HT2B, or 5-HT2C) is responsible for the observed neuroendocrine regulation of cytochrome P450.
Collapse
Affiliation(s)
- Ewa Bromek
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Marta Rysz
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Anna Haduch
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | |
Collapse
|